DNA METHYLATION DIAGNOSTIC TEST FOR BREAST CANCER

Information

  • Patent Application
  • 20220349012
  • Publication Number
    20220349012
  • Date Filed
    December 23, 2021
    3 years ago
  • Date Published
    November 03, 2022
    2 years ago
Abstract
The present subject matter provides, inter alia, a method of diagnosing invasive ductal cancer or detecting invasive ductal cancer risk in a subject who has ductal carcinoma in situ, a method of treating breast cancer in a subject detected to have invasive ductal cancer or determined to be at risk of invasive ductal cancer, compositions for detecting invasive presence or potential in ductal carcinoma in situ in a subject, and kits including reagents and composition for detecting invasive presence or potential in ductal carcinoma in situ in a subject.
Description
BACKGROUND OF THE INVENTION

Invasive breast cancer represents a quarter of all cancers diagnosed worldwide and its rate increases by 0.3% every year. Ductal carcinoma in situ (DCIS) is considered to be a pre-invasive form of breast cancer. Almost a quarter of all new breast cancers diagnosed in the United States are DCIS. However, patients with DCIS are treated with surgery and radiation, identically to patients presenting with invasive disease. Not all women with untreated DCIS will develop invasive ductal cancer (IDC). At present, there is no tool to predict concurrent or subsequent invasion in DCIS. This results in overtreatment of a significant number of patients who carry the stigma of cancer.


BRIEF SUMMARY OF THE INVENTION

The present subject matter provides, inter alia, methods, compounds, compositions, kits, and systems for diagnosing IDC or detecting IDC risk in a subject who has DCIS, treating breast cancer in a subject detected to have IDS or determined to be at risk of IDC, and detecting invasive competent DCIS and invasive incompetent DCIS in a subject.


In an aspect, provided herein is a method for detecting the presence, absence, and/or level of methylation at one or more sites set forth in Table 1. In embodiments, the level of methylation at a site set forth in Table 1 is detected.


In an aspect, included herein is method of detecting methylation or unmethylation of a DCIS cell DNA molecule of a subject. In embodiments, the method comprises (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and (ii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject.


In embodiments, provided herein is a method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. In embodiments, the method comprises (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule; (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and (iii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject.


Also provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject. In embodiments, the method comprises (i) contacting a plurality of isolated DCIS cancer cell proliferation DNA molecules from the subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and (ii) detecting the level of uracil in the plurality of reacted DCIS cancer cell proliferation DNA molecules at a plurality of methylation sites set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


Embodiments also provide a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject. In embodiments, the method comprises (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules; (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and detecting the level of uracil in the plurality of reacted DCIS cancer cell proliferation DNA molecules at a plurality of methylation sites set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, further provided is a method of detecting a risk of developing IDC in a subject who has DCIS. In embodiments, the method comprises (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and (ii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting the risk for developing IDC in the subject. In embodiments, the method comprises (i) contacting a plurality of isolated DCIS cancer cell proliferation DNA molecules from the subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and (ii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a plurality of methylation sites set forth in Table 1, thereby detecting the risk for IDC in the subject.


Also provided is a method of detecting IDC or a risk of developing IDC in a subject. In embodiments, the method includes (i) isolating a DCIS cancer cell proliferation DNA molecule from DCIS tissue of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule; (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and (iii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting the risk for developing IDC in the subject. In embodiments, the method comprises (i) isolating a plurality of DCIS cancer cell proliferation deoxyribonucleic acid (DNA) molecules from DCIS tissue of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules; (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and (iii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a plurality of methylation sites set forth in Table 1, thereby detecting the risk for IDC in the subject.


In embodiments, the detection of the presence, absence, or level of uracil in a reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1 comprises amplifying the reacted DCIS cancer cell proliferation DNA molecule [e.g., by a polymerase chain reaction (PCR)] to produce an amplicon, and determining whether a thymidine is present at the nucleotide position of the amplicon that corresponds to the nucleotide position of the uracil in the reacted DCIS cancer cell proliferation DNA molecule.


Aspects also include a method of treating or preventing IDC a subject detected to have a risk of IDC or diagnosed as having IDC. In embodiments, the method includes administering to the subject a treatment to treat or prevent IDC or directing the subject to obtain treatment to treat or prevent IDC.


Also included herein is a DNA molecule at least 5 to 100 nucleotides in length comprising a uracil-containing sequence that is identical to a sequence of at least 5 contiguous nucleotides within a sequence chosen from SEQ ID NO:1 to SEQ ID NO:242.


In embodiments, provided herein is an oligonucleotide comprising a uracil-containing sequence that is identical to a sequence of at least 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, or 190-200 contiguous nucleotides within the sequence chosen from SEQ ID NO:1 to SEQ ID NO:242, or an oligonucleotide that is an amplicon or is identical to an amplicon of a methylation site-containing sequence of at least 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, or 190-200 contiguous nucleotides within the sequence chosen from SEQ ID NO:1 to SEQ ID NO:242.


Aspects of the present subject matter also include a deoxyribonucleic acid chosen from SEQ ID NO:243 to SEQ ID NO: 356, wherein the nucleic acid is hybridized to a complementary DNA sequence comprising uridine or cytosine.


Also provided is a kit comprising a plurality of nucleic acids each independently comprising SEQ ID NO: 242 to SEQ ID NO: 356, wherein each nucleic acid of the plurality is unique.


In embodiments, included herein is a system for detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. In embodiments, the system provides at least one processor; and at least one memory including program code which when executed by the at least one processor provides operations comprising: contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfate salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject; generating a diagnosis for the subject based at least in part on the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at the methylation site set forth in Table 1; and providing, via a user interface, the diagnosis or prognosis for the subject. In embodiments, the system provides at least one processor; and at least one memory including program code which when executed by the at least one processor provides operations comprising: contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1 thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject; generating a diagnosis for the subject based at least in part on the level of methylation or unmethylation at the plurality of methylation sites set forth in Table 1; and providing, via a user interface, the diagnosis or prognosis for the subject.


Aspects also include a system for detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. In embodiments, the system comprises at least one processor and at least one memory including program code which when executed by the at least one processor provides operations. In embodiments, the operations comprise (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule; (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; (iii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject; (iv) generating a diagnosis for the subject based at least in part on the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at the methylation site set forth in Table 1; and (v) providing, via a user interface, the diagnosis or prognosis for the subject.


Also provided herein is a system for detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject. In embodiments, the system comprises at least one processor and at least one memory including program code which when executed by the at least one processor provides operations. In embodiments, the operations comprise (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules; (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; (iii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1 thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject; (iv) generating a diagnosis for the subject based at least in part on the level of methylation or unmethylation at the plurality of methylation sites set forth in Table 1; and (v) providing, via a user interface, the diagnosis or prognosis for the subject.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a set of images, FIG. 1C is a table, and FIGS. 1B and 1D are heatmap images relating to the epigenetic analysis of DCIS. FIG. 1A: Extraction of cancer cells from DCIS containing ducts. DCIS slide before and after a laser cut. FIG. 1B: DNA methylation patterns at promoters in DCIS. Heatmap was done for promoter regions with available DNA methylation information (20,910 regions). Green represents low level of DNA methylation, red indicates a high level of DNA methylation. FIG. 1C: Pathology data for the samples included in the study. FIG. 1D: DNA methylation status of 140 cytosines separates “invasion incompetent” and “invasion competent” DCIS. Green represents low level of DNA methylation, red indicates a high level of DNA methylation. “ER” means “estrogen receptor” and “PR” means “progesterone receptor.” (+) means positive for estrogen and progesterone receptor staining. (−) means negative for estrogen and progesterone receptor staining. DCIS_IDC_11, DCIS_IDC_13(+), and DCIS_IDC_14(+) are samples from patients with DCIS with adjacent IDC. DCIS_3(−) and DCIS_6(−), INV, are samples from patients without IDC with DCIS negative for estrogen and progesterone receptor staining. DCIS_4, DCIS_5(+), DCIS_7(+), DCIS_8(+), and DCIS_1(+) are samples from patients without IDC with DCIS positive for estrogen and progesterone receptor staining (with the exception that status of estrogen receptor and progesterone receptor staining is not known for the DCIS_4).



FIG. 2 depicts a block diagram illustrating an exemplary breast cancer diagnostics system.



FIG. 3 depicts a flowchart illustrating an exemplary process for diagnosing breast cancer.



FIG. 4 depicts a flowchart illustrating an exemplary process for diagnosing breast cancer.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein are, inter alia, compositions, methods, and kits for detecting methylated and/or unmethylated DNA. In some aspects, the present disclosure includes compositions, methods, and kits for detecting methylated and/or unmethylated DNA from ductal carcinoma in situ.


The following definitions are included for the purpose of understanding the present subject matter and for constructing the appended patent claims. Abbreviations used herein have their conventional meaning within the chemical and biological arts.


Definitions

Unless specifically defined otherwise, all technical and scientific terms used herein shall be taken to have the same meaning as commonly understood by one of ordinary skill in the art (e.g., in oncology, cell culture, molecular genetics, epigenetics, and biochemistry).


As used herein, the term “about” in the context of a numerical value or range means ±10% of the numerical value or range recited or claimed, unless the context requires a more limited range.


In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it is used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” In addition, use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.


It is understood that where a parameter range is provided, all integers within that range, and tenths thereof, are also provided by the invention. For example, “0.2-5 mg” discloses 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg etc. up to and including 5.0 mg. Additionally, where two values for a parameter are disclosed, then a range of all values between and including those two values is also disclosed. For example, “1, 2, and 3” discloses, e.g., 1-2, 1-3, and 2-3.


A small molecule is a compound that is less than 2000 daltons in mass. The molecular mass of the small molecule is preferably less than 1000 daltons, more preferably less than 600 daltons, e.g., the compound is less than 500 daltons, 400 daltons, 300 daltons, 200 daltons, or 100 daltons.


The term “ductal carcinoma in situ cancer cell proliferation” (also recited as “DCIS cancer cell proliferation” herein) refers to a biological sample comprising one or more cells obtained or provided from DCIS tissue of a subject. In embodiments, the DCIS cancer cell proliferation comprises a biopsy taken, e.g., from an abnormality [such as mammographic or magnetic resonance imaging (MRI) abnormality] in the breast of a subject. Non-limiting examples of mammographic abnormalities may include or be referred to as suspicious calcifications, microcalcifications, clustered microcalcifications, pleomorphic calcifications, pleomorphic branching calcifications, or a cluster of heterogeneous calcifications. In embodiments, a mammographic abnormality is observed as a mass. In embodiments, the mammographic abnormality is other than a mass (e.g., is a proliferation of cells within or along a duct in a string, sheet, plurality, or population of cells). Non-limiting examples of breast MRI abnormalities may include or be referred to as an abnormal enhancement, a mass-like enhancement, a non-mass enhancement, a linear non-mass enhancement, an enhancing intraductal mass, or a suspicious enhancing lesion. In embodiments, an MRI abnormality or enhancement is observed as a mass. In embodiments, during a breast MRI, mammogram, ultrasound, or physical exam, a DCIS cancer cell proliferation presents as a string, sheet, plurality, or population of cells, a mass, an irregular mass, or a mass lesion, or by ultrasound as a hypoechoic mass. In embodiments, the DCIS cancer cell proliferation is substantially free of normal cells. For example, at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or more of the cells in the DCIS cancer cell proliferation are dysplastic cells such as DCIS cells. In embodiments, at least 75% of the cells in the DCIS cancer cell proliferation are DCIS cancer cells.


