1. Field of the Invention
This invention relates to antenna systems, and more particularly to an antenna system which comprises an orthogonal antenna assembly connected in a relatively fixed arrangement to reduce any cross polarized null condition, and is based upon our Provisional Patent Application No. 61/400,847, filed 3 Aug. 2010, which is incorporated herein by reference in its entirety.
2. Prior Art Discussion
Fin-type antennas employing log periodic dipole arrays and other arrangements of antenna conductors are commonly used for indoor and outdoor reception and transmission of short range wireless signals and particularly so-called wireless audio devices that are used in performance, stage, sports events, houses-of-worship, and in convention halls. The typical prior art fin type antenna is a planar sheet of dielectric material with conductors thereon, and at least one connection point for a coaxial cable. These fin type antennas are capable of operation over a broad bandwidth of 400 MHz to 3000 MHz or greater, and more typically operate over a one or two octave range of 400-1000 MHz, and exhibit forward gain of about 6 dB or more over the entire operating range. Forward gain is a function of the directionality of the antenna. These antennas are linearly polarized, that is, they pick up or transmit RF energy on a single plane, usually a vertical plane.
Wireless devices used in conjunction with typical planar antennas comprise wireless body packs, wireless transducers and microphones of various types, and wireless musical instrument pickups. Wireless monitoring receivers worn by users on stage are included in this group. These wireless devices are typically equipped with linearly polarized antennas, that is, they tend to emit or receive RF energy with a single polarization that is dependent upon the angular position of the device. Because they are linearly polarized, a common problem in operation is a fading or reduction of signal strength when the position of the device results in a crossed polarization of the respective transmitting and receiving antennas. This phenomenon is well known and appreciated in the antenna art. To overcome this problem, which results in an unacceptable noise (white noise) in the received audio, designers have constructed so-called diversity-receive-systems that use a plurality of antennas spaced apart and at different angles, in hope of reducing the probability of an extreme cross polarization fade. The diversity systems use two receivers in one box, typically, with two antenna ports that are to be connected to two feedlines, and then to two antennas. The two antennas can be of various types, most commonly used being the so-called shark fin, or blade antenna named for its flat, fin like shape. These antennas are produced economically by etching printed circuit board materials but have a disadvantage that they may be detuned, reducing effectiveness, when wet with rainwater.
Prior art diversity systems are generally considered to be effective but have the limitations of requiring two antenna setups that may or may not represent true polarization diversity. In other words, even though the visual angle of any two antennas used in such a diversity system may appear to be significantly different and presumably picking up on multiple axes, they may not be in reality due to the vagaries of RF propagation and reflection within buildings and close to reflecting objects such as stage equipment, and other metallic objects nearby. Persons who set up antennas for stage use must experiment with locations and guess at the required position and orientation of two or more antennas used for a single channel, which takes time and is subject to error. In addition the use of two separate antennas often requires the use of two stands that clutter the area, and two divergent feedlines, often coaxial cables, which must be separately routed back to the receiver that has two antenna ports. The cables have to be routed on the floor and usually require taping down for safety.
It would be more convenient, cost-effective, and safer if one antenna system could perform the same function as the two separate antennas of the prior art. More certain diversity operation could be achieved with predetermined, cross polarized elements held in a relatively fixed position, each having its own feedline. More convenient setup and routing of a pair of cables would afford faster deployment and take down if those cables could be routed in parallel, rather than divergently. Deep nulls from cross fades could be reduced or eliminated by the effective antenna system arrangement that would nearly guarantee that a cross-fade condition would have a lower likelihood than with randomly or visually oriented separate antennas. Outdoor operation would be improved if such antenna system was integrated and provided with a way to reduce the effect of water, which is known to detune antennas and reduce performance.
It is an object of the invention to overcome the limitations described above and provide a convenient, effective and cost effective diversity polarized antenna system with reduced cross polarization null characteristics over a wide frequency range. It is another object of the invention to provide a first planar antenna in a relatively fixed relationship to a second cross polarized antenna and provide convenient attachment points to the first planar antenna and the second cross polarized antenna so they may be used with a diversity receiver. It is another object of the invention to provide for a second independent antenna system that remains in an offset position relative to a first planar antenna, and which permits the folding of the second independent antenna for transportation and storage.
