The present disclosure relates to dividers/combiners, and in particular to such dividers/combiners formed as a combination of inductively coupled and inductively uncoupled sections.
Dividers are circuits that divide a signal into a plurality of signals. An N-way divider divides a signal into N signals. Conversely, a combiner combines a plurality of signals into a single signal. The same circuit can be a divider or combiner, depending on the direction of current flow, i.e., whether the single port is an input port or an output port. As used herein, then, the use of the term “divider” also means “combiner”.
In U.S. Pat. No. 3,091,743, Wilkinson disclosed a power divider in which one end of each of a plurality of branch lines are connected to a common node or port, and the other end of each line is connected to a second node via an interconnecting resistor. In the simple case of two branch lines, the two interconnecting resistors form an isolating interconnecting resistor, that connects the two branch ends of the lines. In his article, A Class of Broadband Three-Port TEM-Mode Hybrids, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-16, No. 2, February 1968, Cohn extended the single section of Wilkinson to multiple cascaded sections formed of pairs of line lengths and interconnecting resistors. The increased number of sections resulted in improved VSWR, isolation and bandwidth.
A pair of spaced-apart conductive lines are inductively coupled when they are spaced closely enough together for energy flowing in one to be induced in the other electromagnetically and/or electrostatically. The amount of energy flowing between the lines is related to the dielectric and magnetic media the conductors are in and the spacing between the lines. Even though electromagnetic fields surrounding the lines are theoretically infinite, lines are often referred to as being closely or tightly coupled, loosely coupled, or uncoupled, based on the relative amount of coupling. The amount of coupling may be defined by a coupling coefficient. However, as a practical measure, two lines may be considered to be inductively coupled when a detectable signal is coupled from one line onto the other. A threshold of coupling may be appropriate to distinguish between coupled and uncoupled lines. In most applications, two lines that have less than 20 dB inductive coupling between them are considered to be uncoupled lines. In some applications, lines that have less than 100 dB are considered to be uncoupled lines.
Couplers are devices formed to take advantage of inductively coupled lines, and may have four ports, one for each end of two inductively coupled lines. A main line has an input connected directly or indirectly to an input port. The other end is connected to the direct port. The other or auxiliary line extends between a coupled port and an isolated port. One or more of the ports may be terminated to form a coupler device having fewer than four ports. Some couplers are described as having two input ports, a sum port that has a signal that is the sum of signals received at the input ports, and a difference port that has a signal that is the difference of the signals received at the input ports. A coupler may be reversed, in which case the isolated port becomes the input port and the input port becomes the isolated port. Correspondingly, the coupled port and direct port then have reversed designations.
Directional couplers are four-port networks that may be simultaneously impedance matched at all ports. Power may flow from one or the other input port to the pair of output ports, and if the output ports are properly terminated, the ports of the input pair are isolated. A hybrid coupler is generally assumed to divide its output power equally between the two outputs, whereas a directional coupler, as a more general term, may have unequal outputs. Often, the coupler has very weak coupling to the coupled output, which minimizes the insertion loss from the input to the main output. One measure of the quality of a directional coupler is its directivity, the ratio of the desired coupled output to the isolated port output.
Coupled adjacent parallel transmission lines couple both electrically and magnetically. The coupling is inherently proportional to frequency, and the directivity can be high if the magnetic and electric couplings are equal. Longer coupling regions increase the coupling between lines, until the vector sum of the incremental couplings no longer increases, and the coupling will decrease with increasing electrical length in a sinusoidal fashion. In many applications it is desired to have a constant coupling over a wide band. Symmetrical couplers exhibit inherently a 90-degree phase difference between the coupled output ports, whereas asymmetrical couplers have phase differences that approach zero-degrees or 180-degrees.
A divider may include a stem or first port, and two or more branch ports connected or coupled directly or indirectly to the first port. As mentioned, a divider may include multiple sections. In some examples, a divider may include at least an inductively uncoupled section and an inductively coupled section. An uncoupled section may be characterized by a plurality of associated transmission lines that are substantially inductively uncoupled. On the other hand, a coupled section may include a plurality of associated transmission lines that are substantially inductively coupled.
A coupled or uncoupled section may include a resistor connected between ends of the associated first and second transmission lines. In some examples, one or more uncoupled sections are connected in series to the first port and one or more coupled sections are connected in series between the uncoupled sections and the second and third ports.
Also, in some examples, a divider may include a plurality of divider sections coupling a first port to second and third ports. Each divider section may include first and second associated transmission lines, with each transmission line having first and second ends. The divider sections may include at least one coupled section and at least one uncoupled section. The first transmission lines of the plurality of divider sections may be connected in series with a first end of one of the first transmission lines directly connected to the first port and the second end of another of the first transmission lines directly connected to the second port. The second transmission lines of the divider sections also may be connected in series, with an end of the series directly connected to the third port. At least one of the divider sections further may include a resistor connected between the second ends of the first and second transmission lines of the one divider section. The first and second associated transmission lines of each uncoupled section may be substantially inductively mutually uncoupled, and the first and second transmission lines of each coupled section may be substantially inductively mutually coupled.