The term “disease” refers to any deviation from the normal health of a mammal and includes a state when disease symptoms are present, as well as conditions in which a deviation (e.g., infection, gene mutation, genetic defect, etc.) has occurred, but symptoms are not yet manifested. According to the present disclosure, the methods disclosed herein are suitable for use in a patient that is a member of the Vertebrate class, Mammalia, including, without limitation, primates, livestock and domestic pets (e.g., a companion animal). Typically, a patient will be a human patient.


The terms “subject,” “patient,” “individual,” and the like as used herein are not intended to be limiting and can be generally interchanged. That is, an individual described as a “patient” does not necessarily have a given disease, but may be merely seeking medical advice.


The term “subject” as used herein includes any mammal. In embodiments, the subject is a primate such as a human. In embodiments, the subject is a female. In embodiments, the subject is a male. Non-limiting examples of mammals include rodents (e.g., mice and rats), elephants, sloths, armadillos, primates (such as lemurs, bushbabies, monkeys, apes, and humans), rabbits, dogs (e.g., pets or work dogs such as police dogs, military dogs, race dogs, or show dogs), horses (such as race horses and work horses), donkeys, zebras, tapirs, rhinoceroses, cats (e.g., domesticated cats and large cats such as lions, cheetahs, tigers, and leopards), whales, dolphins, porpoises, pigs, cattle, and deer.


It must be noted that as used herein and in the appended embodiments, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a disease,” “a disease state”, “a nucleic acid” or “a CpG site” is a reference to one or more such embodiments, and includes equivalents thereof known to those skilled in the art and so forth.


The transitional term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim. The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed invention.


A “control” sample or value refers to a sample that serves as a reference, usually a known reference, for comparison to a test sample. For example, a test sample can be taken from a patient suspected or at risk of having breast cancer and compared to samples from a known breast cancer patient, or a known normal (non-disease) individual. A control can also represent an average value gathered from a population of similar individuals, e.g., breast cancer patients or healthy individuals with a similar medical background, same age, weight, etc. A control value can also be obtained from the same individual, e.g., from an earlier-obtained sample, prior to disease, or prior to treatment. One of skill will recognize that controls can be designed for assessment of any number of parameters.


One of skill in the art will understand which controls are valuable in a given situation and be able to analyze data based on comparisons to control values. Controls are also valuable for determining the significance of data. For example, if values for a given parameter are widely variant in controls, variation in test samples will not be considered as significant.


As used herein, the term “diagnosing” and the like includes detecting a disease, disorder, and/or a symptom or feature (e.g., invasiveness) thereof. Diagnosing also includes determining the stage or degree of a disease or disorder. The term “prognosis” refers to a relative probability that a certain future outcome may occur in the subject. For example, in the context of the present disclosure, prognosis can refer to the likelihood that an individual will develop a disease, or the likely severity of the disease (e.g., severity of symptoms, rate of functional decline, survival, invasiveness, etc.). The terms are not intended to be absolute, as will be appreciated by any one of skill in the field of medical diagnostics.


“Treating” or “treatment” of a condition as used herein includes preventing or alleviating a condition, slowing the onset or rate of development of a condition, reducing the risk of developing a condition, preventing or delaying the development of symptoms associated with a condition, reducing or ending symptoms associated with a condition, generating a complete or partial regression of a condition, curing a condition, or some combination thereof. With regard to cancer, “treating” or “treatment” may refer to inhibiting or slowing neoplastic or malignant cell growth, proliferation, invasion, or metastasis, preventing or delaying the development of neoplastic or malignant cell growth, proliferation, invasion, or metastasis, or some combination thereof. With regard to a tumor, “treating” or “treatment” includes eradicating all or part of a tumor, inhibiting or slowing tumor growth, invasion, and metastasis, preventing or delaying the development of a tumor, or some combination thereof.


As used herein, a “symptom” associated with a disorder includes any clinical or laboratory manifestation associated with the disorder, and is not limited to what the subject can feel or observe.


“Nucleic acid” or “oligonucleotide” or “polynucleotide” or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids, including ribonucleic acids (RNA) and deoxyribonucleic acids (DNA), and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoramidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.


The term “bp” and the like refer, in the usual and customary sense, to the indicated number of base pairs.


The terms “identical” or percent “identity,” in the context of two or more nucleic acids (e.g., genomic sequences or subsequences or coding sequences) or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more identity over a specified region), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Such sequences are then said to be “substantially identical.” This definition also refers to the compliment of a test sequence. Optionally, the identity exists over a region that is at least about 10 to about 100, about 20 to about 75, about 30 to about 50 amino acids or nucleotides in length.


An example of algorithms suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990), respectively. As will be appreciated by one of skill in the art, the software for performing BLAST analyses is publicly available through the website of the National Center for Biotechnology Information.


A “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include 32P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into a peptide or antibody specifically reactive with a target peptide. Any method known in the art for conjugating an antibody to the label may be employed, e.g., using methods described in Hermanson, Bioconjugate Techniques 1996, Academic Press, Inc., San Diego.


The term “associated” or “associated with” in the context of a substance (e.g., level of uracil or methylation level in a breast lump or DCIS cancer cell proliferation) does not necessarily mean that the disease is caused by (in whole or in part), or a symptom of the disease is caused by (in whole or in part) the substance or substance activity or function (i.e., level of uracil in the regions of chromosomes assayed).


The term “unmethylated DNA” or “demethylated DNA” means DNA that lacks a methyl group conjugated to cytosine in a segment of the DNA. DNA methylation typically occurs in a CpG dinucleotide context. In the context of the present disclosure, the DNA can be equivalent to a short (2-50, 5-50, 2-300, 2-350 nucleotides, e.g. 5-350 nucleotides) double stranded or single stranded nucleic acid, a nucleic acid fragment cloned in a plasmid DNA, a nucleic acid fragment amplified from a sample of a subject, and/or synthetically prepared a nucleic acid fragment. DNA methylation at the 5′ position of cytosine may have the specific effect on gene expression in vivo. DNA methylation may also form the basis of epigenetic structure, which typically enables a single cell to grow into multiple organs or perform multiple functions.


The CpG sites or CG sites are regions of DNA where a cytosine nucleotide occurs next to a guanine nucleotide in the linear sequence of bases along its length. “CpG” is shorthand for “—C-phosphate-G-”, that is, cytosine and guanine separated by only one phosphate; phosphate links any two nucleosides together in DNA. The “CpG” notation is used to distinguish this linear sequence from the CG base-pairing of cytosine and guanine. The CpG notation can also be interpreted as the cytosine being 5′ prime to the guanine base.


In embodiments, methylation is detected based on a chemical reaction of sodium bisulfite with DNA that converts unmethylated cytosines of CpG dinucleotides to uracil or UpG. However, methylated cytosine is not converted in this process, the methods of the present disclosure allow determination of methylation status as methylated or unmethylated.


As used herein, an “isolated” or “purified” nucleic acid molecule, polynucleotide, polypeptide, or protein, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. Purified compounds are at least 60% by weight (dry weight) the compound of interest. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight the compound of interest. For example, a purified compound is one that is at least 90%, 91%, 92%, 93%, 94%, 95%, 98%, 99%, or 100% (w/w) of the desired compound by weight. Purity is measured by any appropriate standard method, for example, by column chromatography, thin layer chromatography, or high-performance liquid chromatography (HPLC) analysis. A purified or isolated polynucleotide [ribonucleic acid (RNA) or deoxyribonucleic acid (DNA)] is free of the genes or sequences that flank it in its naturally-occurring state. Purified also defines a degree of sterility that is safe for administration to a human subject, e.g., lacking infectious or toxic agents.


Similarly, by “substantially pure” is meant a nucleotide or polypeptide that has been separated from the components that naturally accompany it. Typically, the nucleotides and polypeptides are substantially pure when they are at least 60%, 70%, 80%, 90%, 95%, or even 99%, by weight, free from the proteins and naturally-occurring organic molecules with they are naturally associated.


Exemplary Epigenetic Signatures

DCIS is the most common type of non-invasive breast cancer. Ductal means that the cancer starts inside the milk ducts (which are the “pipes” that carry milk from the milk-producing lobules to the nipple), carcinoma refers to any cancer arising in the epithelial tissue of the skin or of the lining of the internal organs (including breast tissue), and in situ means “in its original place.” DCIS is called “non-invasive” because it hasn't spread beyond the milk duct into any normal surrounding breast tissue. However, as disclosed herein, DCIS may be predisposed or prone to becoming invasive. DCIS is frequently found to be associated with invasive cancer where the DCIS remains localized in the ducts while the adjacent invasive cancer invades out of the ducts. IDC, which stands for infiltrating ductal carcinoma or invasive ductal carcinoma, is the most common type of invasive breast cancer. Invasive means that the cancer “invades” or spreads to surrounding tissues (e.g., surrounding breast tissues). All together, “invasive ductal carcinoma” refers to cancer that has broken through the wall of the milk duct and invaded the tissues of the breast. Over time, invasive ductal carcinoma can spread to the lymph nodes and possibly to other areas of the body.


Provided herein are methods, compounds, compositions, kits, and systems for detecting invasive competent DCIS and invasive incompetent DCIS in a subject who has DCIS, treating breast cancer in a subject detected to have invasive competent DCIS or invasive incompetent DCIS, monitoring a subject who has DCIS for invasive competent DCIS, and distinguishing invasive competent DCIS from invasive incompetent DCIS in a subject.


In an aspect, included herein are molecular epigenetic diagnostic methods that reduce breast cancer overdiagnosis and overtreatment. In embodiments, the treatment of a subject differs based on whether the subject is determined to have IDC or a risk for IDC. For example, a subject determined to have IDC or a risk of IDC may receive surgery such as a mastectomy, whereas a subject determined to not have IDC or no risk of IDC may receive less invasive surgery, radiation therapy, hormonal therapy, or be monitored periodically (e.g., retested for IDC, or IDC risk according to a method disclosed herein at a future time point, such as 0.5-5 years from the initial test) without receiving surgery, chemotherapy, radiation therapy, or hormonal therapy.


In embodiments, DCIS can be classified into two groups. One group comprises DCIS from patients with potential or concomitant invasion and characterized by cancer specific DNA methylation changes (“invasion competent DCIS” or “IC-DCIS”), the second group with DCIS is without any invasive disease (“invasion incompetent DCIS” or “II-DCIS”) and associated with DNA methylation pattern more similar to normal cells. IC-DCIS has a risk of becoming invasive in the future. In embodiments, a subject with IC-DCIS may have a substantial risk (e.g., at least a 10%, 20%, 30%, 40%, or 50% chance) of having IDC (e.g., within about 1, 2, 3, 4, 5, or 10 years).


Not to be bound by theory, it is hypothesized that there are two different epigenetic programs driving DCIS progression, and patients with the “invasion incompetent” signature are not at risk of developing invasive ductal cancer over time while patients with DCIS from the second epigenetic group having “invasion competent” signature will have a very high chance to develop invasive ductal cancer.


