In conveying and sorting packages, diverter swing arms (also known as diverter blades or paddles) are used to divert an article from a conveying surface onto another conveying surface or some form of discharge chute for further downstream collating and sorting. Diverter swing arms are thus important in sorting articles in an accurate and timely manner.
For example, as shown in
Because such diverter swing arms are used where there is a significant volume of articles being conveyed, a common diverter swing arm must often perform a complete cycle (i.e., rotate and engage the article, and then return to a home position) in fractions of a second. For example, in some implementations, the swing arm may cycle at speeds in excess of one-quarter second. At the same time, such diverter swing arms may need to push an article having a weight of up to 70 lbs (or more). Accordingly, it is important that such diverter swing arms be very durable and reliable.
In many cases, such diverter swing arms are made of steel. Such all-metal diverter swing arms often fall victim to metal fatigue, which eventually causes fracture and failure.
U.S. Pat. No. 5,918,724 (which is incorporated herein by reference) describes and claims a diverter blade that includes an inner metallic section (or skeleton) and an outer plastic section. The metallic section is adapted to be connected to a drive motor. As such, the metallic section includes a rotary mounting portion defining an axis of rotation, and at least one torque-transmitting member (i.e., a linkage arm) projecting from the mounting portion. The plastic section is molded over and envelopes the metallic section, and the plastic section includes a front wall that is adapted to engage articles on the conveying surface. However, such a two-material diverter blade still has a metal linkage arm that is prone to metal fatigue, which again eventually causes fracture and failure.
The present invention is a diverter swing arm that is comprised solely of a polymer material and includes no metal components that would be subject to fatigue and failure.
An exemplary diverter swing arm made in accordance with the present invention includes a central body that has a unitary construction in that it is not an assembly of discrete parts or components, but rather is molded as a single part from a high-strength polymer material. There is no molded-in metal skeleton or frame in the diverter swing arm.
The central body of the diverter swing arm includes a pusher portion that has an external face for engaging and diverting a particular article from a conveying surface. The central body of the diverter swing arm further includes a linkage arm that facilitates connection to a drive motor or other actuator. Again, the pusher portion and the linkage arm are integral parts of the diverter swing arm rather than separate and discrete components. The central body of the diverter swing arm also defines an opening therethrough that receives a metal (steel) pivot pin, but this pivot pin simply defines a pivot axis for the diverter swing arm and does not bear any loads that would subject it to fatigue and failure.
In order to reduce the inertia of the diverter swing arm, multiple recesses may be molded into the pusher portion opposite the external face that engages articles, thus reducing the mass of the diverter swing arm. With respect to the linkage arm, one or more recesses may also be molded into the linkage arm, thus further reducing the mass of the diverter swing arm.
In some exemplary embodiments, the linkage arm terminates in a clevis, which includes upper and lower clevis ears that each define an opening for receiving a connection pin, thus operably connecting an actuator to the diverter swing arm. As a further refinement, each clevis ear may include a molded-in metal eye that prevents premature wear at the points of engagement between the connection pin and the linkage arm.
In order to ensure that the diverter swing arm has sufficient strength and rigidity in the absence of a metal linkage arm or inner metal skeleton, the shape of the diverter swing arm is altered as compared to the prior art. Specifically, the linkage arm of the exemplary diverter swing arm of the present invention has a much wider profile. The linkage arm has a generally triangular shape, increasing in width from its point of engagement with a connection pin (such as the aforementioned clevis ears) to where it connects to the pusher portion. For instance, in some embodiments, the outer (rear) edge of the linkage arm intersects the rear surface of the pusher portion near its midpoint.
The present invention is a diverter swing arm that is comprised solely of a polymer material and includes no metal components that would be subject to fatigue and failure.
The central body 20 of the diverter swing arm 10 includes a pusher portion 22 that has an external face 22a for engaging and diverting a particular article from a conveying surface. The central body 20 of the diverter swing arm 10 further includes a linkage arm 40 that facilitates connection to a drive motor or other actuator, as is further described below. Again, the pusher portion 22 and the linkage arm 40 are integral parts of the diverter swing arm 10 rather than separate and discrete components. The central body 20 of the diverter swing arm 10 also defines an opening therethrough that receives a metal (steel) pivot pin 50, but this pivot pin 50 simply defines a pivot axis for the diverter swing arm 10 and does not bear any loads that would subject it to fatigue and failure. With respect to the pivot pin 50, it should also be recognized that the central body 20 of the diverter swing arm 10 could be molded around this pivot pin 50 to effectively make it an integral and permanent part of the diverter swing arm 10.
Furthermore, in order to reduce the inertia of the diverter swing arm 10, multiple recesses 26 are molded into the pusher portion 22 opposite the external face 22a that engages articles, thus reducing the mass of the diverter swing arm 10. At the same time, however, a pattern of upright ribs 28 and/or diagonal braces 29 reinforces and stiffens the pusher portion 22. In this exemplary embodiment and as best shown in
With respect to the linkage arm 40, one or more recesses 42 are also molded into the linkage arm 40, thus further reducing the mass of the diverter swing arm 10. At the same time, however, one or more ribs 43 may be used to reinforce and stiffen the linkage arm 40. In this exemplary embodiment and as best shown in
Perhaps more importantly, the linkage arm 40 terminates in a clevis 44, which includes upper and lower clevis ears 46, 48 that each define an opening 46a (one of which is viewable in
Furthermore, in order to ensure that the diverter swing arm 10 of the present invention has sufficient strength and rigidity in the absence of a metal linkage arm or inner metal skeleton, the shape of the diverter swing arm 10 is altered as compared to the prior art.
Finally,
As reflected in
As reflected in
One of ordinary skill in the art will recognize that additional embodiments are possible without departing from the teachings of the present invention or the scope of the claims which follow. This detailed description, and particularly the specific details of the exemplary embodiments disclosed herein, is given primarily for clarity of understanding, and no unnecessary limitations are to be understood therefrom, for modifications will become obvious to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/423,394 filed on Dec. 15, 2010, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3768644 | Di Frank et al. | Oct 1973 | A |
4222813 | Jodrey | Sep 1980 | A |
5217104 | Pelletier | Jun 1993 | A |
5244100 | Regier et al. | Sep 1993 | A |
5452786 | Gilmore | Sep 1995 | A |
5464088 | Koerber | Nov 1995 | A |
5918724 | Terrell et al. | Jul 1999 | A |
6220422 | Lee | Apr 2001 | B1 |
6588575 | Heuft et al. | Jul 2003 | B1 |
6822181 | Linton | Nov 2004 | B2 |
6910568 | Ydoate et al. | Jun 2005 | B1 |
7954622 | Schimmel et al. | Jun 2011 | B2 |
7975829 | Rogers et al. | Jul 2011 | B2 |
8082838 | Meagher et al. | Dec 2011 | B2 |
20070209906 | Ranger et al. | Sep 2007 | A1 |
20100193323 | Rogers et al. | Aug 2010 | A1 |
Entry |
---|
ISA/KR, International Search Report and Written Opinion issued for related international application No. PCT/ US2011/065188, mailed Aug. 29, 2012. |
Number | Date | Country | |
---|---|---|---|
20120152694 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61423394 | Dec 2010 | US |