The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are meant to be illustrative rather than limiting. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. The intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
As discussed above, diving computers typically display a multitude of parameters relative to the dive. These can be divided into four groups: 1) those that are very important for the diver to see throughout the dive, 2) those that are maybe interesting but not important, 3) primary warnings and alarms which alert the diver of very dangerous situations and 4) secondary warnings and alarms which alert the diver in special but not dangerous circumstances.
In the first group, which contains the information paramount to diver safety, there are, for instance, instantaneous depth, bottom time and decompression status (either in form of no-stop time or of decompression stops and related total ascent time). This group contains the “must have” information (“MH”). In the second group, which contains information that is relevant to the dive but not necessary for the diver to know, there are, among others, water temperature, maximum depth, set oxygen mixture for nitrox calculations, CNS O2 (oxygen) clock, partial pressure of oxygen, time of day, date. Graphical representation of nitrogen loading or oxygen loading are also included in group 2 since this is also “nice to have” information (“NTH”). In the third group, which contains alarms that are necessary for diver safety, there are ascent rate alarm, missed decompression alarm, oxygen toxicity alarm and others. These alarms are referred to as “primary alarms” (“PA”) In the fourth group, which contains alarms that alert the diver of special but not dangerous situations, there are, for instance, maximum depth alarm, elapsed time alarm to name a few. These alarms are referred to as “secondary alarms” (“SA”).
In case of gas-integrated computers, among the information belonging to group 1 there is tank pressure and remaining bottom time based on gas consumption. Similarly, there will be a low gas pressure warning and possibly an increased exertion warning among group 3. In group 4 there could be a mid tank warning message.
The information in group 1 must be shown at all times, be clear to understand and in a position and of size such that it is intuitively and easily understood. Information in group 2 can be shown smaller, and in less prominent positioning of the displays, in an alternating mode with a second field from group 2, or maybe not at all. The primary alarms, group 3, are only shown when a situation arises that triggers the alarm itself. When this is the case, the alarms show prominently on the screen and in an intuitive and easy to read position, and are of a size that is easily distinguishable. Secondary alarms do not need to be shown prominently, or at all.
With these parameters in mind, a diving computer according to the present application is depicted in
Alternatively, the diving computer or the display may be mounted on another portion of a diving suit. For instance, SCUBA diving masks that incorporate a display may be used, or the diving computer and display may be attached to a sleeve or other portion of a diving suit. The screen must be available so that the diver can receive and act on information from the diving computer and the display during the dive. The control buttons or control interfaces on the diving computer should also be available to the diver, so that the diver may call for different information on different screens using the control buttons during the dive. In this example, the diving computer has three control buttons 16a, 16b, 16c, for the diver to control the diving computer as will be discussed more fully below.
The diving computer includes a digital computer that controls the diving computer, along with circuitry for controlling the functions, inputs, and outputs of the diving computer. One exemplary embodiment is depicted in
Other components of the diving computer also are generally concerned with inputs and outputs, and interfaces for the inputs and outputs. Circuits 25a, 25b may be circuits for detecting and indicating “low battery” and “power on” outputs. The diving computer may also include a display select circuit 25c that allows the user to select from one or more outputs during a dive. There may also be a battery 27, an analog to digital (A/D) converter circuit 28 and an additional interface or transfer or interface circuit 29 for converting the outputs of the A/D circuit for the microprocessor. The inputs may include one or more pressure transducers 26a, a temperature transducer 26b, and an additional transducer 26c, which may be a heart-rate monitor transducer or other desired input.
As noted, each additional input, such as the heart rate monitor, requires a suitable transducer or receiver for receiving the input. The heart rate monitor for the diver may be equipped with a radio-frequency (RF) output and the diving computer may be equipped with an RF transducer for receiving the output of the heart rate monitor. For example, BLUETOOTH low power radio frequency circuits may be used for sending and receiving such transmissions over a very short distance. The heart rate signal may then be modified as needed for recording and may be used by CPU 20 for display on one of the pre-programmed displays, or may be used in calculations for the dive. For instance, merely displaying the heart rate may convey information to the diver as to whether he or she should slow down or relax more.
Another input may include a tank pressure signal. Using this signal, the diving computer can calculate a breathing gas consumption and correspondingly derive a maximum time for remaining underwater. It can also extrapolate an exertion level by the diver (based on an increase in breathing rate) and if the decompression algorithm is suited for it, adapt the decompression schedule accordingly. If the diving computer is equipped with a temperature transducer, the diving computer can receive a temperature input from a remote temperature element, such as a thermocouple or thermistor, or from a local hard-wired temperature element. The computer can then be programmed to display the surrounding temperature, such as a water temperature. Other interfaces may also be used to accept other desired inputs and to calculate other outputs.