In embodiments, provided herein are epigenetic biomarkers based on DNA methylation that detect DCIS invasive state or potential and/or predict DCIS progression to an invasive state. In embodiments, the DNA methylation of cells in a sample obtained or provided from a subject is detected. In embodiments, the sample comprises DCIS-containing cancer cells isolated by a laser capture procedure from a biopsy. In embodiments, the sample comprises a DCIS cancer cell proliferation that is substantially free of normal cells. For example, at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or more of the cells in the DCIS cancer cell proliferation are dysplastic cells (e.g., breast cancer cells such as DCIS cells). In embodiments, the DCIS cancer cell proliferation comprises cancer cells isolated by a laser capture procedure from a biopsy. In embodiments, the DCIS cancer cell proliferation is isolated by surgical excision followed by cancer cell purification by using a laser capture procedure. In embodiments, the DCIS cancer cell proliferation is isolated directly from a subject or from a sample that was previously obtained from the subject. In embodiments, the DCIS cancer cell proliferation is obtained or provided from a section of tissue that has been obtained or provided from the subject. In embodiments, the tissue comprises tissue from a mammographic abnormality or lump in the breast of a subject that comprises or is suspected of comprising breast cancer cells such as DCIS cells. In embodiments, the DCIS cancer cell proliferation is obtained or provided from a tissue section, e.g. a slice or section or a sample that has been stained for DNA and protein detection such as a slice or section that has been mounted on a slide. In embodiments, the DCIS cancer cell proliferation is isolated or captured from a paraffin-embedded sample slide using, e.g., a laser. In embodiments, DNA methylation of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 50, 75, 100, 125, or 140, or 1-50, 1-100, 1-140, 50-100, or 50-140 (inclusive) of the sites in Table 1 identifies the DCIS of a subject as IC-DCIS or II-DCIS.


Method of Detection Methylation Status of a Ductal Carcinoma DNA

In an aspect, provided herein is a method for detecting the presence, absence, and/or level of methylation at one or more sites set forth in Table 1. In embodiments, the level of methylation at a site set forth in Table 1 is detected. In embodiments, determining the level of methylation comprises bisulfite salt treatment, methyl-sensitive cut counting, and/or any method for a single base DNA methylation detection.


In an aspect, included herein is method of detecting methylation or unmethylation of a DCIS cell DNA molecule of a subject. In embodiments, the method comprises (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and (ii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject.


In embodiments, the present disclosure provides a method of detecting methylation or unmethylation of a breast lump DNA molecule of a subject, the method including: (i) isolating DNA from cancer cells obtained from a mammographic or Mill ductal abnormality, a breast nodule, a tumor, or a lump of said subject (e.g., a DCIS cancer cell proliferation or tissue) thereby forming an isolated DNA molecule, (ii) contacting said isolated DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DNA molecule, (iii) detecting the presence or absence of uracil in said reacted DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of said DNA molecule of said subject.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA of a subject. The method includes: (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule, (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule, (iii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated single stranded DNA.


In embodiments, the method of detecting methylation or unmethylation of a DCIS DNA molecule of a subject, includes determining alteration (e.g., compared to normal or II-DCIS cancer cell proliferation DNA) in methylation at a plurality of methylation sites set forth in Table 1.


Also provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject. In embodiments, the method comprises (i) contacting a plurality of isolated DCIS cancer cell proliferation DNA molecules from the subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and (ii) detecting the level of uracil in the plurality of reacted DCIS cancer cell proliferation DNA molecules at a plurality of methylation sites set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with the bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a plurality of methylation sites set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with the bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a plurality of methylation sites set forth in Table 1, thereby detecting methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. The method includes: (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule, (ii) amplifying the reacted DCIS cancer cell proliferation DNA molecule thereby forming a reacted DCIS cancer cell proliferation DNA amplicon molecule, (iii) detecting the presence or absence of thymidine in a reacted DCIS cancer cell proliferation DNA amplicon molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated single stranded DNA.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. The method includes: (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule, (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule, (iii) amplifying the reacted DCIS cancer cell proliferation DNA molecule thereby forming a reacted DCIS cancer cell proliferation DNA amplicon molecule, (iv) detecting the presence or absence of thymidine in a reacted DCIS cancer cell proliferation DNA amplicon molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated single stranded DNA.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject comprising (i) contacting a plurality of isolated cancer DCIS cancer cell proliferation DNA molecules from a subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (ii) amplifying the plurality of reacted DCIS cancer cell proliferation DNA molecules thereby forming a plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules, (iii) detecting one or more DCIS cancer cell proliferation DNA amplicon molecules within the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of detecting methylation or unmethylation of a plurality of DCIS cancer cell proliferation DNA molecules of a subject comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfate salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) amplifying the plurality of reacted DCIS cancer cell proliferation DNA molecules thereby forming a plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules, (iv) detecting one or more DCIS cancer cell proliferation DNA amplicon molecules within the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In embodiments, detecting one or more DCIS cancer cell proliferation DNA amplicon molecules comprises detecting the level of one or more one or more DCIS cancer cell proliferation DNA amplicon molecules. In embodiments, detecting one or more DCIS cancer cell proliferation DNA amplicon molecules comprises detecting the level of reacted DCIS cancer cell proliferation DNA amplicon molecules in the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In embodiments, detecting a level includes determining the number (e.g. quantitating) or molecules having, e.g., a thymidine or a uracil. In embodiments, detecting a level includes detecting the portion or proportion of a population or plurality of molecules having, e.g., a thymidine or a uracil.


In embodiments, the isolated DCIS cancer cell proliferation DNA sample is treated with a bisulfite reagent, e.g., a bisulfite salt (i.e., a process called DNA bisulfite conversion). Non-limiting examples of bisulfite salts include sodium bisulfite, potassium bisulfite, ammonium bisulfite, magnesium bisulfite, sodium metabisulfite, potassium metabisulfite, ammonium metabisulfite and magnesium metabisulfite. Bisulfite salts such as sodium bisulfite or ammonium bisulfite can convert cytosine to uracil and leave 5-methylcytosine (5-mC) the same. Thus after bisulfite treatment methylated cytosine in the DNA remains the same and unmodified cytosines will be changed to uracil. The bisulfate treatment can be performed by using the methods disclosed herein or in the art, and/or with commercial kits such as the BisulFlash DNA Modification Kit (EpiGentek) and Imprint DNA Modification Kit (Sigma). For achieving the optimal bisulfite conversion, the bisulfite reaction should be carried out in an appropriate concentration of bisulfite reagents, appropriate temperature and appropriate reaction time period. A reagent such as potassium chloride that reduces thermophilic DNA degradation could also be used in bisulfite treatment so that the DNA bisulfite process can be much shorter without interrupting a completed conversion of unmethylated cytosine to uracil and without a significant thermodegradation of DNA resulted from depurination. In embodiments, a commercially available bisulfite treatment kit is used. A non-limiting example of such a kit is EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine, Calif., USA).


In embodiments, once DNA bisulfite conversion is complete, DNA is captured, desulphonated and washed. In embodiments, the bisulfite-treated DNA can be captured by, e.g., a solid matrix selected from silica salt, silica dioxide, silica polymers, magnetic beads, glass fiber, celite diatoms and nitrocellulose in the presence of high concentrations of chaotropic or non-chaotropic salts. In embodiments, the bisulfite-treated DNA is further desulphonated with an alkalized solution, preferably sodium hydroxide at concentrations from 10 mM to 300 mM. In embodiments, the DNA is then eluted and collected into a capped microcentrifuge tube. Non-limiting examples of elution solutions include DEPC-treated water and TE buffer (10 mM Tris-HCL, pH 8.0, and 1 mM EDTA).


In embodiments, the reacted DCIS cancer cell proliferation DNA resulting from bisulfite treatment is amplified. In embodiments, detecting the presence or absence of uracil in reacted DCIS cancer cell proliferation DNA molecule at a methylation site comprises amplifying the reacted DCIS cancer cell proliferation DNA molecule thereby forming a reacted DCIS cancer cell proliferation DNA amplicon molecule, and detecting the presence or absence of thymidine in a reacted DCIS cancer cell proliferation DNA amplicon molecule at the methylation site. In embodiments, a polymerase chain reaction (PCR) method is used for amplifying the reacted DCIS cancer cell proliferation DNA. PCR methods are known to those of ordinary skill in the art. In general, the PCR reactions can be set up by adding sample, dNTPs, and appropriate polymerase such as Taq polymerase, primers, and a buffer.


In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA of a subject, includes detecting methylation or unmethylation at a plurality of methylation sites set forth in Table 1. In embodiments, the plurality of methylation sites comprises at least about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites comprises less than about 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 methylation sites. In embodiments, the plurality of methylation sites is about 2, 3, 4, 5, 10, 25, 50, 75, 80, 85, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites includes one, two, or more methylation sites set forth in Table 1 and no other methylation sites.


In embodiments, the method includes detecting methylation or unmethylation of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, or 140 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 1 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 5 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 10 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 50 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 100 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of at least 120 of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


In embodiments, the method includes detecting methylation or unmethylation of each of the following sites: Chromosome 1 (Chr1) position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chromosome 3 (Chr3) position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chromosome 4 (Chr4) position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chromosome 7 (Chr7) position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chromosome 12 (Chr12) position, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chromosome 19 (Chr19) position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chromosome 20 (Chr20) position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, and Chromosome 22 position 43807517.


Aspects provide a method for monitoring whether the risk of IDC in a subject who has DCIS. In embodiments, a method provided herein is practiced for a subject more than once over time to determine whether the DCIS is progressing from II-DCIS to IC-DCIS or from IC-DCIS to IDC. In embodiments, the methylation of one or more methylation sites in a subject becomes less indicative of II-DCIS over time. In embodiments, the methylation of one or more methylation sites in a subject becomes more indicative of IC-DCIS over time. In embodiments, methylation or unmethylation of DCIS cancer cell proliferation DNA from a subject is assessed using a method provided herein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times. In embodiments, the method is repeated at least once every 4, 6, 8, 12 or 18 months, or at least once every 2, 3, 4, or 5 more years.


In embodiments, the method includes: (i) isolating DNA from multiple cells of a DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) detecting the proportion of DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of said DCIS cancer cell proliferation DNA of the subject.


The methylation of a CpG site of interest may vary between individual cells (and even between chromosome pairs of individual cells) in a biological sample. When DNA is obtained from a biological sample and treated with a bisulfite salt to convert unmethylated cytosines to uracils, the bisulfite-treated DNA will typically contain (i) a proportion of DNA molecules with a cytosine at the site of interest (indicating that the site was methylated); and (ii) a proportion of DNA molecules with a uracil at the site of interest (indicating that the site was unmethylated). Since a uracil at a site of interest in bisulfite-treated DNA indicates that the site was unmethylated in the untreated DNA, a thymidine at the corresponding site in an amplicon of the bisulfite-treated DNA (e.g., an amplicon obtained by PCR) also indicates that the site was unmethylated in the untreated DNA.


