DNA FRAGMENTS ARRAY FROM BIOMINING MICROORGANISMS AND METHOD FOR DETECTION OF THEM

Abstract
The present invention discloses an array of DNA fragments from biomining microorganisms and a method to identify readily and simultaneously said microorganisms in a sample. This method is a useful tool in biomining, in every circumstance where a global understanding of the present microbiological diversity is required, or simply to assess the presence of some microorganism with biomining relevance, either on the mineral, or in a bioleaching heap, in the biomining laboratory or in any other circumstance involving biomining microorganisms.
Description
FIELD OF THE INVENTION

The present invention discloses a biomining microorganism DNA fragment array and a method to identify said biomining microorganisms in a sample readily and simultaneously. This method is a useful tool in biomining, in every circumstance where a global understanding of the present microbiological diversity is required, or simply to assess the presence of some microorganism with biomining relevance, either on the mineral, or in a bioleaching heap, in the biomining laboratory or in any other circumstance involving biomining microorganisms.


BACKGROUND OF THE INVENTION

Biomining is, in general terms, the use of microorganisms for the recovery of metals from minerals. Its most traditional expression is bioleaching, but we understand biomining as encompassing not only this process, but also the monitoring and intervention of the involved microorganisms, as these techniques are complex and subjected to permanent development; laboratory level research associated to the improvement of processes or the development of new methodologies are also included.


Bioleaching is defined as a method to solubilize metals from complex matrixes in an acid medium using direct or indirect microorganism action. Microorganisms that are useful in these processes belong both to Bacteria and Archaea domains and fulfill two basic conditions: they are acidophiles and chemolithotrophic.


Microorganisms Associated with Bioleaching Processes.


Many microorganisms have been described as being useful in bioleaching processes, among which we can identify genera Acidiphilium spp., Leptospirillum spp., Sulfobacillus spp., Acidithiobacillus spp. and species Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans belonging to Bacteria domain. From Archaea domain we can identify genera Acidianus spp., Ferroplasma spp., Metallosphaera spp., Sulfolobus spp. and Thermoplasma spp. (Rawlings D E. Annu Rev Microbiol. 2002; 56:65-91; Rawlings D E. Microb Cell Fact. 2005; 4(1):13).


Factors determining diversity and metabolic activity of the microbiological community associated to bioleaching processes.


The microorganisms belonging to each above mentioned genus and species produce compounds that increase the rate of different chemical reactions, which allows carrying out bioleaching processes in much shorter times. For this, microorganisms require in their turn a suitable environment to promote said reactions that, for instance, could be aerobic or anaerobic, or require some specific nutrient. Therefore, the environmental conditions under which the bioleaching process is carried out modify the activity and microbiological composition of the present community.


It has been proposed that microorganism participation in bioleaching processes could be direct or indirect (Rawlings D E. Microb Cell Fact. 2005; 4(1):13). It is direct when microorganisms act directly over the metal or over its counter-ion, in either case releasing one ion of the desired metal. On the other hand, the participation is indirect when the microorganism does not use the desired metal or its counter-ion as a substrate, but generates chemical conditions that accelerate or favor said metal solubilization, either by acidification of the medium (e.g., by generating sulfuric acid) or by generating an oxidizing agent that finally interacts with the salt (metal and counter-ion) to be solubilized. For instance, species belonging to genus Acidithiobacillus are able to produce elements that increase the oxidation rate of reduced sulfur compounds (such as sulfide, elemental sulfur, thionates, etc.) by using oxygen as electron acceptor. During this process they generate sulfuric acid as final product and reducing species such as sulfite and thiosulfate as intermediate products, which allows solubilizing sulfur associated metals in the mineral. In particular, Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans contribute with biological components that favor iron (II) to iron (III) oxidation using oxygen as electron acceptor. Generated iron (III) is a major oxidizing agent that can oxidize present sulfides or any other compound to be oxidized.


The common mining practice in bioleaching processes is to leave a heap of mineral in an acid medium, generally sulfuric acid, and gradually remove the acid medium to recover the metal by electrolysis. Often efficient metal recovery yield heaps and “inefficient” heaps are obtained, these latter having a lower yield under the same operation conditions and characteristics of the leached substrate. Being bioleaching a microbiological process, differences of efficiency levels between heaps could be consequence of differences in abundance and type of species in the microbiological community composing them. In this way, this low yield problem could be solved, for example, by inoculating microorganisms that produce components favoring the desired reaction to be maintained during the process. Nevertheless, up to date there is no method allowing the fast, specific and simultaneous identification of bioleaching microorganisms present in a sample.


Microorganisms Detection Method.


According to the state of the art, if it would be desired to determine the major components of a microbiological population with biomining relevance that are present in a sample, it could be done using techniques such as: denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), or selective cultures. These techniques are labor intensive, expensive and require highly qualified workers to perform them. For example, DGGE assay is slow, its completion taking about 3 weeks, and have low sensitivity (detection limit: 104 microorganisms/ml), which is inadequate for biomining communities, as normally there are relevant taxons at lower concentrations than said detection limit. PCR technique also has problems, requiring firstly an individual reaction for each of the species to be determined, which is slow and extremely laborious. In second place, when working with a metagenomic sample, there is the risk of primers having cross-reactivity with other of the species found in the sample, giving both false positive and false negative results. Finally, analysis of microbiological communities using the traditional identification method by culturing has the risk of some species that are present in lower proportion being lost in the process and not being detected. This risk is always present in the case of selective cultures, but is increased when dealing with biomining microorganisms, as the conditions that maintain the growth of these microorganisms are hard to achieve, and some of them are definitely not even able to be cultured in the laboratory. Other problem of the analysis by culture is the slow development of the process, which could take many days.


In consequence, in the state of the art there is no simultaneous detection method for many organisms that is simultaneously fast, specific and cheap.


By mean of the present invention said technical problem has been solved by creating a simultaneous identification method for biomining microorganisms using a DNA fragment array technique.


A good definition of DNA array is that proposed by Schena et al. (Trends Biotechnol. 16, 301-306): “a microscopic ordered nucleic acid array that allows simultaneous analysis of complex DNA samples” (Schena M., Heller, R. A., Theriault, P., Konrad, K., Lachenmeier, E. and Davis, R. W. (1998)). Depending on the diameter of the deposited DNA spots, there are 2 array types: macro-arrays (300 microns or more) and micro-arrays (less than 100 microns). The first can be manually manufactured in the laboratory and the spots can be observed without the help of special equipment. The second require an automated deposition process (normally a robotic deposition platform) and a specialized image acquisition and processing equipment.


In this particular case, DNA fragment arrays comprise an ordered series of spots deposited on a flat surface, such as a glass, silicon or nylon sheet, where every spot contains a large amount of copies of a known DNA fragment that is specific for a determined microorganism with biomining relevance.


The selection method using DNA fragment arrays comprise a simultaneous hybridization of the set of array “spots” with a labeled DNA extract of the studied sample. Normally, DNA from the sample, which has been labeled and fragmented as required, is subjected to a denaturation stage wherein the double stranded DNA is separated, e.g. by heating. When temperature is lowered, DNA will tend to hybridizes with its most complementary fragment according to its physicochemical characteristics. Being this DNA in contact with the array, if there is coincidence between sample DNA and the DNA fragment contained in a spot, labeled sample DNA copies will specifically attach to said spot with the largest possibility. This is due to the larger amount of complementary DNA copies contained in the array spot. In the acquisition and processing stage of the hybridized array image, this label will allow the detection of the microorganisms present in the studied sample.


DNA labeling can be done by any known labeling technique, being fluorescence and radioactive labeling the most common ones.