In one aspect, the second antenna is a pair of whip antennas mounted so they may be positioned perpendicular to the first planar antenna. In another aspect, the pair of whip antennas may be adjusted for a specific frequency. In one embodiment, the second independent antenna is an articulated log periodic dipole array (LPDA) that may be folded nearly flat for transportation and storage, and that has a feed point distinct and separate from the first planar antenna. In another embodiment, the diversity antenna system comprises a dielectric cover designed to maintain an air space for the purpose of reducing water detuning. The invention also comprises the method of providing an integrated, diversity polarization antenna comprising a plurality of linear polarized antennas, one of which is a generally planar supporting panel, attaching via coaxial cables the diversity polarization antenna to a diversity receiver, and receiving at the terminals of the receiver signals that are adequate for clear audio at least one antenna terminal of the diversity receiver regardless of the polarization of the desired signal.
The invention thus comprises a method of reducing a cross polarized null condition in a wireless diversity antenna system comprising one or more of the steps of arranging two electrically independent orthogonal antenna elements supported in a relatively fixed position with respect to one another on a flat substrate panel; connecting a first signal line and a second signal line, each from an independent element, to a diversity receiver having a multiple input arrangement; and positioning the two orthogonal antenna elements relative to a proximate radio frequency source, wherein the likelihood of any cross polarization nulls is reduced at the input of the diversity receiver at any moment in time. The independent orthogonal elements may be comprised of whip antennas. The independent orthogonal elements may be comprised of a gain-type planar circuit board antenna. The method may include: folding the antenna elements with respect to the flat substrate panel for transportation thereof.
The invention also comprises an antenna system having a plurality of independent antenna elements mounted on a generally trapezoidally-shaped planar support, each antenna element being electrically separate from one another and physically oriented generally perpendicular to each other, comprising: a first planar antenna serving as a substrate for a directional log periodic type antenna, and a second antenna oriented perpendicularly to the first antenna and affixed thereto, and a first coaxial cable connection on the substrate electrically connected to the directional log periodic type antenna, and a second coaxial cable connection mounted on the substrate which is electrically isolated from the directional log periodic type antenna and is connected to a perpendicular element extending from the substrate, and is positionable into a fixed orthogonal orientation relative thereto. The first planar antenna may be a circuit board type antenna. The system may be comprised of a flat antenna and two positionable whip antennas. The second perpendicular antenna may be comprised of movably hinged elements. The hinged elements are each preferably comprised of a planar etched circuit board.
a is a graphic representation of the signal from a single cross polarized antenna response when received from a single linear polarized source, showing an undesired null condition as a function of angle of about 90 degrees.
b is a graphic representation of the sum of the signals from two perpendicular antenna elements received from a single linear polarized source, even showing an undesired null condition as a function of about a 90 degree angle with its null depth reduced.
a is a ¾ view of a diversity fin antenna with folded array elements.
b is a ¾ view of a diversity antenna with extended array elements.
a is ¾ view of a dielectric air space hood for a diversity antenna with movable whip elements, with the hood shown in an open position.
b is a ¾ view of a dielectric air space hood for a diversity antenna with movable whip elements, with the hood shown in a closed position.
Referring to the drawings in detail, and particularly to
Referring now to
Now referring to
Referring again to
Referring now to
Referring now to
Referring now to
Referring now to
Referring back to
It is recognized that antenna systems as described herein may be used indoors or out of doors, and therefore subjected to rain. Rain on free space elements used in wire type antennas (not shown) has little effect. The coating of water on a planar fin type antenna is more pronounced, having a significant detuning effect and reduction of operating efficiency. In addition, the touching of other objects such as poles, stage equipment and crossing lines are common in performance venues and tend to adversely affect bare or painted shark fin type antennas as commonly used today such as the Lectrosonics ALP500 LPDA Shark Fin Style Antenna.
Referring now to
Now referring to
The diversity fin antenna system thus described has uses as a receiving or a transmitting antenna where fast deployment, and polarization diversity are desired to reduce or eliminate dropouts and undesired noises in concerts, in wireless microphone, bodypack or pickup systems, in convention centers, in presentation stages, houses-of-worship and outdoors such as at sporting events, concerts and other venues. It may also be used in buildings for cellular telephony and for so-called wifi applications, and as portable antenna systems that may be incorporated into tablet type computers, or miniaturized versions may be used for more distant reception and transmission when required by a user.
Number | Date | Country | |
---|---|---|---|
61400847 | Aug 2010 | US |