In embodiments, the level of methylation at a site of interest is the proportion of bisulfite-treated DNA molecules having a cytosine rather than a uracil at that site of interest. In embodiments, the level of methylation at a site of interest is the proportion of amplicons of bisulfite-treated DNA molecules having a cytosine rather than a thymidine at that site of interest.


In embodiments, the level of unmethylation at a site of interest is the proportion of bisulfite-treated DNA molecules having a uracil rather than a cytosine at that site of interest. In embodiments, the level of unmethylation at a site of interest is the proportion of amplicons of bisulfite-treated DNA molecules having a thymidine rather than a cytosine at that site of interest. In Table 1, an indicated level of uracil is the proportion of bisulfite-treated DNA molecules having a uracil rather than a cytosine at the specified methylation site. The same levels listed in Table 1 also apply to the thymidine levels at a site of interest in an amplicon, i.e., the proportion of amplicons (derived from the PCR amplification of bisulfite-treated DNA molecules) having a thymidine rather than a cytosine at the specified methylation site.


The level of DNA methylation at a site of interest (e.g., a methylation site listed in Table 1) may be determined using sequencing technology. Sequencing technology can reveal nucleotide sequence variations in a plurality of DNA molecules at a single nucleotide base resolution. For example, the proportions of corresponding DNA molecules having a uracil, a thymidine, and/or a cytosine at a site may be determined. A non-limiting example of a sequencing-based method for determining the methylation level at a site of interest is described in Masser et al. (2015) Targeted DNA Methylation Analysis by Next-generation Sequencing, J Vis Exp. (96): 52488, the entire content of which is incorporated herein by reference.


The chromosomal positions listed in Tables 1-3 relate to the human genome that is publically accessible in the University of California Santa Cruz (UCSC) genome browser database under accession number HG19, the entire content of which is incorporated herein by reference in its entirety. Non-limiting information regarding the UCSC Genome Browser is provided in Kent W J, Sugnet C W, Furey T S, Roskin K M, Pringle T H, Zahler A M, Haussler D. The human genome browser at UCSC. Genome Res. 2002 June; 12(6):996-1006, the entire content of which is incorporated herein by reference. Each methylation site of interest listed in Table 1 may be located in other human genomes (e.g., within the genome of a specific subject or group of subjects) by replacing every U and R in the corresponding sequence with a C and then searching for the location of the X within a reference genome by aligning the sequence against the reference genome. For example, the methylation site of interest “X” in SEQ ID NO:1 may be located within a genome by replacing each U and R in SEQ ID NO: 1 with a C (to obtain the pre-bisulfite-modified sequence having an X at the site of interest) and then aligning the sequence against the genome using a BLAST algorithm. Also expressly provided, disclosed, and incorporated herein is the non-bisulfite-modified sequence corresponding to each of SEQ ID NOS: 1-242. The non-bisulfite-modified sequence corresponding to each of SEQ ID NOS:1-242 is each respective sequence in which each U and R is replaced with a C, where X is the methylation site of interest. For example, the non-bisulfite-modified sequence corresponding to SEQ ID NO:1 provided herein is a modified version of SEQ ID NO:1 in which each U and R in SEQ ID NO:1 is replaced with a C, where X is the methylation site of interest; the non-bisulfite-modified sequence corresponding to SEQ ID NO:2 provided herein is a modified version of SEQ ID NO:2 in which each U and R in SEQ ID NO:2 is replaced with a C, where X is the methylation site of interest; the non-bisulfite-modified sequence corresponding to SEQ ID NO:3 provided herein is a modified version of SEQ ID NO:3 in which each U and R in SEQ ID NO:3 is replaced with a C, where X is the methylation site of interest, and so on.


The chromosome positions listed herein correspond to the cytosine (of the CpG methylation site) that is methylated on the forward strand. However, the cytosine of the reverse complement of the forward strand's CpG methylation site may also or alternatively be methylated. At each chromosomal position provided, methylation may be determined for the forward strand, the reverse strand, or both the forward strand and the reverse strand. In embodiments, each chromosomal position listed herein may refer to (i) the cytosine of the methylation site on the forward strand, (ii) the corresponding cytosine on the reverse strand of the methylation site, or (iii) both the cytosine of the methylation site on the forward strand and the corresponding cytosine on the reverse strand of the methylation site.















TABLE 1








Uracil level
Uracil level







in invasive-
in invasive-
SEQ
SEQ





competent DCIS
competent DCIS
ID NO:
ID NO:




Chromosomal
is about above
is about below
Forward
Reverse


Site
Chromosome
position
indicated level*
indicated level*
Strand
Strand





















1
chr1
4714314
N/A
74.32
1
2


2
chr1
11413742
76.09
N/A
3
4


3
chr1
39957798
N/A
63.81
5
6


4
chr1
46951513
N/A
85.11
7
8


5
chr1
47904912
N/A
73.08
9
10


6
chr1
62660691
N/A
71.20
11
12


7
chr1
63785800
N/A
46.94
13
14


8
chr1
67600465
N/A
42.86
15
16


9
chr1
91183172
N/A
48.28
17
18


10
chr1
166853786
N/A
64.29
19
20


11
chr1
179545096
N/A
88.89
21
22


12
chr1
207669851
N/A
89.29
23
24


13
chr1
237205704
N/A
82.61
25
26


14
chr1
237205705
N/A
78.57
25
26


15
chr1
240161215
N/A
60.00
27
28


16
chr1
240934954
78.57
N/A
29
30


17
chr10
8076277
N/A
75.00
31
32


18
chr10
50818610
N/A
76.30
33
34


19
chr10
77157527
N/A
50.43
35
36


20
chr10
123778639
74.49
N/A
37
38


21
chr10
123778640
79.31
N/A
37
38


22
chr10
124902829
N/A
67.35
39
40


23
chr10
124909545
N/A
80.00
41
42


24
chr10
130085373
N/A
76.74
43
44


25
chr10
134598235
N/A
34.43
45
46


26
chr10
134599080
N/A
79.31
47
48


27
chr11
1215978
74.47
N/A
49
50


28
chr11
9025912
N/A
65.85
51
52


29
chr11
15963013
N/A
51.72
53
54


30
chr11
66187593
N/A
80.95
55
56


31
chr11
71318977
N/A
51.52
57
58


32
chr11
101453451
N/A
57.89
59
60


33
chr12
49726711
N/A
60.00
61
62


34
chr12
50297756
N/A
69.81
63
64


35
chr12
50297763
N/A
82.98
63
64


36
chr12
50297768
N/A
81.13
63
64


37
chr12
50297774
N/A
75.47
63
64


38
chr12
50297776
N/A
77.36
63
64


39
chr12
50444766
N/A
54.17
65
66


40
chr12
75601447
N/A
52.00
67
68


41
chr12
95941925
N/A
36.84
69
70


42
chr12
128750309
83.33
N/A
71
72


43
chr12
129338355
N/A
57.14
73
74


44
chr12
129338471
N/A
60.71
75
76


45
chr13
28502190
N/A
65.85
77
78


46
chr13
79181509
N/A
79.84
79
80


47
chr13
92051154
N/A
70.70
81
82


48
chr13
95363553
N/A
73.91
83
84


49
chr13
95363592
N/A
78.95
83
84


50
chr14
29236052
N/A
72.36
85
86


51
chr14
29236065
N/A
62.60
85
86


52
chr14
101543886
N/A
92.45
87
88


53
chr15
29407958
N/A
69.84
89
90


54
chr15
45403826
N/A
73.68
91
92


55
chr15
76630094
N/A
62.30
93
94


56
chr15
89951787
N/A
39.68
95
96


57
chr16
1255253
84.62
N/A
97
98


58
chr17
3211643
82.35
N/A
99
100


59
chr17
30244229
70.45
N/A
101
102


60
chr17
35294171
N/A
71.43
103
104


61
chr17
64831307
N/A
56.52
105
106


62
chr17
74136562
N/A
43.48
107
108


63
chr17
74865566
N/A
62.79
109
110


64
chr18
19745047
N/A
67.01
111
112


65
chr18
19745054
N/A
64.10
111
112


66
chr18
19747206
N/A
80.00
113
114


67
chr18
44774403
N/A
68.29
115
116


68
chr18
55103840
N/A
66.20
117
118


69
chr18
55106910
N/A
50.00
119
120


70
chr18
70534832
N/A
66.67
121
122


71
chr18
72880039
56.52
N/A
123
124


72
chr18
77547934
N/A
33.33
125
126


73
chr19
30016170
N/A
38.89
127
128


74
chr19
30017283
N/A
60.00
129
130


75
chr19
30717013
N/A
54.24
131
132


76
chr19
30719659
N/A
66.67
133
134


77
chr2
20870821
N/A
12.20
135
136


78
chr2
45156764
N/A
34.25
137
138


79
chr2
74743346
N/A
34.69
139
140


80
chr2
80549703
N/A
28.21
141
142


81
chr2
95989474
84.21
N/A
143
144


82
chr2
105471544
N/A
63.64
145
146


83
chr2
115919663
N/A
64.44
147
148


84
chr2
115920004
N/A
79.31
149
150


85
chr2
118982006
N/A
47.06
151
152


86
chr2
177001540
N/A
63.16
153
154


87
chr20
1294019
N/A
55.43
155
156


88
chr20
3073503
N/A
62.96
157
158


89
chr20
10198305
N/A
62.44
159
160


90
chr20
23015989
N/A
80.70
161
162


91
chr20
23016002
N/A
65.59
161
162


92
chr20
26189258
N/A
55.56
163
164


93
chr20
48626669
N/A
36.00
165
166


94
chr20
53092916
N/A
72.13
167
168


95
chr20
59827619
N/A
58.82
169
170


96
chr20
59828325
N/A
76.47
171
172


97
chr21
9825842
N/A
37.32
173
174


98
chr21
9826150
N/A
50.00
175
176


99
chr21
9826934
N/A
53.36
177
178


100
chr22
43807517
N/A
40.68
179
180


101
chr3
14852857
N/A
57.54
181
182


102
chr3
121903470
N/A
71.96
183
184


103
chr3
170303393
N/A
68.63
185
186


104
chr3
170303422
N/A
67.65
185
186


105
chr3
170303423
N/A
81.82
185
186


106
chr3
170303424
N/A
56.52
185
186


107
chr3
170303425
N/A
69.77
185
186


108
chr4
44449864
N/A
78.38
187
188


109
chr4
54976099
N/A
72.00
189
190


110
chr4
56023880
N/A
55.10
191
192


111
chr5
71014951
N/A
65.00
193
194


112
chr5
72677229
N/A
80.82
195
196


113
chr5
87981177
N/A
55.26
197
198


114
chr5
140743998
N/A
71.83
199
200


115
chr5
178421786
N/A
56.25
201
202


116
chr6
41337153
N/A
57.25
203
204


117
chr6
85484102
N/A
68.18
205
206


118
chr6
157557787
N/A
55.56
207
208


119
chr6
160769248
N/A
75.51
209
210


120
chr7
1282082
N/A
70.45
211
212


121
chr7
32467637
N/A
31.03
213
214


122
chr7
71801896
N/A
63.89
215
216


123
chr7
71801905
N/A
63.89
215
216


124
chr7
100946148
N/A
55.17
217
218


125
chr7
100946151
N/A
43.66
217
218


126
chr7
121957003
N/A
75.00
219
220


127
chr7
150038502
N/A
84.83
221
222


128
chr7
157477232
N/A
26.45
223
224


129
chr7
157477399
N/A
71.43
225
226


130
chr7
157477401
N/A
92.59
225
226


131
chr8
9764011
N/A
70.91
227
228


132
chr8
11566080
N/A
85.51
229
230


133
chr8
11566102
N/A
65.22
229
230


134
chr8
11566125
N/A
65.22
229
230


135
chr8
56015232
N/A
53.85
231
232


136
chr8
65281933
N/A
95.00
233
234


137
chr8
145105472
N/A
44.93
235
236


138
chr9
126780185
N/A
85.19
237
238


139
chr9
127239956
N/A
66.96
239
240


140
chr9
140772369
N/A
84.62
241
242





*Level values provided are the proportion (percentage) of reacted DCIS cancer cell proliferation DNA molecules having a uracil at the methylation site of interest. When amplicons generated from reacted DCIS cancer cell proliferation DNA molecules (e.g., by PCR) are used to assess the level of methylation, the values provided correspond to the proportion of amplicons having a thymidine at the nucleotide position that corresponds to the methylation site of interest.