Arrays and their usage method are known, and we find examples of arrays in the state of the art used to detect the presence of microorganisms in a sample, but none of them is directed to microorganisms that are relevant in biomining.


At the present time, diverse published protocols exist for the manufacture of DNA fragment arrays, and there are also laboratories that offer manufacturing services for this type of arrays. Consequently, only the selection of genes and the design of used DNA fragments defines the specificity and utility of an array, as the manufacture can vary according to the matrix, the method used to bind DNA fragments to the matrix, the spatial distribution of the spots on the matrix, etc., depending on the manufacturing company or the protocol used to manufacture the array in the laboratory (Ye et al. Journal of Microbiological Methods 47 (2001): 257-272).


BRIEF DESCRIPTION OF THE INVENTION

The present invention discloses a DNA fragment array from biomining microorganisms and a method to readily and simultaneously identify said biomining microorganisms in a sample.


We have designed DNA fragments comprising 100 or less nitrogenous bases that allow the specific and unequivocal identification of the following taxons having biomining importance: bacteria Acidiphilium spp., Leptospirillum spp., Sulfolobus spp., Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans; and archaea Acidianus spp., Ferroplasma spp., Metallosphaera spp., Sulfobacillus spp. and Thermoplasma spp. Moreover, we have included sequences for the detection of strain Wenelen (DSM 16786), owned by Biosigma, which can be conveniently included in biomining processes.


By disposing at least one of these DNA fragments in an array, the presence of at least one biomining relevant microorganism can be detected and identified. Preferentially, arrays containing many of the designed DNA fragments are provided, which allows the simultaneous identification of many or all the biomining relevant microorganisms in a sample by using a single process.


Preferably, a sufficient number of different DNA fragments are included in the arrays to detect all the biomining relevant microorganisms in a sample.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the result of hybridizing a biomining sample 1 with an array of the invention. Fragments of the invention correspond to sub-fragments of fragments of 16S rDNA and tRNA-synthases genes described in Table 2. Each fragment was deposited by triplicate. In Table 1, the content of each position in the microarray is detailed.


Conclusion: The results indicate the presence of A. ferrooxidans, Leptospirillum spp., and Ferroplasma spp. in sample 1 (M1). Data indicate that correlation always existed between spots with 16S rDNA fragments and spots with tRNA-synthases. All positive controls showed a hybridization signal and negative controls remained unmarked.



FIG. 2 shows the result of hybridizing a second biomining sample with a microarray of the invention. The used microarray is the same used for sample 1, the content of which is described in Table 1. The fragments used in the example are contained in the sequences for 16S rDNA and tRNA-synthases described in Table 2. Each fragment was deposited by triplicate.


Conclusion: The results indicate the presence of A. ferrooxidans, A. thiooxidans, Acidianus spp., Leptospirillum spp., Ferroplasma spp., Metallosphaera spp. and Sulfolobus spp. in sample 2 (M2). Data indicate that correlation always existed between spots with 16S rDNA fragments and spots with tRNA-synthases. All positive controls showed a hybridization signal and negative controls remained unmarked.




DETAILED DESCRIPTION OF THE INVENTION

A method that allows fast and simultaneous detection and identification of biomining microorganisms would have applications in diverse industrial areas. As an example, the identification of microorganisms present in a bioleaching heap could become a tool to appropriately control the bioleaching process, as it could be established whether it is necessary to inoculate some particular microorganism into the heap or not, thus maximizing the amount of mineral recovered in the process.


With our resources put in the former objective, we have designed DNA fragments useful to detect and identify the different microorganisms relevant in biomining by disposing them in a DNA array. These microorganisms relevant in biomining are bacteria Acidiphilium spp., Leptospirillum spp., Sulfolobus spp., Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans; archaea Acidianus spp., Ferroplasma spp., Metallosphaera spp., Sulfobacillus spp. and Thermoplasma spp.; and strain Wenelen (DSM 16786).


The strain Wenelen (DSM 16786), owned by Biosigma, has an increased oxidizing activity, especially in the case of chalcopyrite, in comparison with other known microorganisms. This feature makes its incorporation in biomining processes convenient and the arrays of the present invention would allow monitoring its presence in the media where it has been inoculated.


All DNA arrays base their detection capacity on the DNA fragments designed to be synthesized and bound onto a solid substrate. These DNA fragments, short nucleotide sequences having 300 or less nitrogenous bases in our case, are designed from specific genomic sequences of the microorganisms to be detected. Therefore, the first step is choosing the genes, regions or sequences of the genomes of the desired microorganisms from which the deposited fragments will be selected.


For a greater convenience in the design of DNA fragments and eventually in the use of the array, a limited genomic region can be selected, which has to be conserved in all the relevant genomes, i.e. have to be present in all the relevant microorganisms. Furthermore, said region must be variable enough (in its nucleotide sequence) to allow distinguishing between different species and even between different strains in case it should be required.


An advantage of using a genomic region is given by the fact that the array can be used in conjunction with the product of a PCR that universally amplifies the selected region, which eventually could increase the sensitivity of the method.


Advantageously, in a microorganism identification array many different spots that identify the same microorganism are included, which assures that the user could be more trustful on obtained data. In this way, each point set identifying a particular microorganism acts as an internal control by itself for “false positives” or “false negatives” generated by interferences during the course of the method.


We have opted to include both strategies in our arrays. In one hand, we work with the same genomic region for every microorganism to be identified, taking into account that arrays can be eventually provided only with this set of spots. On the other hand, we have also included many genomic regions of the same microorganism, and in this way the whole array, which contains all the DNA fragments designed by us, will contain a set of spots for the identification of each biomining microorganism.


The first gene selected by us is the gene codifying for the 16S ribosomal RNA molecule, herein referred as 16S rDNA, traditionally used for identification. The other selected characteristic genomic regions are genes codifying for different tRNA-synthases, which are represented in substantially all microorganisms due to their relevance. These genes have the required conservation and variability features that are adequate to identify microorganisms, as set forth above.


Once these regions were selected, DNA fragments having 100 nitrogenous bases were designed, each one specific for each of the microorganisms to be identified in the process, i.e. for bacteria Acidiphilium spp., Leptospirillum spp., Sulfobacillus spp., Acidithiobacillus spp., Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans; archaea Acidianus spp., Ferroplasma spp., Metallosphaera spp., Sulfolobus spp. and Thermoplasma spp.; and strain Wenelen (DSM 16786).


The designed fragments can be deposited on the array either entire, or comprised in a larger fragment that contains them, or in partial form, i.e. as any of the sub-fragments comprised in the fragment, or as the reverse complementary sequences of any of the former options. Advantageously, sub-fragments having 50 or 70 nucleotides were deposited.


DNA fragment design was carried out using a proprietary method protected by patent application CL 2102-05, filed by Biosigma. Said method is applied in the oligonucleotide design software “Massive Primer Designer”. For more clarity, we will briefly explain the method.


A database was selected, SHIFTSIXTEEN®, which contains all sequences from the selected genomic regions for all taxons or strains to be determined. In this first stage, we will refer to nucleotide sequences as words having defined length in the alphabet {A,C,T,G}. Each sequence is computationally scanned from 5′ to 3′ to obtain all existing words that have the defined length for desired DNA fragments to be designed, 100 in this case. This oligonucleotide candidate pass through the following tests in the same described order, wherein a rejection in one of the tests means the total rejection of the candidate.