This description is illustrative and directed to exemplary apparatus and/or methods that may include one or more inventions. The appended claims define specific inventions included in one or more of the disclosed examples. Claims in other applications based on this application may claim other inventions. No single feature or element, or combination thereof, is essential to all possible combinations that may now or later be claimed. All inventions may not be included in every example. Many variations may be made to the disclosed embodiments. Such variations may be directed to different combinations or directed to the same combinations, and may be different, broader, narrower or equal in scope.
Where “a” or “a first” element or the equivalent thereof is recited, such usage includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically indicated.
As used in this document, two lines are inductively coupled when a detectable signal is inductively coupled from one line onto the other. The amount of coupling may be selected for a particular application. The term divider also means combiner, since the same circuit may be used for either application depending on which ports a signal is or signals are applied. Further, circuit elements are considered to be directly connected when there are no intervening elements between them. Correspondingly, circuit elements are considered to be coupled together and indirectly connected, when there are intervening elements between them.
A divider may include first, second and third ports, and a plurality of divider sections coupling the first port to the second and third ports including at least one coupled section and at least one uncoupled section, each divider section including associated first and second transmission lines, each transmission line having first and second ends, the first transmission lines of the plurality of divider sections being connected in series with a first end of one of the first transmission lines directly connected to the first port and the second end of another of the first transmission lines directly connected to the second port, and the second transmission lines of the divider sections being connected in series, with the second transmission line, associated with the other first transmission line, having a second end directly connected to the third port, at least one of the divider sections further including a first resistor connected between the second ends of the first and second transmission lines of the one divider section, the first and second associated transmission lines of each uncoupled section being substantially inductively mutually uncoupled, and the first and second transmission lines of each coupled section being substantially inductively mutually coupled.
Referring initially to
The divider sections 20 each may include associated first and second transmission lines. The lines may be inductively coupled or uncoupled, and may include an interconnecting resistor between the associated lines. Divider sections in which the associated transmission lines are substantially mutually inductively uncoupled are referred to as uncoupled sections, or simply uncoupled sections. Similarly, divider sections in which the associated transmission lines are substantially mutually inductively coupled are referred to as coupled sections, or simply coupled sections. The electrical lengths L of the transmission lines in the various examples are typically 90 degrees or a quarter of a wavelength (λ/4) at a design frequency, although the lengths may be different in specific applications. Each transmission line also has an impedance, and in the case of coupled transmission lines, the lines will have an even-mode impedance and an odd-mode impedance.
In this example, end section 86 is a coupled in-line section 70, as is shown in
Further, one or more in-line sections 84 may be connected between branching section 82 and end in-line section 86. For example, there may be a plurality of uncoupled sections 60 or a plurality of coupled sections 70, or both. In one example, then, there may be a plurality of uncoupled sections 60 connected in series with branching section 82. There also may be a plurality of coupled sections 70 connected in series between end section 86 and the uncoupled sections 60. The uncoupled sections may each have an interconnecting resistor 66, whereas none of the coupled sections may have an interconnecting resistor 76.
In-line sections 94, 96, 98 are examples of in-line sections 24 shown in
Section 96 includes substantially inductively coupled and associated first and second transmission lines 114, 116. These transmission lines have respective first and second ends 114a, 114b and 116a and 116b. The first ends 114a, 116a of these transmission lines are connected to respective transmission line ends 110b, 112b of adjacent branching section 94.
End section 98 includes substantially inductively coupled and associated first and second transmission lines 118, 120. These transmission lines have respective first and second ends 118a, 118b and 120a, 120b. The first ends 118a, 120a of these transmission lines are connected to respective transmission line ends 114b, 116b of adjacent branching section 96. Transmission line ends 118b, 120b of these transmission lines are connected to branch ports 16, 18.
First transmission lines 100, 110, 114, 118 are connected in series between first port 12 and branch port 16. Similarly, second transmission lines 102, 112, 116, 120 are connected in series between first port 12 and branch port 18. Even though there are multiple divider sections 20 in divider 90, there is an isolation resistor only on the branch ends of the transmission lines of uncoupled branching section 92. The remaining coupled sections 94, 96, 98 are configured to have odd mode and even mode impedances that provide the appropriate impedance between the associated first and second transmission lines.
Following are design values for the components of divider 90 for impedances of 50 ohms on ports 12, 16 and 18 and a design frequency of 0.5 GHz.