In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA of a subject detects an alteration in methylation including increase or loss of uracil level at one methylation site or a plurality of methylation sites. In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA of a subject detects an alteration in methylation including increase or loss of thymidine level at plurality of methylation sites. In embodiments, the indicated levels in Tables 1, 2, and 3 are approximate indicated levels, and include values that are within about 15%, about 10%, or about 5% above and below the indicated levels.


In embodiments, the uracil level is above a threshold as set forth in Table 2 in subjects with invasive competent DCIS cancer cell proliferations. In embodiments, the thymidine level is above a threshold as set forth in Table 2 in subjects with invasive competent DCIS cancer cell proliferations. In embodiments, the uracil level is below a threshold as set forth in Table 2 in subjects with invasive incompetent DCIS cancer cell proliferations. In embodiments, the thymidine level is below a threshold as set forth in Table 2 in subjects with invasive incompetent DCIS cancer cell proliferations. In embodiments, subject with invasive competent DCIS are identified as at risk of IDC. In embodiments, subject with invasive incompetent DCIS are identified as not at risk of IDC.









TABLE 2







Methylation threshold for invasive competent DCIS













Uracil level in invasive




Chromosomal
competent DCIS is about



Chromosome
position
above indicated level*















chr1
11413742
76.09



chr1
240934954
78.57



chr10
123778639
74.49



chr10
123778640
79.31



chr11
1215978
74.47



chr12
128750309
83.33







*Level values provided are the proportion (percentage) of reacted DCIS cancer cell proliferation DNA molecules having a uracil at the methylation site of interest. When amplicons generated from reacted DCIS cancer cell proliferation DNA molecules (e.g., by PCR) are used to assess the level of methylation, the values provided correspond to the proportion of amplicons having a thymidine at the nucleotide position that corresponds to the methylation site of interest.






In embodiments, the uracil level is above a threshold as set forth in Table 3 in subjects with invasive incompetent DCIS cancer cell proliferations. In embodiments, the thymidine level is above a threshold as set forth in Table 3 in subjects with invasive incompetent DCIS cancer cell proliferations. In embodiments, the uracil level is below a threshold as set forth in Table 3 in subjects with invasive competent DCIS cancer cell proliferations. In embodiments, the thymidine level is below a threshold as set forth in Table 3 in subjects with invasive competent DCIS cancer cell proliferations.









TABLE 3







Methylation threshold for invasive-incompetent DCIS













Uracil level in invasive-




Chromosomal
competent DCIS is about



Chromosome
position
below indicated level*















chr1
4714314
74.32



chr1
39957798
63.81



chr1
46951513
85.11



chr1
47904912
73.08



chr1
62660691
71.20



chr1
63785800
46.94



chr1
67600465
42.86



chr1
91183172
48.28



chr1
166853786
64.29



chr1
179545096
88.89



chr1
207669851
89.29



chr1
237205704
82.61



chr1
237205705
78.57



chr1
240161215
60.00



chr10
8076277
75.00



chr10
50818610
76.30



chr10
77157527
50.43



chr10
124902829
67.35



chr10
124909545
80.00



chr10
130085373
76.74



chr10
134598235
34.43



chr10
134599080
79.31



chr11
9025912
65.85



chr11
15963013
51.72



chr11
66187593
80.95



chr11
71318977
51.52



chr11
101453451
57.89



chr12
49726711
60.00



chr12
50297756
69.81



chr12
50297763
82.98



chr12
50297768
81.13



chr12
50297774
75.47



chr12
50297776
77.36



chr12
50444766
54.17



chr12
75601447
52.00



chr12
95941925
36.84



chr12
129338355
57.14



chr12
129338471
60.71



chr13
28502190
65.85



chr13
79181509
79.84



chr13
92051154
70.70



chr13
95363553
73.91



chr13
95363592
78.95



chr14
29236052
72.36



chr14
29236065
62.60



chr14
101543886
92.45



chr15
29407958
69.84



chr15
45403826
73.68



chr15
76630094
62.30



chr15
89951787
39.68



chr17
35294171
71.43



chr17
64831307
56.52



chr17
74136562
43.48



chr17
74865566
62.79



chr18
19745047
67.01



chr18
19745054
64.10



chr18
19747206
80.00



chr18
44774403
68.29



chr18
55103840
66.20



chr18
55106910
50.00



chr18
70534832
66.67



chr18
77547934
33.33



chr19
30016170
38.89



chr19
30017283
60.00



chr19
30717013
54.24



chr19
30719659
66.67



chr2
20870821
12.20



chr2
45156764
34.25



chr2
74743346
34.69



chr2
80549703
28.21



chr2
105471544
63.64



chr2
115919663
64.44



chr2
115920004
79.31



chr2
118982006
47.06



chr2
177001540
63.16



chr20
1294019
55.43



chr20
3073503
62.96



chr20
10198305
62.44



chr20
23015989
80.70



chr20
23016002
65.59



chr20
26189258
55.56



chr20
48626669
36.00



chr20
53092916
72.13



chr20
59827619
58.82



chr20
59828325
76.47



chr21
9825842
37.32



chr21
9826150
50.00



chr21
9826934
53.36



chr22
43807517
40.68



chr3
14852857
57.54



chr3
121903470
71.96



chr3
170303393
68.63



chr3
170303422
67.65



chr3
170303423
81.82



chr3
170303424
56.52



chr3
170303425
69.77



chr4
44449864
78.38



chr4
54976099
72.00



chr4
56023880
55.10



chr5
71014951
65.00



chr5
72677229
80.82



chr5
87981177
55.26



chr5
140743998
71.83



chr5
178421786
56.25



chr6
41337153
57.25



chr6
85484102
68.18



chr6
157557787
55.56



chr6
160769248
75.51



chr7
1282082
70.45



chr7
32467637
31.03



chr7
71801896
63.89



chr7
71801905
63.89



chr7
100946148
55.17



chr7
100946151
43.66



chr7
121957003
75.00



chr7
150038502
84.83



chr7
157477232
26.45



chr7
157477399
71.43



chr7
157477401
92.59



chr8
9764011
70.91



chr8
11566080
85.51



chr8
11566102
65.22



chr8
11566125
65.22



chr8
56015232
53.85



chr8
65281933
95.00



chr8
145105472
44.93



chr9
126780185
85.19



chr9
127239956
66.96



chr9
140772369
84.62







*Level values provided are the proportion (percentage) of reacted DCIS cancer cell proliferation DNA molecules having a uracil at the methylation site of interest. When amplicons generated from reacted DCIS cancer cell proliferation DNA molecules (e.g., by PCR) are used to assess the level of methylation, the values provided correspond to the proportion of amplicons having a thymidine at the nucleotide position that corresponds to the methylation site of interest.






In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA is of a candidate breast cancer patient. In embodiments, the subject is suspected of having IDC, invasive competent DCIS, invasive incompetent DCIS, or DCIS. In embodiments, the subject has IDC, invasive competent DCIS, invasive incompetent DCIS, or DCIS.


In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA is based on the level of uracil as set forth Table 2, in which the uracil level above the threshold identifies the DCIS cancer cell proliferation as invasive competent. In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA is based on a level of thymidine indicated in Table 2, in which the thymidine level above the threshold identifies the DCIS cancer cell proliferation as invasive competent. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method. Non-limiting examples of quantitation methods include sequencing and microarray methods.


In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA is based on the level of uracil as set forth Table 3, in which the uracil level above the threshold identifies the DCIS cancer cell proliferation as invasive incompetent. In embodiments, the method of detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA is based on a level of thymidine indicated in Table 3, in which the thymidine level above the threshold identifies the DCIS cancer cell proliferation as invasive incompetent. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the DCIS cancer cell proliferation is a specimen obtained by laser capture procedure from a biopsy or from surgical resection of a subject.


In embodiments, the subject has undergone lumpectomy or mastectomy, radiation therapy, chemotherapy, and administration of an active agent before the subject undergoes the method of detecting methylation or unmethylation of a breast cancer DNA of the present disclosure.


In embodiments, the method of the present disclosure includes a determination of prognosis for invasive ductal carcinoma.


In embodiments, the method of detecting DNA methylation level in DNA of breast lump may lead to changes in therapeutic regimen for treating the subject. In embodiments, a subject identified as having invasive competent DCIS with a method of the present disclosure may be treated with lumpectomy, mastectomy, radiation therapy, chemotherapy, hormonal therapy (such as but not limited to tamoxifen), or targeted therapy (such as but not limited to trastuzumab and everolimus), or a combination thereof. In embodiments, a subject identified as having invasive incompetent DCIS with a method of the present disclosure is not treated with lumpectomy, mastectomy, radiation therapy, chemotherapy, hormonal therapy, targeted therapy, or a combination thereof.


In embodiments, the active agent administered to a subject before or after detecting the level of methylation or unmethylation is: trastuzumab (e.g., Herceptin®), trastuzumab emtansine (e.g., Kadcyla®), lapatinib (e.g., Tykerb®), pertuzumab (e.g., Perjeta®), bevacizumab (e.g., Avastin®), tamoxifen (e.g., Nolvadex®), exemestane Aromasin®), anastrozole Arimidex), letrozole (e.g., Femara®), doxorubicin (e.g., Adriamycin®), epirubicin (e.g., Ellence®), cyclophosphamide (e.g., Cytoxan®), docetaxel (e.g., Taxotere®), paclitaxel (e.g., Taxol®), nab paclitaxel (e.g., Abraxane®), eribulin (e.g., Halaven®), everolimus (e.g., Afinitor®), palbociclib (e.g., Ibrance®), capecitabine (e.g., Xeloda®), ixabepilone (e.g., Ixempra®), methotrexate (e.g., Trexall®), or fluorouracil (also called 5-fluorouracil or 5-FU; e.g., Adrucil®).