  • 1. GC composition level: This is a filter that allows discarding a priori candidates that have very high or very low hybridization temperature values, by performing very cheap calculations in terms of time. The candidate is rejected if its GC composition falls off the limits imposed at the moment of executing the calculation.
  • 2. Hybridization temperature: Given a sequence and environmental conditions (salt concentration, nucleotide concentration, etc.), the hybridization temperature between said sequence and its complementary one is calculated. When executing the calculation, an oligonucleotide is rejected if its hybridization temperature falls off the established limits to be used during the hybridization assay.
  • 3. Secondary structure: for a reference temperature, for each candidate sequence is examined to know whether a stable secondary structure (three-dimensional fold of the oligonucleotide by itself) is formed or not. If a secondary structure is formed, the oligonucleotide is replaced by its reverse complementary sequence; if this reverse complementary also forms a secondary structure, then the oligonucleotide is rejected. If only the original form of the oligonucleotide forms a secondary structure, but not its reverse complementary sequence, then this latter is selected as candidate oligonucleotide for the following tests.
  • 4. Specificity: using one or more sequence alignment algorithms, each candidate is tested for relevant similarity with sequences pertaining to other microorganisms that can probably be present in a biomining sample.


If all tests were approved, the candidate is selected as possible oligonucleotide to be used as deposited DNA fragment in an array.


In this method some other optimizations are included, such as the initial selection of sequences that are relatively specific for each microorganism, in order to limit the oligonucleotide search in selected regions.


Using this method, a plurality of oligonucleotides was obtained that fulfill all the described requirements and can be used in an array for the detection and identification of biomining relevant microorganisms.


We have designed a total of 70 DNA fragments for the identification of different biomining relevant taxons, each one having 100 nucleotides. The sequences of all designed 70 DNA fragments were included in the listing of sequences.


From all the 70 designed sequences, sequence No 1 is specific for Acidiphilium spp., corresponding to a 16S rDNA gene fragment.


There are 9 specific sequences for Leptospirillum spp., sequences No 2 to 10, from which sequence No 2 corresponds to a 16S rDNA sequence and the others (sequences 3 to 10) are fragments of genes codifying for different tRNA-synthases.


One sequence is specific for Sulfobacillus spp., sequence No 11, corresponding to 16S rDNA.


Two sequences are specific for Acidithiobacillus spp., namely sequences No 12 and 13. Sequence No 12, corresponding to 16S rDNA, specifically recognizes Acidithiobacillus spp. different from species Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. On the other hand, sequence No 13, also corresponding to 16S rDNA, is specific for the entire genus.


Sequences No 14 to 26 recognize the species Acidithiobacillus ferrooxidans, where sequences 14 to 17 correspond to 16S rDNA and sequences 18 to 26 correspond to tRNA-synthases.


Sequence No 27 is specific for Acidithiobacillus thiooxidans and corresponds to 16S rDNA.


One of the sequences is specific for Acidianus spp., sequence No 28, corresponding to 16S rDNA.


There are 11 sequences that are specific for Ferroplasma spp., namely sequences No 29 to 39, from which sequence No 29 corresponds to 16S rDNA and sequences No 30 to 39 correspond to tRNA-synthases.


Sequence No 40 is specific for Metallosphaera spp. and corresponds to 16S rDNA.


There are 10 sequences that are specific for Sulfolobus spp., namely sequences No 41 to 50, from which sequence No 41 corresponds to 16S rDNA and sequences No 42 to 50 correspond to tRNA-synthases.


Sequences No 51 to 59 are specific for Thermoplasma spp., from which sequence No 51 corresponds to 16S rDNA and sequences No 52 to 59 correspond to tRNA-synthases.


Finally, there are 11 sequences that are specific for strain Wenelen (DSM 16786), namely sequences No 60 to 70, where sequence No 70 is a tRNA-synthase and sequences No 60 to 69 correspond to specific sequences for the strain.


Apart from these DNA fragments that are specific for each biomining relevant microorganism, it is convenient to include negative and positive controls in each array. Negative controls must be nucleotide sequences that should never be found in a biomining context. Positive controls must be nucleotide sequences that are always present in a test sample.


It should be noted that the arrays disclosed in the present invention are those comprising at least one of the DNA fragments included in sequences No 1 to 70, either entirely, or in a larger region comprising them, such as a PCR product, or partially, i.e. as one of the sub-fragments contained in each of the fragments herein disclosed, or as the reverse complementary sequence of any of the former options. This is vitally relevant, as the specificity of a nucleotide sequence is the same specificity of its reverse complementary sequence, and it is this feature, i.e. specificity, the more difficult goal to achieve in the design of DNA fragments. It could be possible that the stability of the reverse complementary sequence will not be suitable for the sequence to be used in an array, but nevertheless the skilled person will distinguish between thermodynamically stable and unstable oligonucleotides by means of diverse tools existing in the art. All reverse complementary sequences of fragments No 1 to 70 of the present invention, either entirely, or in a larger region comprising them, such as a PCR product, or partially, i.e. as one of the sub-fragments contained in each of the fragments herein disclosed, are to be considered within the scope of the present invention.


Preferably, the array will contain at least one fragment or sub-fragment for each biomining relevant species. It is also possible to manufacture an array containing all disclosed DNA fragments or sub-fragments. All these options, together with all the intermediate possible combinations, are comprised within the scope of the present invention.


The efficiency of the arrays of the invention is given by the specificity and stability of the fragments to be deposited. These characteristics are retained by each sub-fragment contained within the designed fragments. This means that specificity is retained if nucleotides 1 to 100, or 42 to 92, or 15 to 65, or any other possible selection is used. All selections are sub-fragments and are comprised within the scope of the present invention.


It is also possible to have DNA fragments that contain fragments or sub-fragments of the invention flanked by other oligonucleotides, either by synthesis or as PCR products. These larger fragments that contain the fragments of the present disclosure, the specificity of said fragments given by the fragments or sub-fragments designed by us, are also to be considered within the scope of the present invention.


Each selected fragment or sub-fragment have to be synthesized in many hundreds of copies and deposited as a homogeneous point on a suitable array support, such as glass, silicone, nylon or other support in the art.


As we mentioned before when discussing the background of the invention, synthesis techniques for DNA fragments and array manufacture are known, and any of them could be used to manufacture the arrays of the present invention.


Use of the Array


For the detection and identification of biomining microorganisms by using the arrays of the present invention, a sample DNA to be evaluated must be firstly isolated. It is also possible to work with cDNA, the only difference being that RNA is firstly isolated from the sample in this case. Many DNA and RNA extraction methods from mineral or soil samples are known in the art and any of them can be used, considering in each case the particular nature of the sample.


In a second stage, the entire sample DNA or RNA must be converted to short labeled fragments, which are suitable for hybridization with the fragments that are deposited in the array spots. In case that sample DNA was isolated, this DNA has to be fragmented and labeled. In case that the study is being carried out using sample RNA, fragmentation is not required and only labeling must be performed to obtain labeled cDNA. A technique that enables to fragment and label DNA at the same time is labeling by using random 6-nucleotide DNA primers. Labeling can be done using labeled nucleotides or the sample can be labeled using any of the other techniques in the art, such as radioactivity, biotin, fluorescence labeling or other. Preferably, if a macroarray is to be used, labeling will be done by using radioactivity, 32P, and if a microarray is to be used, fluorescence should be preferred, e.g. using Cy5 or Cy3.


Alternatively, if the selected array comprises DNA fragments belonging to a single genomic region, such as e.g. 16S rDNA or methionyl-tRNA-synthase, a PCR amplification stage can be performed using universal primers that contain the selected regions, and directly labeling the PCR product using labeled nucleotides or nucleotides that are able to be labeled.


The methods described for the preparation of DNA or cDNA for the array do not limit the present invention, and any existent method can be used for the preparation of DNA or cDNA without causing the use of the array to be out of the scope of the present invention.


Once the DNA is prepared, it is subjected to a DNA denaturation stage, and subsequently said denatured DNA is incubated on the array by putting an aliquot of the DNA mix on the array. The array is left to hybridize at a suitable temperature for at least one hour, and preferably overnight.