As is well known to those skilled in designing and using diving computers, there are a number of computer software programs, i.e., algorithms, that are used for the computations involved in a diving computer. For example, a number of such programs are used to receive inputs and then to calculate diving safety parameters. A diving safety parameter is a variable associated with personal safety for a diver on a dive. Diving safety parameters include, but are not limited to, a time of a dive, a depth of a dive, a series of times and depths of a dive, a maximum depth, an estimated or actual partial pressure of oxygen, an actual or calculated oxygen toxicity, and a decompression status. These parameters may include the time a diver may remain at a given depth without the need for a decompression stop during the subsequent ascent. The program may also calculate the stops (depth) and time required during ascent if one or more decompression stops are required. Decompression algorithms may include, but are not limited to, the bulk-diffusion model, the thermodynamic model, Buhlmann's algorithm, the multi-tissue model, the varying-permeability model, the reduced-gradient bubble model, and the tissue bubble diffusion model.
Returning to
The personal computer 11 may be used to program the diving computer 10 using one or more of the decompression algorithms. In one embodiment, when using the diving computer, a user may select from a conservative or a liberal algorithm for following a decompression schedule. A conservative algorithm is one that allows less time or depth on a dive, while a liberal algorithm typically allows for more time or depth on the same dive. The diving computer may also use additional inputs to calculate the decompression schedule. For instance, if the diving computer has an interface to a source of air or Nitrox, such as a pressure transducer, the diving computer can calculate the decompression schedule including the tank pressure as an input to evalulate the exertion level of the diver and adapting the decompression accordingly. In addition, from the tank pressure the computer can evaluate a maximum time that the diver may remain on the dive, compare it to the time needed to decompress, and alert the diver if the tank supply is not sufficient for the intended decompression.
The personal computer 11 may also be used to program the options or the displays available to the diver. The personal computer 11 may include an application programming interface (API), such as one depicted in
In one embodiment, the pre-configured screen layouts include a “classic” configuration (see, e.g.
To begin programming the layout of the display in order to make user-configured screen layouts, the user has to select first the group 1 items (“must have” items) and the group 3 items (primary alarms) in the API from area 200. In this area, the user will then select an element from the list of required elements 218. Then the user selects the size/style of the element from selection 219. The selected symbol is shown in symbol box 210. From there the user can move it to the edit window 213. After all the mandatory elements (MH and PA) are correctly located in the main page the user can continue to the next phase and add elements from group 2 and group 4.
The elements to be placed on the display are rectangles with an example inside (for example figure 88.8 and the text “DEPTH” in small font above it). Once located on the display, they will have tool-tips (hint texts), which tell the name, size and category of the symbol, when the user moves the mouse over it.
After the main page is completed the user can assign buttons from area 211 and select the action to be taken for the button in area 212. If the user chooses “Alternate display” the user can add sub pages for the button by selecting the appropriate key in area 217. To populate these sub pages, the user can select items of information that are either already included in other display pages or from the menu of currently unused items of information. For example, the user can have the main display or one of the sub displays displayed in window 215. By using the keys in area 214, the user can add an item that is already included in one of the other displays. The selected item from the other display (shown in window 215) is then copied to the edit window 213 and may, in one embodiment, be positioned and sized as discussed above. In an alternate embodiment, the sizes and locations of the copied items of information will be the same as in the original page from which they were copied and they can not be altered. Alternatively or additionally, the user can select some of the not yet used elements from the “nice to have” (NTH) and “secondary alarms” (SA) pages by selecting the appropriate tab in area 200.
The button “Add mandatory items” in area 214 will add all MH and PA elements on the page being edited. The “timeout” in section 217 is on as a default and the user cannot switch it off unless all the mandatory items are located on the sub page. The user can use “<” and “>” buttons in area 217 to scroll back and forth through the various sub pages and edit the active page.
The surface display is built the same way as the sub pages discussed above except that it does not have mandatory items and the button actions are fixed. The surface display and related sub pages are independent of the dive displays and can be created and saved separately.
When the programmer has finished the page designs, the page may then be added to the memory of the diving computer. As noted above, the diving computer may be equipped with a reprogrammable memory, such as an EPROM or flash memory, for this purpose.