Method of Determining Breast Cancer or Risk of Developing Invasive Ductal Carcinoma In Situ

Aspects further provide a method of detecting a risk of developing IDC in a subject who has DCIS. In embodiments, the method comprises

    • (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and
    • (ii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting the risk for developing IDC in the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject. The method involves:

    • (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule;
    • (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and
    • (iii) detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1; thereby diagnosing IDC or detecting risk of IDC in the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof, comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with the bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1; thereby diagnosing IDC or detecting risk of IDC in the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof, comprising (i) contacting a plurality of isolated DCIS cancer cell proliferation DNA molecules from the subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; and (ii) detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a plurality of methylation sites set forth in Table 1, thereby detecting the risk for IDC in the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof, comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with the bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) detecting the presence or absence of uracil in a reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the plurality DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof. The method includes: (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from said subject with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule, (ii) amplifying the reacted DCIS cancer cell proliferation DNA molecule thereby forming a reacted DCIS cancer cell proliferation DNA amplicon molecule, (iii) detecting the presence or absence of thymidine in a reacted DCIS cancer cell proliferation DNA amplicon molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated single stranded DNA.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof. The method includes: (i) isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule, (ii) contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule, (iii) amplifying the reacted DCIS cancer cell proliferation DNA molecule thereby forming a reacted DCIS cancer cell proliferation DNA amplicon molecule, (iv) detecting the presence or absence of thymidine in a reacted DCIS cancer cell proliferation DNA amplicon molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated single stranded DNA.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof, comprising (i) contacting a plurality of isolated DCIS cancer cell proliferation DNA molecules from said subject with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) amplifying the plurality of reacted DCIS cancer cell proliferation DNA molecules thereby forming a plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules, (iv) detecting one or more DCIS cancer cell proliferation DNA amplicon molecules within the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In an aspect, provided herein is a method of diagnosing IDC or detecting risk of IDC in a subject in need thereof, comprising (i) isolating a plurality of DCIS cancer cell proliferation DNA molecules from the DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) amplifying the plurality of reacted DCIS cancer cell proliferation DNA molecules thereby forming a plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules, (iv) detecting one or more DCIS cancer cell proliferation DNA amplicon molecules within the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In embodiments, detecting one or more DCIS cancer cell proliferation DNA amplicon molecules comprises detecting the level of one or more one or more DCIS cancer cell proliferation DNA amplicon molecules. In embodiments, detecting one or more DCIS cancer cell proliferation DNA amplicon molecules comprises detecting the level of reacted DCIS cancer cell proliferation DNA amplicon molecules in the plurality of reacted DCIS cancer cell proliferation DNA amplicon molecules having a thymidine at a methylation site set forth in Table 1, thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject.


In embodiments, detecting a level includes determining the number (e.g. quantitating) or molecules having, e.g., a thymidine or a uracil. In embodiments, detecting a level includes detecting the portion or proportion of a population or plurality of molecules having, e.g., a thymidine or a uracil.


In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated DCIS cancer cell proliferation DNA.


In embodiments, the method of determining diagnosing IDC or detecting risk of IDC in a subject includes selecting a subject that has or is at risk for having or developing diagnosing IDC or detecting risk of IDC. In embodiments, the subject (a) is a woman; (b) is about 30 to about 75 years old; (c) has at least one mutant breast cancer 1 (BRCA1), breast cancer 2 (BRCA2), Partner and localizer of BRCA2 (PALB2), phosphatase and tensin homolog (PTEN), or p53 allele; (d) has a parent, sibling, or child who has been diagnosed with breast cancer; (e) has had the non-cancerous breast diseases atypical ductal hyperplasia or lobular carcinoma in situ; (f) has had previous radiation treatment to the chest or a breast before the age of 30; (g) has received a combination hormone therapy with estrogen and progestin for at least five years; and/or (h) has or has had breast cancer.


In embodiments, the method includes detecting methylation or unmethylation at a plurality of methylation sites set forth in Table 1. In embodiments, the plurality of methylation sites comprises at least about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites comprises less than about 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 methylation sites. In embodiments, the plurality of methylation sites is about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites includes one, two, or more methylation sites set forth in Table 1 and no other methylation sites.


In embodiments, a method provided herein is practiced for a subject more than once over time. In embodiments, methylation or unmethylation of DCIS cancer cell proliferation DNA from a subject is assessed using a method provided herein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times. In embodiments, the method is repeated at least once every 4, 6, 8, 12 or 18 months, or at least once every 2, 3, 4, or 5 more years.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining alteration in methylation at a plurality of methylation sites set forth in Table 1. In embodiments, the method comprises: (i) isolating DNA from multiple cells of a DCIS cancer cell proliferation of the subject thereby forming a plurality of isolated DCIS cancer cell proliferation DNA molecules, (ii) contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfate salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules, (iii) detecting the proportion of DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes alteration, i.e., increase or loss of uracil level at plurality of methylation sites. In embodiments, the method of determining a diagnosing IDC or detecting risk of IDC in a subject in need thereof includes alteration, i.e., increase or loss of thymidine level at plurality of methylation sites.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a uracil level which is above a threshold as set forth in Table 2. In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a thymidine level which is above a threshold indicated in Table 2. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a uracil level which is below a threshold as set forth in Table 3. In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a thymidine level which is below a threshold indicated in Table 3. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of diagnosing IDC or detecting risk of IDC involves a candidate IDC patient. In embodiments, the subject is suspected of having IDC or IC-DCIS. In embodiments, the subject has IC-DCIS.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a uracil level in which a threshold above the threshold set forth in Table 2 identifies the DCIS cancer cell proliferation as IC-DCIS or IDC. In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a thymidine level in which a threshold above the threshold indicated in Table 2 identifies the DCIS cancer cell proliferation as a IC-DCIS or IDC. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a uracil level in which a threshold above the threshold set forth in Table 3 identifies the DCIS cancer cell proliferation as II-DCIS. In embodiments, the method of determining a diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a thymidine level in which a threshold above the threshold indicated in Table 3 identifies the DCIS cancer cell proliferation as II-DCIS. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a uracil level in DNA of a DCIS cancer cell proliferation specimen obtained by biopsy or by surgical resection of a subject. In embodiments, the method of diagnosing IDC or detecting risk of IDC in a subject in need thereof includes determining a thymidine level in DNA of a DCIS cancer cell proliferation specimen obtained by biopsy or by surgical resection of a subject.


Aspects provide methods of determining a prognosis or selecting a treatment for a subject comprising detecting IDC or a risk of IDC in the subject. In embodiments, the subject has previously undergone treatment for breast cancer. In embodiments, the subject was in remission after the previous treatment for breast cancer. In embodiments, breast cancer tissue has been resected from the subject. In embodiments, breast cancer tissue has been resected from the subject, but the subject is not in remission for breast cancer.


In embodiments, the method of diagnosing IDC or detecting risk of IDC may lead to a prognostic assessment of the subject. In embodiments, the method of diagnosing IDC or detecting risk of IDC may lead to a change or a particular choice or set of choices in the therapeutic regimen for treating the subject. For example, a diagnosis of IDC of risk of IDC may lead to a different treatment regimen (such as surgery, hormone therapy, radiation therapy, chemotherapy, targeted therapy, or a combination thereof) compared to a subject who is not diagnosed with IDC or a risk of IDC (such as monitoring or a treatment other than surgery, hormone therapy, radiation therapy, chemotherapy, or targeted therapy). In embodiments, a method of diagnosing IDC or detecting risk of IDC may lead to a determination of susceptibility (i.e., likelihood to respond) to treatment such as surgery, hormone therapy, radiation therapy, chemotherapy, targeted therapy, or a combination thereof. In embodiments a subject identified as having IDC or IDC risk may be treated with surgery, hormone therapy, radiation therapy, chemotherapy, targeted therapy, or any combination thereof. In embodiments, a subject identified as having IDC or being at risk of developing IDC according to a method disclosed herein is advised and/or directed to receive additional screening and/or treatment for breast cancer.


In embodiments, a subject having IDC or at risk of developing IDS is administered an active agent such as trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.


In embodiments, the method of determining an invasive ductal carcinoma may lead to changes in therapeutic regimen (e.g., treatment and/or dose) for treating the subject. In embodiments a subject identified as having IDC with a method disclosed herein may be treated with trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.


In embodiments, the active agent administered to a subject after determining IDC is: trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.


Method of Treating Breast Cancer

The present disclosure provides a method of treating breast cancer in a subject by administering to the subject an active agent for treating breast cancer (such as IDC or IC-DCIS), in which the subject is identified for treatment by a method disclosed herein.


The present disclosure provides a method of treating breast cancer in a subject by administering to the subject an active agent for treating breast cancer (such as IDC or IC-DCIS), in which the subject is identified for treatment by a method including contacting an isolated breast cellular proliferation DNA with sodium bisulfite thereby forming a reacted breast cellular proliferation DNA; and detecting the presence or absence of uracil in the reacted breast cellular proliferation DNA at a methylation site set forth in Table 1; thereby determining ductal carcinoma invasion in the subject. In embodiments, the DCIS is not present as a mass or a lump. In embodiments, the DCIS is found as a mammographic abnormality, such as a microcalcification in a ductal pattern.


In an aspect, provided herein is a method of treating breast cancer in a subject by administering to the subject an active agent for treating breast cancer (such as IDC or IC-DCIS), in which the subject is identified for treatment by a method including isolating DNA from a breast cellular proliferation of the subject thereby forming isolated breast cellular proliferation DNA; contacting the isolated breast cellular proliferation DNA with sodium bisulfite thereby forming a reacted breast cellular proliferation DNA; and detecting the presence or absence of uracil in the reacted breast cellular proliferation DNA at a methylation site set forth in Table 1; thereby determining ductal carcinoma invasion in the subject.


In embodiments, the method of treating a ductal carcinoma in a subject in need thereof includes determining alteration in methylation at a plurality of methylation sites set forth in Table 1.


In embodiments, the method of treating a ductal carcinoma in a subject in need thereof includes alteration which includes increase or loss of uracil level at plurality of methylation sites.


In an aspect, included herein is a method of treating breast cancer in a subject by administering to the subject an active agent for treating breast cancer, in which the subject is identified for treatment by a method including contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1; thereby detecting the breast cancer in the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated DCIS cancer cell proliferation DNA.


Also provided herein is a method of treating breast cancer in a subject by administering to the subject an active agent for treating breast cancer, in which the subject is identified for treatment by a method including isolating a DCIS cancer cell proliferation DNA molecule from a DCIS cancer cell proliferation of the subject thereby forming an isolated DCIS cancer cell proliferation DNA molecule; contacting the isolated DCIS cancer cell proliferation DNA molecule with a bisulfite salt (such as sodium bisulfite) thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1; thereby detecting the breast cancer in the subject. In embodiments, contacting the isolated DCIS cancer cell proliferation DNA with a bisulfite salt comprises adding a solution comprising the bisulfite salt to a solution comprising the isolated DCIS cancer cell proliferation DNA.


In embodiments, the method includes detecting methylation or unmethylation at a plurality of methylation sites set forth in Table 1. In embodiments, the plurality of methylation sites comprises at least about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites comprises less than about 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 methylation sites. In embodiments, the plurality of methylation sites is about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites includes two or more methylation sites set forth in Table 1 and no other methylation sites.