After the hybridization stage, the array must be carefully washed, usually using buffer solutions at moderate temperatures between 35-50° C., preferably between 40-45° C.


Once washed, the array is preferably dried, advantageously by centrifugation, for example in a Falcon tube, for a short time at moderate velocity.


Finally, labeled spots should be visualized, and the position of each labeled point indicates the presence of the biomining microorganism from which the corresponding DNA fragment was designed.


Furthermore, the negative control spots are controlled for absence of signal, as the presence of hybridization with said DNA fragments would indicate an unspecific reaction and therefore the obtained results should be discarded due to the presence of false positives.


Likewise, positive control spots must be marked, as the absence of hybridization with said DNA fragments would indicate interferences in the reaction and therefore those spots without signal could be false negatives.


Consequently, the determination of the composition of a biomining microbiological community would be reduced to the reading of labeled spots in an array of the present invention.


EXAMPLES
Example 1
Microarray to Detect and Identify the Presence of Biomining Relevant Microorganisms

A microarray was manufactured having twenty different DNA fragments that specifically identify the 10 most relevant taxons in biomining: Acidiphilium spp., Leptospirillum spp., Sulfobacillus spp., Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidianus spp., Ferroplasma spp., Metallosphaera spp., Sulfolobus spp. and Thermoplasma spp.


In all cases, a DNA fragment from the 16S rDNA genomic region was included, and for some taxons two fragments corresponding to different tRNA-synthases were included, in order to have an internal control in these cases. One positive control and three negative controls were also included in the microarray. In the following Table 1, the content of each position in the microarray is detailed.

TABLE 1Position in the microarrayMicroorganism16S rDNAtRNA-synthaseA. ferrooxidansA4-A6B7-B9; C7-C9A. thiooxidansA7-A9Acidiphilium spp.E7-E9Acidianus spp.C1-C3Leptospirillum spp.C4-C6C10-C12; E4-E6Sulfobacillus spp.D4-D6Ferroplasma spp.D1-D3E10-E12; D10-D12Metallosphaera spp.B4-B6Sulfolobus spp.D7-D9F4-F6; A10-A12Thermoplasma spp.E1-E3F1-F3; F10-F12Positive controlA1-A3Negative controlF7-F9; B10-B12; B1-B3


All deposited fragments were 60 nucleotides long. Selected DNA fragments of the invention are 60-nucleotide-long sub-fragments of the fragments detailed in Table 2, which are defined in the list of sequences.

TABLE 2tRNA-synthase16S rDNAMicroorganismAmino-acylSequence NoSequence NoA. ferrooxidansAlanyl1914Leucyl26A. thiooxidans27Acidiphilium spp. 1Acidianus spp.28Leptospirillum spp.Isoleucyl 3 2Alanyl 6Sulfobacillus spp.11Ferroplasma spp.Threonyl3729Valyl39Metallosphaera spp.40Sulfolobus spp.Glutamyl4141Alanyl43Thermoplasma spp.Isoleucyl5451Histidyl56


Each fragment was deposited by triplicate. The manufacture of the microarray was carried out by a specialized company in the field.


Example 2
Use of the Microarray to Detect and Identify Biomining Relevant Microorganisms

The microarray obtained in Example 1 was used to determine the composition of the microbiological community of two bioleaching heap effluent samples, sample 1 (M1) and sample 2 (M2).


Total DNA was extracted from M1 and M2 using traditional DNA extraction methods.


2 μl were taken from the DNA samples and put in Eppendorf tubes. In each case, the following method was carried out:


36 μl of ddH2O and 3.3 ml of 6-nucleotide random primers were added. The mix was boiled for 5 minutes and then the work was continued on ice.


2 μl of a nucleotide mix were added, where dUTP was labeled with a Cy fluorophore. Cy3 was used for M1, with green fluorescence, while Cy5 was used for M2, with red fluorescence. Subsequently, 4 μl of a polymerase and 5 μl of buffer solution were added, and the mix was incubated for 4 hours at 37° C.


The reaction was stopped with 5 μl 0.5 M EDTA, pH 8. Labeled DNA was recovered using an ion exchange column. The DNA containing eluate was dried under vacuum.


DNA was resuspended by adding 100 μl of a buffer solution and was brought to 100° C. for one and a half minute, to denature DNA. Hybridization was carried out on the array at 55° C. overnight.


The following morning, each microarray was washed twice with 2×SSC, 0.1% SDS, at 45° C.; once with 0.2×SSC, 0.1% SDS, at 42° C., and once with 0.2×SSC, at 42° C.


Each microarray was put in a case with MilliQ water for 15 minutes and subsequently dried by centrifugation in a Falcon tube for 1 minute at 1100 rpm.


Finally, the results obtained for each microarray could be observed, which are shown in FIG. 1 for M1 and in FIG. 2 for M2.


In Table 3, the microarray positions of each different fragment are indicated and hybridization results with DNA from M1, which are shown in FIG. 1, are summarized. It can be observed that, in every case, the families of spots (replicates of the same DNA fragment) had the same result and there always was total correlation between results obtained with 16S rDNA fragments and tRNA-synthase fragments. All positive controls showed hybridization and negative controls remained unmarked.

TABLE 3Sample 1 (M1)Position in the microarraytRNA-tRNA-Microorganism16S rDNARsynthase 1Rsynthase 2RA. ferrooxidansA4-A6+B7-B9+C7-C9+A. thiooxidansA7-A9////Acidiphilium spp.E7-E9////Acidianus spp.C1-C3////Leptospirillum spp.C4-C6+C10-C12+E4-E6+Sulfobacillus spp.D4-D6////Ferroplasma spp.D1-D3+D10-D12+E10-E12+Metallosphaera spp.B4-B6////Sulfolobus spp.D7-D9A10-A12F4-F6Thermoplasma spp.E1-E3F1-F3F10-F12Positive controlA1-A3+////Negative controlF7-F9B1-B3B10-B12
Legend:

(R): result;

(+): positive;

(−): negative;

(/): does not exist.


The results show the presence of A. ferrooxidans, Leptospirillum spp., and Ferroplasma spp. in M1.


In Table 4, once again the microarray position of each different fragment is indicated and hybridization results with DNA obtained from M2, which are shown in FIG. 2, are summarized. As for M1, it is possible to observe that the new families of spots had always the same results, and correlation was kept between results obtained with 16S rDNA fragments and tRNA-synthase fragments. All positive controls showed hybridization and negative controls remained unmarked.

TABLE 4Sample 2 (M2)Position in the microarray and resulttRNA-tRNA-Microorganism16S rDNARsynthaseRsynthaseRA. ferrooxidansA4-A6+B7-B9+C7-C9+A. thiooxidansA7-A9+////Acidiphilium spp.E7-E9////Acidianus spp.C1-C3+////Leptospirillum spp.C4-C6+C10-C12+E4-E6+Sulfobacillus spp.D4-D6////Ferroplasma spp.D1-D3+D10-D12+E10-E12+Metallosphaera spp.B4-B6+////Sulfolobus spp.D7-D9+A10-A12+F4-F6+Thermoplasma spp.E1-E3F1-F3F10-F12Positive controlA1-A3+////Negative controlF7-F9B1-B3B10-B12
Legend:

(R): result;

(+): positive;

(−): negative;

(/): does not exist.


The results show the presence of A. ferrooxidans, A. thiooxidans, Acidianus spp., Leptospirillum spp., Ferroplasma spp., Metallosphaera spp. and Sulfolobus spp. in sample 2 (M2).


List of Sequences.


Sequence No.: 1


Length: 100


Type: DNA


Microorganism: Acidiphilium spp.


