The present invention relates to a faucet and, more particularly, to a diverting apparatus of a faucet.
As disclosed in U.S. Pat. No. 9,663,927B2, a faucet is provided with a conventional diverter including a body, an inlet module, a first outlet module, a second outlet module and a control module. The inlet module is connected to an input portion of the body. The first outlet module is connected to a hose. The angle of the first outlet module is adjustable. The second outlet module is operable to switch between modes for dispensing water. The control module is operable to switch between directions and outlets.
However, it is troublesome to assemble each of the modules because each of the modules includes quite a few components. Finally, it is impossible to take the diverter apart for repair because the modules are interconnected by ultrasonic welding.
The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.
It is the primary objective of the present invention to provide a faucet with a diverter.
To achieve the foregoing objective, the diverter includes a body, an inlet module, an outlet module and a control module. The body includes first, second, third and fourth tubular branches and a partition. The first tubular branch includes a central tube and a peripheral zone. The partition extends in the body and includes two apertures. The fourth tubular branch is in communication with the central tube of the first tubular branch via the first aperture. The fourth tubular branch is in communication with the peripheral zone of the first tubular branch via the second aperture. The third tubular branch is in communication with the fourth tubular branch via a slot. The inlet module includes a collar connected to the third tubular branch and adaptable for connection to a faucet. The first outlet module includes a ring and a nozzle. The ring is inserted in the first tubular branch and includes a central aperture and peripheral apertures. The central aperture receives a section of the central tube of the first tubular branch. The nozzle is connected to the first tubular branch to keep the ring in the first tubular branch and includes a tubular wall, a central outlet portion and a peripheral outlet portion. The tubular wall includes an edge abutted against an edge of the central tube. The central outlet portion is located corresponding to the central aperture. The peripheral outlet portion is located corresponding to the peripheral apertures. The control module includes a knob and a controller. The controller is inserted in the fourth tubular branch and includes an insert, a water-containing zone and an orifice. The insert is fitted in the knob so that the controller is rotatable with the knob. The water-containing zone is in communication with the third tubular branch via the slot. The orifice is in communication with the water-containing zone. The water-containing zone, the orifice, the first aperture, the first tubular branch, the central tube, the central aperture and the central outlet portion together provide a first channel when the controller is in the first position. The water-containing zone, the orifice, the second aperture, the first tubular branch, the peripheral zone, the peripheral apertures and the peripheral outlet portion together provide a second channel when the controller is in the second position.
Other objectives, advantages and features of the present invention will be apparent from the following description referring to the attached drawings.
The present invention will be described via detailed illustration of the preferred embodiment referring to the drawings wherein:
Referring to
The body 1 is made by injection molding. The body 1 includes a first tubular branch 11, a second tubular branch 12, a third tubular branch 13 and a fourth tubular branch 14. The tubular branches 11 to 14 are in communication with one another.
The inlet module 2 includes a collar 21 and a clip 22. The collar 21 is made by injection molding, and so is the clip 22. The collar 21 is used to connect a hose (not shown) to the body 1. The clip 22 is used to connect the collar 21 to the third tubular branch 13.
The first outlet module 3 includes a ring 31 and a nozzle 32. The ring 31 is made by injection modeling, and so is the nozzle 32. The ring 31 includes a central aperture 311 and peripheral apertures 312. The nozzle 32 includes a central outlet portion 321, a tubular wall 322 and a peripheral outlet portion 323. The central outlet portion 321 is located in the tubular wall 322. The peripheral outlet portion 323 extends around the tubular wall 322.
The ring 31 is inserted in the first tubular branch 11, around a central tube 111 formed in the first tubular branch 11. The nozzle 32 is provided around the first tubular branch 11. Thus, the central tube 111 includes a section inserted in the central aperture 311 and an edge abutted against an edge of the tubular wall 322, which extends around the central outlet portion 321. The central outlet portion 321 is aligned to the central aperture 311. The peripheral outlet portion 323 is aligned to the peripheral apertures 312. The nozzle 32 includes, on an internal face, a thread (not numbered) engaged with a thread (not numbered) formed on an external face of the first tubular branch 11, thereby connecting the nozzle 32 to the first tubular branch 11.
The control module 4 includes a controller 41 and a knob 42. The controller 41 is made by injection modeling, and so is the knob 42. The controller 41 is inserted in the fourth tubular branch 14. A screw 43 is used to rotationally connect the controller 41 to a tubular portion 17 formed in the fourth tubular branch 14. The controller 41 includes an insert 44 fitted in a bore 442 made in the knob 42 so that the controller 41 is rotatable with the knob 42. Referring to
The second outlet module 5 includes a stationary hollow element 51, a rotational hollow element 52 and a joint 53. The stationary hollow element 51, the rotational hollow element 52 and the joint 53 are made by injection modeling. The stationary hollow element 51 includes a tubular portion 511 connected to the second tubular branch 12 by a clip 515. The rotational hollow element 52 includes a tubular portion 521 formed with a thread (not numbered) engaged with a thread (not numbered) formed on the joint 53. The joint 53 includes a reduced section inserted in a hose (not shown) in use. The rotational hollow element 52 is rotationally connected to the stationary hollow element 51 by an axle 531. The axle 531 is preferably a threaded bolt used with a washer. The rotational hollow element 52 is rotatable relative to the stationary hollow element 51 so that the angle of the joint 53 relative to the stationary hollow element 51 is changeable (
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The knob 42 is in a position where the water-column mark 422 is aligned to an indicator 18 formed on the body 1 (
Referring to
Referring to
Referring to
As discussed above, the control module 4 is operable to switch the diverter between directions and modes for dispensing water. Water goes from the first outlet module 3 as a water column, leaves the first outlet module 3 in water spray, or goes out of the hose, which is connected to the second outlet module 5. The components of the body 1, the inlet module 2, the first outlet module 3, the second outlet module 5 and the control module 4 are made by injection modeling. Hence, the production of the components is relatively easy. Moreover, the total number of the components is relatively small. Therefore, the assembly of the diverter is relatively easy and precise. Risks of leak are reduced. In addition, ultrasonic welding is not used so that the diverter can be taken apart for repair.
The present invention has been described via the illustration of the preferred embodiment. Those skilled in the art can derive variations from the preferred embodiment without departing from the scope of the present invention. Therefore, the preferred embodiment shall not limit the scope of the present invention defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
6082624 | Heinzelmann | Jul 2000 | A |
7509976 | McNerney | Mar 2009 | B2 |
8191185 | Tsai | Jun 2012 | B2 |
9663927 | Lo | May 2017 | B2 |
10203038 | Lin | Feb 2019 | B2 |
10641400 | Gong | May 2020 | B2 |
10967390 | Lord | Apr 2021 | B2 |
20060242759 | Tsai | Nov 2006 | A1 |
20180216740 | Breda | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20210370323 A1 | Dec 2021 | US |