In embodiments, a method provided herein is practiced for a subject more than once over time. In embodiments, methylation or unmethylation of DCIS cancer cell proliferation DNA from a subject is assessed using a method provided herein at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more times. In embodiments, the method is repeated at least once every 4, 6, 8, 12 or 18 months, or at least once every 2, 3, 4, or 5 more years.


In embodiments, the method of treating breast cancer in a subject in need thereof includes determining alteration in methylation at a plurality of methylation sites set forth in Table 1.


In embodiments, the method of treating breast cancer in a subject in need thereof includes alteration which includes increase or loss of uracil level at plurality of methylation sites.


In embodiments, the method of treating breast cancer in a subject in need thereof includes determining a uracil level which is above a threshold as set forth in Table 2. In embodiments, the method of treating breast cancer in a subject in need thereof includes determining a thymidine level which is above a threshold indicated in Table 2. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of treating breast cancer in a subject in need thereof includes determining a uracil level which is below a threshold as set forth in Table 3. In embodiments, the method of treating breast cancer in a subject in need thereof includes determining a thymidine level which is below a threshold indicated in Table 3. In embodiments, the level is the proportion of molecules (e.g., in a plurality of reacted DCIS cancer cell proliferation DNA molecules or a plurality of reacted DCIS cancer cell proliferation DNA amplicons) having a uracil or thymidine as determined by a quantitation method.


In embodiments, the method of treating breast cancer includes administering surgery, radiation therapy, chemotherapy, targeted therapy, or hormone therapy, before the detection of IDC.


In embodiments, the method of treating breast cancer includes administering an active agent such as trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil, before the detection of IDC.


Target Sites for Methylation Level of Breast Lump

In embodiments, the present disclosure includes a deoxyribonucleic acid 5 to 100 nucleotides in length including a uracil-containing sequence identical to at least a 5 contiguous nucleotide sequence within a sequence including SEQ ID NO:1 to SEQ ID NO: 242.


Included herein are about 300 bp length sequences which are surrounding the target sites (e.g., 149 or 150 bp from each site). The sequences are after bisulfite conversion. Therefore “C” in the non-CpG context becomes “U”, and C in the CpG context is designated as R (either “U” either “C”). The DNA strands (sense and antisense) are no longer complementary after bisulfite conversion. Therefore, each DNA strand are identified here with their unique sequence, and designated as “forward” and “reverse”, respectively.


In embodiments, the present disclosure includes a DNA molecule which includes a methylation site set forth in Table 1.


Also provided herein is a DNA molecule comprising a nucleotide sequence that is identical to 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, or 190-200 of contiguous nucleotide sequence of the sequence including a sequence of SEQ ID NO:1 to SEQ ID NO: 242. Also included is a plurality of such DNA molecules.


In embodiments, included herein is a plurality of DNA molecules comprising methylation sites set forth in Table 1 are methylated or unmethylated. A plurality of bisulfite-converted DNA molecules comprising methylation sites set forth in Table 1 are also included. In embodiments, the plurality of methylation sites comprises at least about 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 80, 90, 100, 110, 120, 130, or 140 methylation sites. In embodiments, the plurality of methylation sites comprises between 1-50, 50-100, 100-250, 100-300, 100-400, 100-500, 100-550, 250-550, or 350-500 methylation sites (e.g., methylation sites included herein and others). In embodiments, the plurality of methylation sites does not comprise a methylation site other than the sites listed in Table 1.


SEQ ID NO:1 to SEQ ID NO:242 are sequences that include the target sites (i.e., methylation sites of interest). The sequences provided are as modified after bisulfite conversion. Therefore “C” in the non-CpG context becomes “U”, and C in the CpG context is designated as R or X (either “U” either “C”), where X is the target site. The DNA strands (sense and antisense) are no longer complementary after bisulfite conversion. Therefore, each DNA strand is identified with its unique sequence, and is designated as “forward” and “reverse” respectively, in Table 1.


The sequences listed in Table 1 are provided below with their respective sequence identification number.