Category: 16S rDNA


Sequence:

ACA CAC GTG CTA CAA TGG CGG TGA CAG TGG GAA GCCAAG CAG CGA TGC TGA GCT GAT CCT GAA AAG CCG TCTCAG TTC GGA TTG CAC TCT GCA ACT CGGG


Sequence No.: 2


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: 16S rDNA


Sequence:

ACG CAG CAA CGC CGC GTG TGG GAA GAA GGC CTT CGGGTC GTA AAC CAC TTT TAC TCG GGA CGA AAA AGG GATATC AAA TAA ATA TCC CCG ATG ACG GTAC


Sequence No.: 3


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Isoleucyl-tRNA-synthase


Sequence:

TAT GGT GTC CAA ACT GCG AAA CAG CAC TCG CCC GATGCG GAA GTC GAG TAT GAG CCC CAT TCT TCG ACA TCAGCT ACT GTC CTC TTT CCT GAA GTC CCGG


Sequence No.: 4


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Threonyl-tRNA-synthase


Sequence:

CCT TTT CAT ATC CTG ATT TTT CGG GAA AGC GTC CAGAGC TAC CGG GAC CTT CCC ATC CGG TTG TCG GAA CTGGGA ACC GTC TAC CGG TAT GAA CGT TCGG


Sequence No.: 5


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Glutamyl- and glutaminyl-tRNA-synthase


Sequence:

TGA GGC GAT CGC CGC TAT CCT CGA CGG AAT GCG CTGGCT CGA TTT GAG TTG GGA TGA GGG TCC CAT CTA CCAGAC CAG TCG TCT GGA ACG CTA CCG GGAG


Sequence No.: 6


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Alanyl-tRNA-synthase


Sequence:

GAC GAA GCG GCC TCC CTT TGG CAG AGC GTT GCG GGTGTC GAT CCC TCC CGA ATC GTT CGA CTC GGA GAA AAGGAC AAT TTC TGG CAG ATG GGA AAC ACCG


Sequence No.: 7


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Histidyl-tRNA-synthase


Sequence:

AGA AGG CCT TCG TCT CGG CCG AAA GAG AAG GCG CCCGCT ACA TCG GAC TCG CCG GTG AAA GCG AAC GCT CAGACG GAA CCT TGA CCA TCA AGG ATC TGAA


Sequence No.: 8


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Methionyl-tRNA-synthase


Sequence:

CCG AGG CGG TGC GCC CCG AGT CCC GCT ACA ACG AGGTCA TGG GTT TCC TCA GGA AGC CTC TGG GGG ACC TCTGCA TCT CCC GCC CCA AGA GCC GGG TTC C


Sequence No.: 9


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Aspartyl-tRNA-synthase


Sequence:

GGT GGG GAC ATC GGA GGA GGT CTC GGA GAG CCT TCGACT GAC TTA TCG CTA CCT CGA CAT GCG TTC CCC CCGGCT TCT GGA GGC ACT GAG GTT CCG CTCG


Sequence No.: 10


Length: 100


Type: DNA


Microorganism: Leptospirillum spp.


Category: Phenylalanyl-tRNA-synthase


Sequence:

GGA TTC CAG GAG ATT CTC TCG AAT ATC CTG ACA TCGATC GAA AAG GAC ACG ACA GAC CTC GGA CGT CCT TCGGAC ACG ACG GTC GAA ATC GAC AAC CCCG


Sequence No.: 11


Length: 100


Type: DNA


Microorganism: Sulfobacillus spp.


Category: 16S rDNA


Sequence:

GGG TGC GTA GGC GGT GTT GTG GGT CTG AGG TGA AAGGTC GGG GCT CAA CCC TGA GAA TGC CTT GGA AAC TGCAAG ACT TGA GTG CTG GAG AGG CAA GGGG


Sequence No.: 12


Length: 100


Type: DNA


Microorganism: Acidithiobacillus spp. no (ferrooxidans, thiooxidans)


Category: 16S rDNA


Sequence:

CGC GTG GAT GAA GAA GGC CTT CGG GTT GTA AAG TCCTTT CGT GGG GGA CGA AAA GGT GGT TCC TAA TAC GAGCTC CTG TTG ACG TGA ACC CAA GAA GAAG


Sequence No.: 13


Length: 100


Type: DNA


Microorganism: Acidithiobacillus spp.


Category: 16S rDNA


Sequence:

ACG AAA AGG CGG GTC CTA ATA CGA TCT GCT GTT GACGTG AAC CCA AGA AGA AGC ACC GGC TAA CTC CGT GCCAGC AGC CGC GGT AAT ACG GGG GGT GCAA


Sequence No.: 14


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: 16S rDNA


Sequence:

GTA ATG CGT AGG AAT CTG TCT TTT AGT GGG GGA CAACCC AGG GAA ACT TGG GCT AAT ACC GCA TGA GCC CTGAGG GGG AAA GCG GGG GAT CTT CGG ACCT


Sequence No.: 15


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: 16S rDNA


Sequence:

CCG CAT GAG CCC TGA GGG GGA AAG CGG GGG ATC TTCGGA CCT CGC GCT AAG AGA GGA GCC TAC GTC CGA TTAGCT AGT TGG CGG GGT AAA GGC CCA CCAA


Sequence No.: 16


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: 16S rDNA


Sequence:

CCG CAT GAG CCC TGA GGG GGA AAG CGG GGG ATC TTCGGA CCT CGC GCT AAG AGA GGA GCC TAC GTC CGA TTAGCT AGT TGG CGG GGT AAA GGC CCA CCAA


Sequence No.: 17


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: 16S rDNA


Sequence:

ACT AGA TGT TTG GTG CCT AGC GTA CTG AGG TCG TAGCTA ACG CGA TAA GTA TTC CGC CTG GGA AGT ACG GCCGCA AGG TTA AAA CTC AAA GGA ATT GACG


Sequence No.: 18


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Glutamyl- and glutaminyl-tRNA-synthase


Sequence:

ACC GGA TCG GGG GGG CGA TCA CGG CCT CTA CCG GCAGAT GCA GCG CAT GGC CGT CTA TCG GGA AGT GCT GTGCGC ATT TCC AGT CCA GTG GAA AGG CCTA


Sequence No.: 19


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Alanyl-tRNA-synthase


Sequence:

GGA GTA TTT TGT GGA ACA GGG GCA TCA GAT CGT GCCCTC CAG CCC CCT GAT CCC TCG TAA CGA TCC GAC CCTGCT GTT TAC CAA TGC CGG TAT GGT GCCC


Sequence No.: 20


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Isoleucyl-tRNA-synthase


Sequence:

TCC GAC ACC ATC CTC CAG CAA CTC GGC GAC AGC TACCGG CGC ATC CGT AAT ACG GCC CGC TAT ATG CTG GGCAAC ACC CAC GAC TTT AAT CCA GCC ACGG


Sequence No.: 21


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Phenylalanyl-tRNA-synthase


Sequence:

TGC CCA TGA CGC GGG GAC CGC AGG CAG CCA CTT TACGCA GTG TTT TGC AGG CGC GTG ATT ATC ATG AGG TGATCA CCT ACA GTT TTA TCT CCC GTC AGGC


Sequence No.: 22


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Histidyl-tRNA-synthase


Sequence:

GGC ATT ACC CCG CCG TTC GTG CCG CCC TGG ATG ACCTGC AGC GCG TAT GGT CGG TAT TAC GGG CAC GTT ATCCAG ACC TGG CGA TTC AAT GCG ATC TCTC


Sequence No.: 23


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Methionyl-tRNA-synthase


Sequence:

AGC ACT GGT GCG CGG CCC ACC GCC GCA ATT TGG CCGATT ACT GGG GCC CGG ATT CCG CTG CCG AGA TCT ACCATT TTA TCG GCA AGG ACA TCA TTT ATTT


Sequence No.: 24


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Aspartyl-tRNA-synthase


Sequence:

CTT CGG CGT CGA TCG CCC CGA TCT ACG CAA TCC GCTGGA ACT GAC AGA GCT CAC CGA TCT CAT GCG CGC GGTGGA CTT CAA AGT GTT CCG CGA AGC CGCC


Sequence No.: 25


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Threonyl-tRNA-synthase


Sequence:

TAT GAG GGC AAG TTT CCA GTC TGG CTC GCT CCG GTACAG GCC GTG GTG CTG CCT ATC AGC GAG CAT TAC TCGGAA TAC GCC GAG TCG GTA AGT GAC GTAT


Sequence No.: 26


Length: 100


Type: DNA


Microorganism: Acidithiobacillus ferrooxidans

Category: Leucyl-tRNA-synthase


Sequence:

GAC AAC ATC GCC CAC ATG CGC GGG CAA TTG CAG CGGCTG AGG CCT GTC TTA CGA CTG GTC GCG GGA GTT CGCTAC CTG CAC GCC GGC ATT ATT ATC GCTG


Sequence No.: 27


Length: 100


Type: DNA


Microorganism: Acidithiobacillus thiooxidans

Category: 16S rDNA


Sequence:

TAC CTG GGC TTG ACA TGG ATC GGG AAT CCT GCA GAGATG CGG GAG TGC CTT TCG GGG AGT CGG ATC ACA GGTGCT GCA TGG CTG TCG TCA GCT TCG TGTC


Sequence No.: 28


Length: 100


Type: DNA


Microorganism: Acidianus spp.


Category: 16S rDNA


Sequence:

ACG TGG TCA ACC TAA CCT CGG GAC TTG GAT ACC TCCGGG AAA CTG GAG CTA ATC CAA GAT AGG CAA AGG AATCTG GAA CGA TCC TTT GCT TAA AGG CCTC


Sequence No.: 29


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: 16S rDNA


Sequence:

AAG GGA TAA CTT CGG GAA ACT GAA GGT AAT ACC TTATAA TTG CTT AAA ACT CGA ATG TTT TTG CAA TAA AAGTTA CGA CGC TCA AGC ATC AGT CTC CGAC


Sequence No.: 30


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Glutamyl- and glutaminyl-tRNA-synthase


Sequence:

TTC AGT TAA CCT TGA AAA ATT CGA TAA GAT GAT TTCAGG CCA TTA CTC CGA GGG TGA AGC AGC ACT GGT AATGAA AAC GGA CAT AAA TCA CCC GAA TCCC


Sequence No.: 31


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Alanyl-tRNA-synthase


Sequence:

AGA GGG CAC TAA GTA TTC CAT GAT GCC GCT AAA AATTGT TGA TAC AGG TTA CGG ATT GGA AAG GCT TGT GTGGCT TTC TAC AGG CAC GCC CAC AGT TTAC


Sequence No.: 32


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Isoleucyl-tRNA-synthase


Sequence:

ATA ATA GTG TTC CAT GGA AAG ATA AAT TTG TCA TGGATG TTA ATC CCG ATA TAA TCG GAT ACT TAA AGG AAAATA ACC TTC TAT TTA AAA GCC AGA AAAT


Sequence No.: 33


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Phenylalanyl-tRNA-synthase


Sequence:

TGA CAA AAT GGT GCC TGT AAT ACT TGA CAG CAA GGAAGA TGT AAT GTC AAT GCC CCC CAT AAT AAA TGG GCTGAA ATC TAA AAT TGG AAA TAA TAC ATCA


Sequence No.: 34


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Histidyl-tRNA-synthase


Sequence:

CTG ATG CAG AAA TTG TTG GAT TGG CTT CAA GCA TTCTTG ATT ACC TTG GTT TAT CCG GGG TAT ATG AAA TTAACA TTA ATG ACA GAT TTT TGA TGG AATA


Sequence No.: 35


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Methionyl-tRNA-synthase


Sequence:

AAA GGA TGT AGA TGA ATT TTT TAT TAA CCT GCT GGAAAA AGG ATA CCT TGT AAA ACG CTA TAT GAT ATC ACCATT CTG CGT TGA AAT CAA TAA ATT CATG


Sequence No.: 36


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Aspartyl-tRNA-synthase


Sequence:

CAG TCA CCC CAG CTC TAT AAG GAA ATT CTT ATA TCATCA GGG TTT GAT AAA GTA TTC GAA GTA GGG CCT GCATTT CGG GCT GAA AAG GAA AAC ACT GTAA


Sequence No.: 37


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Threonyl-tRNA-synthase


Sequence:

TAT GAA AGA ATT GAA TGA AAA AAG CGG GTG GGA AGAGGT ATG GAC CGC ACA TGC TTT CAA AGA CAT TAT ATGGAA ACA ATC TGG ACA TTA TTA TAA GTAT


Sequence No.: 38


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Leucyl-tRNA-synthase


Sequence:

AAA AAT ATG GCT GTA ATT TTT TAT GAA ACA ACA AGGAAA GCT GTT ACA AGG TCT GGC TCC AGG GTT ATA GTGGCA GTA TTA AAA GAC CAG TGG TTC ATTG


Sequence No.: 39


Length: 100


Type: DNA


Microorganism: Ferroplasma spp.


Category: Valyl-tRNA-synthase


Sequence:

GGA ATC TGA CAT AAA AGC CAG ATG AAA CTG TCA ATGGCA GCA CCA CTG GAC ATT TAC GTA AAA TTG CAC GGAGCC ATG CTA AAT ATT ATA TCT CCT GAGC


Sequence No.: 40


Length: 100


Type: DNA


Microorganism: Metallosphaera spp.


Category: 16S rDNA


Sequence:

TGC GGG AAA CCG TGA GGG CGT TAC CCC TAG TGC CCTCGC AAG AGG GCT TTT CTC CAC TCC AGA AAG GTG GAGGAA TAA GCG GGG GGC AAG ACT GGT GTCA


Sequence No.: 41


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: 16S rDNA


Sequence:

GGA GGG AGA TAA CCC CGG GAA ACT GGG GAT AAT CTCCCA TAG GCG AGG AGT CCT GGA ACG GTT CCT CGC TGAAAG GCT CAT GGG CTA TTC CCC GCT CATG


Sequence No.: 42


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Glutamyl- and glutaminyl-tRNA-synthase


Sequence:

AGA TCC AAT AGC TAA GAG ACT AAT GTT TGT AAA AGATCC AAA GGA GTT TAT CAT CGA GCT ACC AGA ACC AATAAA GGC TAA AAT ACC ATA TAA TCC CTCT


Sequence No.: 43


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Alanyl-tRNA-synthase


Sequence:

AAA ACC CAT AGA TGA ACA TTT AGC AAA GCA ATT AGGACT TGA TTT GAA GTA TGT AGA TGA AGA ACT AAC AAGAGC TGC TAG AGT ATT TCA GGT ATT TGAT


Sequence No.: 44


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Isoleucyl-tRNA-synthase


Sequence:

ATT GGT GTT CTA GAT GTG AGA CCA CAT TAG CGG ACTATG AGG TTT CCG AGT ATA GAG ACT TAG AAG ATC CATCCA TAT ATG TTA AAT TCA GGG TAA AAGG


Sequence No.: 45


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Phenylalanyl-tRNA-synthase


Sequence:

TTT ATT TTG ATT AAA AAT GAA AAG ATA CTT GAT AGTGAG TAT GTG AAA ATA CTT AAC CCA ATT ACA GTG GAATAT AAT GCA GTA AGA AAT TCA OTA ATAC


