This invention relates to buoyancy controlling and compensating devices (BCDs) for divers to control their depth in diving waters and their return to surface, and more particularly, to a BCD that envelopes a diving tank rather than the diver.
Known prior diving chutes have had diver-attachment portions that are inflatable with low-pressure air that is valve-released from high-pressure air in a diving tank for providing buoyancy. Some of the diver-attachment portions are included in belt-like and suspender-like structure of the diving chutes. Others include back air cells for receiving the low-pressure air for buoyancy control.
None are known, however, to have one or more inflatable air cells with automatically controllable air volume in a diving-tank pocket which is attached to a diving tank and a diving-chute harness in a manner taught by this invention.
The known related prior art includes the following references:
Objects of patentable novelty and utility taught by this invention are to provide a diving-tank-pocket buoyancy compensator which:
This invention accomplishes these and other objectives with a diving-tank-pocket buoyancy compensator having an expandable diving-tank pocket that is articulated for containing a diving tank and at least one inflatable air cell. The buoyancy air cell is in fluid communication with a cell end of a buoyancy compensator (BC) tube which has a tank end in fluid communication with an inside periphery of a diving tank through a regulator tube in fluid communication with a regulator valve on the diving tank. An adjustable pressure valve intermediate the tank end and the cell end of the BC tube is provided to maintain a constant pressure and resulting constant volume of air in the buoyancy air cell for maintaining a desired constant buoyancy continuously following any change in air volume and pressure in the buoyancy air cell resulting from inlet of air through the BC tube and outlet of air through a tube-outlet valve in the BC tube and/or through a cell-relief valve in the air cell. The expandable diving-tank pocket and the diving tank are attachable to a predetermined diving-chute harness with at least one tank strap by positioning a pocket-attachment portion of the diving-tank pocket snugly intermediate a chute-attachment portion of the diving-chute harness and a tank-attachment portion of the diving tank. The tank strap is preferably metallic and has a screw-threaded adjustment buckle.
The above and other objects, features and advantages of the present invention should become even more readily apparent to those skilled in the art upon a reading of the following detailed description in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.
This invention is described by appended claims in relation to description of a preferred embodiment with reference to the following drawings which are explained briefly as follows:
Listed numerically below with reference to the drawings are terms used to describe features of this invention. These terms and numbers assigned to them designate the same features throughout this description.
Referring to
An adjustable pressure valve (8) intermediate the tank end (6) and the cell end (4) of the BC tube (5) is employed for maintaining a constant pressure and resulting constant volume of air in the buoyancy air cell (3) without overfill nor under-fill of the buoyancy air cell (3) and for thereby providing a desired constant buoyancy with volume of air in the buoyancy air cell (3). This is accomplished by adjusting for any change in volume and pressure in the buoyancy air cell (3) that may result from intentional inlet of air through an inflation valve (9) in the BC tube (5) and outlet of air through a cell-outlet valve (10) in the BC tube (5) and outlet of air through a cell-relief valve (11) in the buoyancy air cell (3) selectively. Change in volume and pressure of air in the buoyancy air cell (3) requiring adjustment with the adjustable pressure valve (8) might also occur from possible minor valve and air-cell leakage.
The diving tank (2) is attachable to a predetermined diving-chute harness (12) with at least one tank strap (13).
As shown in
The diving-tank pocket (1) can be closable with a pocket closer (17) intermediate a tank-top end (18) and tank-bottom end (19). The pocket closer (17) can include a diving-adapted zipper (20).
The diving-tank pocket (1) can include preferably a predeterminedly streamlined contour with the tank-top end (18) being predeterminedly arcuate.
The expandable diving-tank pocket (1) can include volumetric capacity for containing the buoyancy air cell (3) in an inflated mode in addition to containing the diving tank (2). The diving-tank pocket (1) also can include volumetric capacity for additional storage space.
The tank strap (13) can include a metallic strap that has a predeterminedly quick-release buckle (36). The tank strap (13) also can include a tightness adjuster (37) as shown in FIG. 9.
Referring to
A water seal can be employed for restricting entry of water into the control conveyance (21) and thus into the BC tube (5). The water seal can include a resilient sleeve (39) that is articulated and positioned on the overflow outlet (25) as shown in
An on-off switch (26) can be positioned in flow-control communication intermediate the control conveyance (21) and the overflow outlet (25) as shown in FIG. 4.