In an alternate embodiment of the present invention, an application programming interface that allows “drag and drop” construction of the various display screens of the diving computer is used with an external programming computer. This embodiment has similar parameters as the previously described embodiment with regard to utilization of all of the items of information from certain groups. Once the items for display are selected, the programming is completed for each display by selecting a size and a location for each item on the display. As depicted in
The programmer may then proceed to program in each main and alternate display using this basic “drag and drop” technique. Other programming techniques may also be used, such as selecting a pixel resolution or an available area or portion of a display, or both. No particular technique is required. In one alternative, a user may select a default mode, such as equal space or resolution for each selected item of information. After the default mode is displayed, the user may adjust one or more items of information as desired and finalize the particular display.
In one embodiment, touching the three buttons for a moment will bring up the menu, log, and light functions. In the same embodiment, or in another embodiment, the holding the menu button will allow the digital computer to access a digital compass display, if the diving computer is equipped with such a compass that is interfaced to the diving computer. Pressing and holding the log button will allow a user to jump directly to another viewing function, such as a picture viewing menu or to an emergency message pre-stored in the dive computer in case of a diving accident. Pressing and holding the light button will allow the diving computer to go directly to an oxygen concentration function. In the oxygen concentration function, the diving computer may display a current oxygen concentration, and may also display a maximum operating depth (MOD), and the partial pressure of oxygen used to calculate the maximum operating depth.
In one embodiment, a diving computer has three control buttons for a user to manipulate. The buttons may be labeled, as seen in
The display of
The diving computer may also be used in a gauge mode, as depicted in
As part of the programming of the diving computer, alarms may be programmed to interrupt the displays for warnings or cautions, as depicted in
In addition to the diving displays discussed, the diving computer may also have displays that are useful when the diving computer is not being used in a diving mode. For instance,
Display 110c has similar parameters, but depicts a display after a dive when the diver has remaining saturation (residual nitrogen). That is, the diver's body still contains dissolved nitrogen that needs to be accounted for in case of performing another dive. It also could cause decompression sickness if the diver were go to an environment of reduced ambient pressure, such as a higher altitude, or flying in a commercial plane. Display 100c displays the calculated remaining desaturation time 114 of 22 hours and 33 minutes, and an indicated no-fly time 112 of 12 hours. The computer displays the interval of time on the surface since the last dive 111 of 24 minutes. The bar graphs on the left and right sides of the display CNS oxygen toxicity 115 (left side, also shown numerically as 15%,), and residual nitrogen loading 116 (right side). The gray bars of the stylized mountain icon 104 depict prohibited altitudes (altitudes the diver should not reach given the current nitrogen loading). In gauge mode, the surface display changes as depicted in
Diving computer embodiments according to the present invention are most useful when the digital computer and its memory are easily accessible. As discussed above, the diving computer may have one or more links or interfaces to other, outside computers for reprogramming or updating. Accordingly, the diving computer is preferably protected from harmful outside influences during any such reprogramming or updating intervals. The diving computer may be protected by requiring passwords, by using encryption, by other security methods, or by any combination of two or more security methods. For instance, the diving computer may require a user-provided password when setting diving parameters. A password may be required when connecting the diving computer to an external computer for programming or re-programming the information or the displays of the diving computer. Other security methods may also be used to program and operate the diving computer, with emergency modes and recording of occurrences of the emergency modes used.
In a further embodiment of the dive computer, the user may upload, via the PC interface software described above, digital information. Such digital information may include, but is not limited to, images or fish ID libraries, text (e.g. digital books, blogs, news articles, etc.), podcasts, video games, brain teasers (e.g. Sudoku, etc.), and/or etc. to the dive computer, so that the dive computer can show the digital information on the display at a later time. This is enabled during the dive, for example when the diver wants to identify a fish or during a decompression stop to help the user pass the time, as well as on the surface. During the dive the image displayed would have a time-out time after which the diving information is displayed again. In case of a change in depth of more than a determined amount, the image would be replaced by the diving information immediately. The same holds true in case any of the alarms was to go off.
Along the same lines, all functions of common PDAs (whether Palm based or Windows CE based) such as organizers, address book managers and the likes, can be replicated on a dive computer equipped with a DOT matrix display and the appropriate software to interface with a PC.
In addition to the API discussed in above, the diving computer is preferably programmed with a variety of “drag and drop” techniques. The drag and drop technique may be used to easily adjust the size of the displays, as shown in
All references, including publications, patent applications, and patents cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. Skilled artisans will use such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.