Sequence No.: 46


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Histidyl-tRNA-synthase


Sequence:

TAA GAA AAA CTA TGT ATG TAT TTA AAG ATA AGG CAGATA GAG AAG TCG CTT TAA GAC CTG AGA TTA CAC CTAGTA TAG TTA GAG TTT ATC TAA ACT CGTT


Sequence No.: 47


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Methionyl-tRNA-synthase


Sequence:

TTT TTT GAT TTA TCA GAA TTT AAT GAT AAA ATA AGGGAT TGG ATT AGC AGT TCT AAT ACA ATG CCT GAT AATGTT AAG TCT GTC GCA TTA AGC TGG GTTA


Sequence No.: 48


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Aspartyl-tRNA-synthase


Sequence:

GAT ACA CCG TTT CAT TTA GCA GAA TTT ATT AGT ATGGAT GTA GAA ATG GCG TTT GCT GAT TAT AAC GAT GTAATG CAA CTT TTA GAG AAA ATA TTA CATA


Sequence No.: 49


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Leucyl-tRNA-synthase


Sequence:

AGA ATA CTG CGA AAA AAA TAG GTT TGG GTA TAG ATTGGA GAA GAG AAT TTA CTA CAA TTG ACC CAA TTT TTGAGA AAT TTG TAC AGT GGC AGT TTA GTAA


Sequence No.: 50


Length: 100


Type: DNA


Microorganism: Sulfolobus spp.


Category: Valyl-tRNA-synthase


Sequence:

GCT AGA AGA TCT ATA AAA AGT ATG AAA TTC ATT CCTCCT AGA ATG AAG TAT TAC TTT GAG GAT TGG ATA AATAGT TTA GAA TGG GAA TGG AAT ATG ATTA


Sequence No.: 51


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: 16S rDNA


Sequence:

ATC TCC TGG GCT ACA CGC GCG CTA CAA AGG GCG GGACAA TGG GCT CCG ACA CCC AAA GGT GAA GGT AAT CTCGAA ACC CGT CCG TAG TTC GGA TTG AGGG


Sequence No.: 52


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Glutamyl- and glutaminyl-tRNA-synthase


Sequence:

CGG CCA TAT GTA TGT CTG CAC CTG CCC CAG GGA GGAGTT CAA GAA GAG GAA GCT AGA ATC AAT ACC ATG CAAAGA TCG CGA TAA CCC TCC TGA AAC CAAT


Sequence No.: 53


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Alanyl-tRNA-synthase


Sequence:

AAC TCA TCA GTT TcT GAT ATA GAC GAA GAA TTT CTGTCA GAG GTT GTA AAG GCC TCG GTT ATG AAA GAG CCATAC GAA GAA TCA TTC GTC ATT TCG CAAC


Sequence No.: 54


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Isoleucyl-tRNA-synthase


Sequence:

TGA TGG ACG AGA AGC TAG AAA GTG AGA TGG ATC GTGCAT ATT CGG TCA TCG AAA CTG TGC GCA GAC TCA GGCAGG AGA ACT CCA TAA AGG GCA GGC AGCC


Sequence No.: 55


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Phenylalanyl-tRNA-synthase


Sequence:

TGG AGA CAG CAT ACA TTA TAC GAC AGT GAG CAG GAACCA AAG GAT GCA AAC CTA CGA TGG AAT GGA AGG AACCGT CGA TTG GAT CAT CAA AAA CCA TGAA


Sequence No.: 56


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Histidyl-tRNA-synthase


Sequence:

GGA TGT TGA GAA GTT CAT ATT CAA AAC GGC AGA GGAGGC TGC AGA GGC ATT CGG TTT CAG GCG AAT AGA CTTTCC AAG TCT TGA GTA TCT TGA TCT TTAC


Sequence No.: 57


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Methionyl-tRNA-synthase


Sequence:

CAA TGC TGA TGG GCT ATG GTG GTT TCA ACC TGC CATACG ACA TTC CTG CTA ACG AAT ACC TGA CGT TCA AAGGCC AGC AAT TCT CCA AGA GCA GAG GGAT


Sequence No.: 58


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Threonyl-tRNA-synthase


Sequence:

GTT ATA TAA AAG CAT TCA AGC TTC TGA ACA TTG CCAGCG CGG TTT ACA AGC ACG ATG AGA GCA AGA CCC TCGTAA GGA TAT ACG GAA CCG CCT TTC CTGA


Sequence No.: 59


Length: 100


Type: DNA


Microorganism: Thermoplasma spp.


Category: Valyl-tRNA-synthase


Sequence:

GAT GAC AAT GCG GTA GGT GAG GAC GAC ATC AAG GACGGG GAT ACG GAC AAG GTC ACC ATA GAG GAG TAT ACCGCC ATA TTC TTC CGT GGA AAG TCC TTCG


Sequence No.: 60


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

CCA ATA CTG GAC GTC ACC TAT ATT ATT CGC CAG CGACAG CCG TAA AGG TTT TCC GGG CAT CCT ACA GGC CTGGCC CAT CGC TTC CCG CGA CAA GTG CGGC


Sequence No.: 61


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

CCC CAC CAA GCC CCC AAT CGG GTC CGA CTG GCG AGGAGA CCA CCG ATG AAT AAG CAA CCT TGG ATC TCT TAGGAG GGC CAC AAC TCA TGA AAA AAT CGCG


Sequence No.: 62


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

CCG ACA CCC TGA GCT GCG TGA ACC GTC GCA CGG GGAACG TCA TTT CGG CGC CAA TTC ACG CCT ATG TCG TGAGTA GCG GCG GGC ATG GCG GTG TTC CCGG


Sequence No.: 63


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

CAC CTG TAC GTA TGA AAA CCC CTA CGC CCC CAA TCGCGG AGA TTG GCT GGC GGC CTA CTG TAA TAA CGG CTGCGG GTA TAC GGG TTG TAT GGG TCA AGAG


Sequence No.: 64


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

CAA CGC CGG TCC CGC GCC GAT TAT CCA GGT CAT CAACAC GGC CCA TCG GGA ACT GAA TAT TGG CGT CTA TTACCT GGA TGA CCG CAA GGT GCT TCG CGCC


Sequence No.: 65


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

GAA GCC GAG ATG CTA TCC CAG GCC CTG CGC CGG GTTGTC ATT CGC GGA CAC CTG AAT GAT GTA TAT GAT CCGATA ACG AAG TTT GAT TAT CAA GGG GTTG


Sequence No.: 66


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

TCC ACC TAG CCA GGG CAT CGC GTC TCT GAT GAT TGCCGG TAT CAT GGA GCG TTT GGG GCT AGG CGA TGT TGACCC CCT TAG TGC CGA ATT GAT ACA CGGC


Sequence No.: 67


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

ACC TCG CGA AGA GCG TGA CGG TGG AGT AAT GGG GCGGTT CGG TGT GCC GGG TGT GTT CGC AGG TAA TAA AGTTTG CTC ATG GGT AAT AAA GTT TGG ACAT


Sequence No.: 68


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

TGC CGG GCC TTG GGC TAT TGC AGC TGA CGT CGC CCGGCA TCT GGG CGT TGT GAA GGT TAA GGG CAC CGT TTACCG CTG ACG CGA ACA CAA AGG GTC TCCC


Sequence No.: 69


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Specific region for Wenelen


Sequence:

GTT TGA GAC CCA AGA GGG CTT TGA GAT AGC GAA ACGCAT GGT TCT GGG TGA CCA ACA TGA TGA CGG CCC ACTCCA CTA ACC CGG ATT GGC TCT GCC CCGC