The check valve (22) of the adjustable pressure valve (8) is adjustable for preventing overfill of the buoyancy air cell (3) by adjusting spring pressure of the adjustment spring (23) for allowing escape of air through the overflow outlet (25) from pressure in excess of a maximum selected with the adjustment knob (24).
The adjustable pressure valve can include a side-mount valve (38) which has the control conveyance (21) in fluid communication from the BC tube (5) and has a conical valve (28) having a point portion (29) of the conical valve (28) positioned cyclically in contact with a valve seat (30) for valved air flow to the overflow outlet (25) as regulated with pressure of the adjustment spring (23) for allowing opening of the conical valve (28).
A water seal for restricting entry of water into the control conveyance (21) can be employed also for the side-mount valve (38). As shown in
Connection means and tensile strength of the of the adjustable pressure valve (8) and for the side-mount valve (38) intermediate the cell end (4) and the tank end (6) of the BC tube (5) can be articulated with strength sufficient to allow jerking of any portion of the BC tube (5) for jerk-operation of an emergency-release valve proximate a BC-tube air entry (27) into the buoyancy air cell (3) for quick emergency dives to escape boat propellers and for other emergencies.
The diving-tank pocket (1) can include a generally cylindrical shape.
The diving-tank pocket (1) can include flexible structure with neoprene.
The buoyancy air cell (3) can include an envelope cell (32) that is wrapped onto the diving tank (2) as shown in FIG. 2.
Select forms of the buoyancy air cell (3) can be employed. As shown in
As shown in
The side-mount valve (38) includes the control conveyance (21) in fluid communication from the BC tube (5) to the check valve (22) that is adjustably spring-loaded with the adjustment spring (23) having tension adjustment with the screw-threaded adjustment knob (24) for allowing bypass of air selectively to the overflow outlet (25). The check valve (22) for the side-mount valve (38) includes a conical valve (28) having a point portion (29) of the conical valve (28) positioned cyclically in a valve seat (30) proximate the overflow outlet (25) with pressure of the adjustment spring (23) for closing the check valve (22) and having a conical shoulder portion (31) of the conical valve (28) exposed to air pressure from the control conveyance (21) for forcing the conical valve (28) against pressure of the adjustment spring (23) for opening the check valve (22).
The expandable diving-tank pocket (1) can be arcuate at the tank-top end (18) and at the tank-bottom end (19) with an end closure (42) for use as a diving bag that is closable intermediate the tank-top end (18) and at the tank-bottom end (19) with the pocket closer (17). At least one handle (41) can be affixed to a top side for carrying the diving-tank pocket (1) and other diving gear independently of whether the diving tank (2) is attached internally to the diving-tank pocket (1).
The diving-tank pocket (1) can be orthogonal at the tank-top end (18) with the end closer (42) and at the tank-bottom end (19) with the end closer (42) for use as a diving bag that is closable intermediate the tank-top end (18) and at the tank-bottom end (19) with the pocket closer (17) for allowing access to the regulator valve (7) and for resting a bottom of the diving tank (2) directly on a surface selectively.
A new and useful diving-tank-pocket buoyancy compensator having been described, all such foreseeable modifications, adaptations, substitutions of equivalents, mathematical possibilities of combinations of parts, pluralities of parts, applications and forms thereof as described by the following claims and not precluded by prior art are included in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2864101 | Kissenberger | Dec 1958 | A |
3105359 | Ellis | Oct 1963 | A |
3964266 | Bartlett | Jun 1976 | A |
3998304 | Edgerton, Jr. et al. | Dec 1976 | A |
4016616 | Walters | Apr 1977 | A |
4054132 | Deeds | Oct 1977 | A |
4752263 | Pritchard et al. | Jun 1988 | A |
5267815 | Feder | Dec 1993 | A |
5620282 | Stinton | Apr 1997 | A |
D391368 | Hall | Feb 1998 | S |
5902073 | Eungard et al. | May 1999 | A |
5997216 | Kawashima | Dec 1999 | A |
6120213 | Stinton | Sep 2000 | A |
6183164 | Canella | Feb 2001 | B1 |
6354295 | Hasson, Jr. | Mar 2002 | B1 |
6405728 | Van Hall et al. | Jun 2002 | B1 |
6592298 | Beltrani | Jul 2003 | B2 |