It is seen that the odd-mode impedances of the coupled sections increase progressively in value from the uncoupled section to the second and third ports. Further, the even-mode impedances of the coupled sections decrease progressively in value from the uncoupled section to the second and third ports. The resistor and the transmission lines are configured to provide 3 dB output signals on the second and third ports for a given input signal applied to the first port over a bandwidth of more than 5:1. The resistor and the transmission lines are configured to have a pass band above 100 MHz. Additionally, the first resistor has a nominal impedance of less than 1.2 (52.6 ohms divided by 50 ohms equals 1.05) for a nominal impedance of 1.0 on the input port.
Divider 90 may be considered to be a collapsed Cohn divider. That is, the first or branching section is similar to a three-port Wilkinson divider. The three in-line sections are coupled sections rather than uncoupled sections with interconnecting resistors, as disclosed by Cohn. By coupling the associated transmission lines of each of the coupled sections 94, 96, 98, the positions of the resistors can in effect be moved to be in parallel at transmission line ends 100b, 102b. Resistor 108 is then, in effect, the sum of parallel resistances attributable to the three coupled sections. The resulting relatively low value for the single interconnecting resistor makes it practical to build, particularly in high power applications where there is a tradeoff between thermal performance and high frequency performance.
This approach can be applied to more than two-branch port dividers. For example, a secondary branching section could be applied to the two branch lines of a first branching section, and one or more coupled sections can then be connected to each of the secondary branching sections, similar to divider 90. In an N-way divider having a single N-way branching section, the in-line sections then provide coupling between the associated and coupled N-transmission lines in each section.
This is illustrated by the simplified three-dimensional illustration of a two-section, four-way divider 130 shown in
Divider 130 includes a plurality of divider sections 152, similar to divider 10, including a first branching section 154 and a second in-line section 156. First section 154 corresponds with branching section 30 depicted in
Section 156 includes associated and substantially mutually inductively coupled transmission lines 176, 178, 180, 182. In section 156, conductors 144, 146, 148, 150 are disposed sufficiently close together, based on the dielectric medium separating them, to provide inductive coupling between them. The electrical lengths of these conductors may be about 90 degrees or a quarter of a design wavelength, unless additional impedances are added between the conductors, and between the conductors and ground.
It is seen then, that a divider may include a primary port and N branch ports, where N is an integer greater than 1, a branching section and at least one coupled in-line section. The branching section may include N first resistors having first and second ends, the first ends of the first resistors being conductively connected together, and N branch transmission lines each having a first end conductively connected to the primary port and a second end conductively connected to the second end of a respective one of the first resistors. The branch transmission lines may be substantially mutually inductively uncoupled. Each first coupled section may include N associated and mutually inductively coupled transmission lines, each coupled transmission line having a first end conductively coupled to the first end of a respective one of the first resistors and a second end conductively coupled to a respective one of the branch ports.
Several in-line sections may be connected serially or in parallel to couple a signal or signals between the primary port and the branch ports. Divider 130 is an example having one in-line section and four transmission lines in each section. Other examples may have more or fewer transmission lines and more in-line sections. Accordingly, as has been mentioned, while examples of multi-port dividers have been particularly shown and described, many variations may be made therein.
The methods and apparatus described in the present disclosure are applicable to industries and systems using high frequency signals, such as used in telecommunications applications including audio, video and data communications, and broadcasting systems. Microwave power dividers are useful in a wide variety of instrumentation and system applications, such as feeding signals to multiple antennas. Power dividers can also be used to combine microwave signals by applying the signals to be combined to what would normally be considered the outputs of the divider. Combining signals in this manner may provide high output power from a plurality of semiconductor signal devices, such as amplifiers.
Number | Name | Date | Kind |
---|---|---|---|
3091743 | Wilkinson | May 1963 | A |
3516025 | Podell | Jun 1970 | A |
3529265 | Podell | Sep 1970 | A |
3761843 | Cappucci | Sep 1973 | A |
3883828 | Cappucci | May 1975 | A |
3988705 | Drapac | Oct 1976 | A |
4263559 | Ho | Apr 1981 | A |
4556856 | Presser | Dec 1985 | A |
4636755 | Gibbs | Jan 1987 | A |
4721929 | Schnetzer | Jan 1988 | A |
5206611 | Russell | Apr 1993 | A |
5847625 | Gillette | Dec 1998 | A |
6236272 | Takei et al. | May 2001 | B1 |
6300848 | Miyaji et al. | Oct 2001 | B1 |
6472950 | London | Oct 2002 | B1 |
6570466 | Bahl | May 2003 | B1 |
6822531 | Carlson | Nov 2004 | B2 |
6992616 | Grudkowski et al. | Jan 2006 | B2 |
7142052 | Zelley | Nov 2006 | B2 |
20040263281 | Podell | Dec 2004 | A1 |
20050122185 | Podell | Jun 2005 | A1 |
20050122186 | Podell | Jun 2005 | A1 |
20050146394 | Podell | Jul 2005 | A1 |
20050156686 | Podell | Jul 2005 | A1 |
20060066418 | Podell | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080018412 A1 | Jan 2008 | US |