Sequence No.: 70


Length: 100


Type: DNA


Microorganism: Wenelen (DSM 16786)


Category: Valyl-tRNA-synthase


Sequence:

GGT GGC GCG AAT GAT CAT GAT GGG TCT GCG CTT CATGGA CGA TGT GCC ATT CCA TGA AGT CTA TGT CCA CGGTCT GGT GCG CGA TGC CGA GGG CCA GAAG

Claims
  • 1. Array for the detection and identification of biomining microorganisms wherein said array comprises one representative of either one, many or all of the following DNA fragments bound to its surface: a. at least one DNA fragment that specifically identifies Acidiphilium spp., b. at least one DNA fragment that specifically identifies Leptospirillum spp., c. at least one DNA fragment that specifically identifies Sulfobacillus spp., d. at least one DNA fragment that specifically identifies Acidithiobacillus spp., e. at least one DNA fragment that specifically identifies Acidithiobacillus ferrooxidans, f. at least one DNA fragment that specifically identifies Acidithiobacillus thiooxidans, g. at least one DNA fragment that specifically identifies Acidianus spp., h. at least one DNA fragment that specifically identifies Ferroplasma spp., i. at least one DNA fragment that specifically identifies Metallosphaera spp., j. at least one DNA fragment that specifically identifies Sulfolobus spp., k. at least one DNA fragment that specifically identifies Thermoplasma spp., l. at least one DNA fragment that specifically identifies strain Wenelen (DSM 16786), wherein each DNA fragment is present in hundreds of copies that form spots that have a homogeneous composition spatially distributed on the surface support.
  • 2. Array according to claim 1, wherein said DNA fragment that allows the identification of Acidiphilium spp. is selected from the DNA fragments defined by sequence No 1 and its reverse complementary sequence.
  • 3. Array according to claim 2, wherein said DNA fragment is either in its complete form, or contained in a larger sequence, the specificity of which given by said fragment, or is any of the sub-fragments contained in said DNA fragment.
  • 4. Array according to claim 3, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 5. Array according to claim 1, wherein said DNA fragment that allows the identification of Leptospirillum spp. is selected from the DNA fragments defined by sequences No 2-10 and their respective reverse complementary sequences.
  • 6. Array according to claim 5, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 7. Array according to claim 6, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 8. Array according to claim 1, wherein said DNA fragment that allows the identification of Sulfobacillus spp. is selected from the DNA fragments defined by sequence No 11 and its reverse complementary sequence.
  • 9. Array according to claim 8, wherein said DNA fragment is either in its complete form, or contained in a larger sequence, the specificity of which is given by said fragment, or is any of the sub-fragments contained in said DNA fragment.
  • 10. Array according to claim 9, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 11. Array according to claim 1, wherein said DNA fragment that allows the identification of Acidithiobacillus spp. is selected from the DNA fragments defined by sequences No 12 and 13 and their respective reverse complementary sequences.
  • 12. Array according to claim 11, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 13. Array according to claim 12, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 14. Array according to claim 1, wherein said DNA fragment that allows the identification of Acidithiobacillus ferrooxidans is selected from the DNA fragments defined by sequences No 14 to 26 and their respective reverse complementary sequences.
  • 15. Array according to claim 14, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 16. Array according to claim 15, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 17. Array according to claim 1, wherein said DNA fragment that allows the identification of Acidithiobacillus thiooxidans is selected from the DNA fragments defined by sequence No 27 and its reverse complementary sequence.
  • 18. Array according to claim 17, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 19. Array according to claim 18, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 20. Array according to claim 1, wherein said DNA fragment that allows the identification of Acidianus spp. is selected from the DNA fragments defined by sequence No 28 and its reverse complementary sequence.
  • 21. Array according to claim 20, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 22. Array according to claim 21, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 23. Array according to claim 1, wherein said DNA fragment that allows the identification of Ferroplasma spp. is selected from the DNA fragments defined by sequences No 29-39 and their respective reverse complementary sequences.
  • 24. Array according to claim 23, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 25. Array according to claim 24, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 26. Array according to claim 1, wherein said DNA fragment that allows the identification of Metallosphaera spp. is selected from the DNA fragments defined by sequence No 40 and its reverse complementary sequence.
  • 27. Array according to claim 26, wherein said DNA fragment is either in its complete form, or contained in a larger sequence, the specificity of which is given by said fragment, or is any of the sub-fragments contained in said DNA fragment.
  • 28. Array according to claim 27, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 29. Array according to claim 1, wherein said DNA fragment that allows the identification of Sulfolobus spp. is selected from the DNA fragments defined by sequences No 41-50 and their respective reverse complementary sequences.
  • 30. Array according to claim 29, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 31. Array according to claim 30, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 32. Array according to claim 1, wherein said DNA fragment that allows the identification of Thermoplasma spp. is selected from the DNA fragments defined by sequences No 51-59 and their respective reverse complementary sequences.
  • 33. Array according to claim 32, wherein said DNA fragment is either in its complete form, or contained in a larger sequence, the specificity of which is given by said fragment, or is any of the sub-fragments contained in said DNA fragment.
  • 34. Array according to claim 33, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 35. Array according to claim 1, wherein said DNA fragment that allows the identification of strain Wenelen (DSM 16786) is selected from the DNA fragments defined by sequences No 60-70 and their respective reverse complementary sequences.
  • 36. Array according to claim 35, wherein said DNA fragments are either in their complete form, or contained in a larger sequence, the specificity of which is given by said fragments, or are any of the sub-fragments contained in said DNA fragments.
  • 37. Array according to claim 36, wherein said sub-fragments comprise preferably 50 to 70 nucleotides.
  • 38. Array according to claim 1, wherein said array optionally comprises a DNA fragment that does not correspond to any biomining relevant microorganism as a negative control.
  • 39. Array according to claim 1, wherein said array comprises an oligonucleotide from a region that is highly conserved in microorganisms as a positive control.
  • 40. Method for the identification of biomining microorganisms, wherein said method comprises: a. incubating a labeled DNA sample on an array as defined in claim 1, b. after the incubation, washing the array to remove non-hybridized labeled DNA fragments, c. visualizing the array spots that have a mark, d. establishing which microorganisms are present in the sample.
  • 41. Method for the identification of biomining microorganisms according to claim 40, wherein said method comprises, when required, the following steps: a. extracting DNA or cDNA from a biomining sample; and/or b. fragmenting and labeling a DNA sample using labeled nucleotides or nucleotides that are able to be labeled, before incubating a labeled DNA sample on an array as comprising c. at least one DNA fragment that specifically identifies Acidiphilium spp., d. at least one DNA fragment that specifically identifies Leptospirillum spp., e. at least one DNA fragment that specifically identifies Sulfobacillus spp., f. at least one DNA fragment that specifically identifies Acidithiobacillus spp., g. at least one DNA fragment that specifically identifies Acidithiobacillus ferrooxidans, h. at least one DNA fragment that specifically identifies Acidithiobacillus thiooxidans, i. at least one DNA fragment that specifically identifies Acidianus spp., j. at least one DNA fragment that specifically identifies Ferroplasma spp., k. at least one DNA fragment that specifically identifies Metallosphaera spp., l. at least one DNA fragment that specifically identifies Sulfolobus spp., m. at least one DNA fragment that specifically identifies Thermoplasma spp., n. at least one DNA fragment that specifically identifies strain Wenelen (DSM 16786), wherein each DNA fragment is present in hundreds of copies that form spots that have a homogeneous composition spatially distributed on the surface support.
Priority Claims (1)
Number Date Country Kind
CL 3033-2005 Nov 2005 CL national
Related Publications (1)
Number Date Country
20080207462 A1 Aug 2008 US