TABLE 4







Sequences Listed in Table 1








SEQ ID



NO:
Sequence





  1
GGUURGRGTGGUTUAGUTURGUUUUAGGAAAUTTTTRGRGUAGUUUURGUTUUATGRG



UUUUUAUUUAGTUUTTUTTRGGGGURGUUUUUTUUUUAAAGTAGUTUTURGGGTUUAU



TGGGRGUUUURGTAAURGGGTRGGAAUUTRGAAXGGUTTRGRGTGUUATURGGTTAUU



UTGGUAAUAUUATURGGRGGRGUURGGRGGTUUAATUUTAGUUTGRGGUUTUTUTRGA



GUUTTTRGUAAGGTGGGGAURGGGARGRGAURGGGGATGGGGAAGGGGGUTGUAGGAG



GUUURGUUTG





  2
UAGGRGGGGUUTUUTGUAGUUUUUTTUUUUATUUURGGTRGRGTUURGGTUUUUAUUT



TGRGAAAGGUTRGAGAGAGGURGUAGGUTAGGATTGGAURGURGGGRGURGURGGATG



GTGTTGUUAGGGTAAURGGATGGUARGRGAAGUXGTTRGAGGTTURGAUURGGTTARG



GGGGRGUUUAGTGGAUURGGAGAGUTAUTTTGGGGAGGGGGRGGUUURGAAGAAGGA



UTGGGTGGGGGRGUATGGAGRGGGGGUTGRGRGAAAAGTTTUUTGGGGRGGAGUTGAG



UUARGRGGGUU





  3
TTTTUTTTTTUTTTTUTTTTTTUUTTAAGGUAGAGTUTGGTTUTGTRGUUUAGAGAGRGGT



AAUARGATUTUAGUTUAUTGUAAUUTUTGUUTUURGGGTTUAAGUAATTTTUATGUUTU



AGGUTUUTGAGTAGUTGGAGTTAUAGGUAXGTGUTAUUATGUURGGUTAATGTTTTGTA



TTTTTAGTAGAGAUAGGGTTTUAUUATGTTGGUTGGGUTGGTUTTGAAUTUUUTAUUTU



AAGRGATUTGUTUAUUTUAGAUTUUUAAAATGUTGGGATTAUAGGTGTGAGUUAUUAU



AUTG





  4
UAGTGTGGTGGUTUAUAUUTGTAATUUUAGUATTTTGGGAGTUTGAGGTGAGUAGATRG



UTTGAGGTAGGGAGTTUAAGAUUAGUUUAGUUAAUATGGTGAAAUUUTGTUTUTAUTA



AAAATAUAAAAUATTAGURGGGUATGGTAGUAXGTGUUTGTAAUTUUAGUTAUTUAGG



AGUUTGAGGUATGAAAATTGUTTGAAUURGGGAGGUAGAGGTTGUAGTGAGUTGAGAT



RGTGTTAURGUTUTUTGGGRGAUAGAAUUAGAUTUTGUUTTAAGGAAAAAAGAAAAGA



AAAAGAAAA





  5
RGUUUURGGUURGUUATGGURGRGRGUUURGGAURGUTUTGGUTTUTGGGUUTGARGT



TGTGRGRGUTGGGRGGGGGRGGUUURGGUUTGRGAUUUURGUURGGUTGTUUUUAGRG



ARGTUTGGGRGRGRGRGAGRGURGGGARGTGUAGXGRGAGATUUTGGRGGTGUTRGGG



UTAUURGGGRGGUUURGGUUURGRGRGUUAUURGURGUUTUURGGUTGUURGRGTURG



RGURGUTUTTUATGUTGGAUUTGTAUUARGUUATGGUTGGRGARGARGARGAGGARGG



RGRGUURGRG





  6
RGRGGGRGRGURGTUUTRGTRGTRGTRGUUAGUUATGGRGTGGTAUAGGTUUAGUATGA



AGAGRGGRGRGGARGRGGGUAGURGGGAGGRGGRGGGTGGRGRGRGGGGURGGGGUR



GUURGGGTAGUURGAGUAURGUUAGGATUTRGXGUTGUARGTUURGGRGUTRGRGRGR



GUUUAGARGTRGUTGGGGAUAGURGGGRGGGGGTRGUAGGURGGGGURGUUUURGUU



UAGRGRGUAUAARGTUAGGUUUAGAAGUUAGAGRGGTURGGGGRGRGRGGUUATGGR



GGGURGGGGGRG





  7
GTUAGRGRGRGUUATGGATUAAGATGATGAATRGUTGRGGARGGRGUAGATGRGGGRG



GUURGRGGURGGGUUUURGGGTAGGGGTGGGAGGTGGAGGGGGURGRGGGGGGUURG



GURGURGUUATTAAUTURGGAATTAGGTUTAAGUXGUUUAUUAUUUAGUUAUTGUUUR



GGGGAGRGUUAGURGTTGGGGRGGGAGRGGGUUUAGGATGGGGAUTGAGAUURGRGT



UUUUUAUURGAAUUTGGAUUTAGUUTUUTUTGAARGUAGAGGGUAGTGGGURGUURG



GAAGGGGRGGGGA





  8
TUUURGUUUUTTURGGGRGGUUUAUTGUUUTUTGRGTTUAGAGGAGGUTAGGTUUAGG



TTRGGGTGGGGGARGRGGGTUTUAGTUUUUATUUTGGGUURGUTUURGUUUUAARGGU



TGGRGUTUUURGGGGUAGTGGUTGGGTGGTGGGXGGUTTAGAUUTAATTURGGAGTTA



ATGGRGGRGGURGGGUUUUURGRGGUUUUUTUUAUUTUUUAUUUUTAUURGGGGGUU



RGGURGRGGGURGUURGUATUTGRGURGTURGUAGRGATTUATUATUTTGATUUATGGR



GRGRGUTGAU





  9
UAUURGGAUUTURGARGGUUTRGGTGTTRGUAGGRGRGGGATRGGUUUUAGUTUUTGR



GUUTGUUTUAGGUTRGGGUURGGGUURGGGUUURGUAGGUUTGUURGUUTTUUTGGGR



GRGGAGUTGGGUTGRGUUAAAGUUTTUTARGRGGXGTUUUTGAGTUUTUURGUAGURG



GUAURGRGGRGGGTUTGUUUAURGUAUTTUTGRGUUAGGGUUTUAAGARGGARGRGGG



RGGTGGTGUAGGRGGRGGGGGRGURGGGGUAGGGUAGAGGUUTTUUTTUTUTATAGAU



UAUATUATGG





 10
UUATGATGTGGTUTATAGAGAAGGAAGGUUTUTGUUUTGUUURGGRGUUUURGURGUU



TGUAUUAURGUURGRGTURGTUTTGAGGUUUTGGRGUAGAAGTGRGGTGGGUAGAUUR



GURGRGGTGURGGUTGRGGGAGGAUTUAGGGAXGURGRGTAGAAGGUTTTGGRGUAGU



UUAGUTURGRGUUUAGGAAGGRGGGUAGGUUTGRGGGGUURGGGUURGGGUURGAGU



UTGAGGUAGGRGUAGGAGUTGGGGURGATUURGRGUUTGRGAAUAURGAGGURGTRGG



AGGTURGGGTG





 11
ATUUTUAUTTTGTTRGUTUUTUAGTRGTUUAGGRGGATTUUTTTTTRGUUAGGTAAGGUT



GGUURGGGTGUATGGGGUURGGRGTGUUUTGGGTAAGGUTGGUUUAGGRGRGTGGGGT



URGGGGRGRGURGGGTAAGGUTGGGUUAGGRGXGTGGGGTURGGGGTGUUURGGGTAA



GGUTGGTUUAGGGGRGTGGGGTURGGGGTGUUURGGGTAAGGUTGGTUTAGGRGRGTG



GGGTURGUAGRGUUUUAAGTAAGGUTGGTUUAGGAGRGTGAGGTUUAGGGTGUUURGG



ATAAGGUT





 12
AGUUTTATURGGGGUAUUUTGGAUUTUARGUTUUTGGAUUAGUUTTAUTTGGGGRGUT



GRGGAUUUUARGRGUUTAGAUUAGUUTTAUURGGGGUAUUURGGAUUUUARGUUUUT



GGAUUAGUUTTAUURGGGGUAUUURGGAUUUUARGXGUUTGGUUUAGUUTTAUURGG



RGRGUUURGGAUUUUARGRGUUTGGGUUAGUUTTAUUUAGGGUARGURGGGUUUUAT



GUAUURGGGUUAGUUTTAUUTGGRGAAAAAGGAATURGUUTGGARGAUTGAGGAGRGA



AUAAAGTGAGGAT





 13
UAAGAGATTAGUAUAATAGATUTUTAAURGAGGGGAAGRGTTGUTTTTUARGUTARGRG



URGTAATTAATGGTATGAATUAATTAATTTGAUTTTTATTGTGTRGAAGGAAAAAAGRGU



AAUAAATGGAAURGGUAGUTGGGAGTTGTTXGTUUTUUAUUUUUTTUUUUAGGGAGGT



TUUAAGGAGAUAURGGGGAATGGARGGATUAGGUTGGGURGTGGUAGAGGGAGGGTA



GGAGGUAGRGAUUAGUAGRGTGGAGGGAGTUUAGAGAGUTAGUUTUTGRGGARGGRG



GAATRGAAA





 14
TTTRGATTURGURGTURGUAGAGGUTAGUTUTUTGGAUTUUUTUUARGUTGUTGGTRGU



TGUUTUUTAUUUTUUUTUTGUUARGGUUUAGUUTGATURGTUUATTUUURGGTGTUTUU



TTGGAAUUTUUUTGGGGAAGGGGGTGGAGGAXGAAUAAUTUUUAGUTGURGGTTUUAT



TTGTTGRGUTTTTTTUUTTRGAUAUAATAAAAGTUAAATTAATTGATTUATAUUATTAAT



TARGGRGRGTAGRGTGAAAAGUAARGUTTUUUUTRGGTTAGAGATUTATTGTGUTAATU



TUTTG





 15
UATGGGAAAGUAAAATTAAGGGUAAUATTGAGGAAGUTUATTAATATTTAGTTTAGAAG



ATGUAAAGGGTTUTTURGRGAAUUTGGAAGAGUUUUURGGGUTRGUUTUTRGURGRGG



TUUUAUAUTTGUUTGAUUTUAAUUAUAUTUTUUXGGTUUAGGUUURGUTGGAGAARGT



UUUAURGAUTURGGGGAUAGAAAGGURGTTTATGTAAAARGARGTTTTTUUTATTTRGU



UTUUUAUUUTUATGUAAATTTTGATTTTUAAUTUTTUUAAUUUTTURGUAUUUTGAAAU



AAAUUTU





 16
GAGGTTTGTTTUAGGGTGRGGAAGGGTTGGAAGAGTTGAAAATUAAAATTTGUATGAGG



GTGGGAGGRGAAATAGGAAAAARGTRGTTTTAUATAAARGGUUTTTUTGTUUURGGAGT



RGGTGGGARGTTUTUUAGRGGGGUUTGGAUXGGGAGAGTGTGGTTGAGGTUAGGUAAG



TGTGGGAURGRGGRGAGAGGRGAGUURGGGGGGUTUTTUUAGGTTRGRGGAAGAAUUU



TTTGUATUTTUTAAAUTAAATATTAATGAGUTTUUTUAATGTTGUUUTTAATTTTGUTTT



UUUATG





 17
GAAUTTGRGUTUUAGGAARGAUTGRGUARGTGGRGRGGRGGTGGRGGRGRGGAGGAUU



UAGGRGAAGGRGAAGGRGAAGGRGAAGGRGUAGGRGAAGGRGAAGGRGUAGGRGGRG



GGAAGUTARGUUAAAGURGURGURGURGURGUTGUXGGGGTUTGUUUAUAGUUTGGU



AURGGGRGGUAGRGGTGGRGGRGGRGGARGRGGUAGGTGUAGRGAURGRGAAGUURG



GGRGGURGRGRGUUUTRGGAAUTUUUURGRGGUTUURGAGGTGGUAGURGRGRGUUAU



TRGGUAGUUURGT





 18
ARGGGGUTGURGAGTGGRGRGRGGUTGUUAUUTRGGGAGURGRGGGGGAGTTURGAGG



GRGRGRGGURGUURGGGUTTRGRGGTRGUTGUAUUTGURGRGTURGURGURGUUAURG



UTGURGUURGGTGUUAGGUTGTGGGUAGAUUUXGGUAGRGGRGGRGGRGGRGGUTTTG



GRGTAGUTTUURGURGUUTGRGUUTTRGUUTTRGUUTGRGUUTTRGUUTTRGUUTTRGU



UTTRGUUTGGGTUUTURGRGURGUUAURGURGRGUUARGTGRGUAGTRGTTUUTGGAGR



GUAAGTTU





 19
GUAURGUTTGUUTTRGUTAGAGGAAGAAGAGARGGUUUTGAGRGUAGUATUAUUTRGG



URGGTTGGAGTUTGUURGGUTGURGUUAGGGGGTGATGRGUUUTUAUUTTTUUTUUAG



GATGUURGGGATUUUAAGGAGGGTRGTGGGTUTUXGRGTUUUAAUUTGGAGUUTTGGU



URGGGATGATAUUUTTGGUUAURGGUAGUAGGTUTUTGGTGGUUAUUTGARGUTTGAG



UATTTUTTUTGRGGAUUUTGGGAAGTUUTAUUUUTTGGAUTUATAAAATATUTTGGTTG



TUUAAAGGT





 20
AUUTTTGGAUAAUUAAGATATTTTATGAGTUUAAGGGGTAGGAUTTUUUAGGGTURGUA



GAAGAAATGUTUAAGRGTUAGGTGGUUAUUAGAGAUUTGUTGURGGTGGUUAAGGGTA



TUATUURGGGUUAAGGUTUUAGGTTGGGARGXGGAGAUUUARGAUUUTUUTTGGGATU



URGGGUATUUTGGAGGAAAGGTGAGGGRGUATUAUUUUUTGGRGGUAGURGGGUAGA



UTUUAAURGGURGAGGTGATGUTGRGUTUAGGGURGTUTUTTUTTUUTUTAGRGAAGGU



AAGRGGTGU





 21
UTGURGUUTRGUURGRGGGAUTUUUTGGAGGAGUTURGRGUUUTUUTUTUUATUUTUA



GAGUTGURGGGRGGUTGGAGUAGUAGRGRGGGAGRGUTAGGGGUARGGGAGRGUAGT



UUUTGTGGAGTRGUTGRGGGTURGRGTGGRGTGUUXGGGGGAUUUTAAAGAURGTRGG



GTGGGGGUTGAGGGRGAGGGGRGGGAUAURGGGGURGRGGGRGGGGRGUAUURGGAA



UUURGAUAGUTGTGTUTTGGTGGAGUTGTGGAUTGRGUURGURGAUTUUUARGGURGG



GGRGGRGUTGAA





 22
TTUAGRGURGUUURGGURGTGGGAGTRGGRGGGRGUAGTUUAUAGUTUUAUUAAGAUA



UAGUTGTRGGGGTTURGGGTGRGUUURGUURGRGGUUURGGTGTUURGUUUUTRGUUU



TUAGUUUUUAUURGARGGTUTTTAGGGTUUUUXGGGUARGUUARGRGGAUURGUAGRG



AUTUUAUAGGGAUTGRGUTUURGTGUUUUTAGRGUTUURGRGUTGUTGUTUUAGURGU



URGGUAGUTUTGAGGATGGAGAGGAGGGRGRGGAGUTUUTUUAGGGAGTUURGRGGGR



GAGGRGGUAG





 23
TGTGGTGUTGUTTGRGUTGURGGTGGUUTGGGGTGAGAGGRGGGRGGGRGTGGGGAGG



RGUURGGGRGGARGAGGAAUURGGGGUUURGUAGAGAAUTRGRGTGUAGRGUTGAGUT



GRGUTGUTUTGRGRGUURGGGTURGAAGGUAGRGXGATGGGTGGGUTGAGRGRGRGAU



URGGUAGGGRGGRGGGTGTAGGATUUTTUTGRGUAUTGGAGAUUUTRGUTGUTTUTGG



GTAAGRGTGGAGTTUUUAGGTGUAGGGGUTTAAGTRGTGARGAGRGUAGTGGAAGGRG



UAGATGUTGA





 24
TUAGUATUTGRGUUTTUUAUTGRGUTRGTUARGAUTTAAGUUUUTGUAUUTGGGAAUTU



UARGUTTAUUUAGAAGUAGRGAGGGTUTUUAGTGRGUAGAAGGATUUTAUAUURGURG



UUUTGURGGGTRGRGRGUTUAGUUUAUUUATXGRGUTGUUTTRGGAUURGGGRGRGUA



GAGUAGRGUAGUTUAGRGUTGUARGRGAGTTUTUTGRGGGGUUURGGGTTUUTRGTUR



GUURGGGRGUUTUUUUARGUURGUURGUUTUTUAUUUUAGGUUAURGGUAGRGUAAG



UAGUAUUAUA





 25
GUTTUUURGRGTUUTURGGGUURGGGURGUUUTUUTUURGUAUAGTGRGGAGUAGGGA



GGUUURGRGUUTRGAUUAUURGRGUURGAGRGTURGRGUUTUUTUUTURGUTUTGUAG



GRGGGGAURGUURGGRGUTRGGUAUURGGUAGXGRGGUUUUUTUUAGUUUURGGUTU



URGGUAGUAGAAGUAGAAGGUAGRGUUAGGGGURGURGURGURGURGAGUTURGRGG



GGUTRGGGAGURGGUUURGGRGAGGAGGRGRGGAAUUATGGURGATGGGGGRGAGGG



RGAAGARGAGATU





 26
GATUTRGTUTTRGUUUTRGUUUUUATRGGUUATGGTTURGRGUUTUUTRGURGGGGURG



GUTUURGAGUUURGRGGAGUTRGGRGGRGGRGGRGGUUUUTGGRGUTGUUTTUTGUTT



UTGUTGURGGGAGURGGGGGUTGGAGGGGGURGXGUTGURGGGTGURGAGRGURGGGR



GGTUUURGUUTGUAGAGRGGAGGAGGAGGRGRGGARGUTRGGGRGRGGGTGGTRGAGG



RGRGGGGUUTUUUTGUTURGUAUTGTGRGGGAGGAGGGRGGUURGGGUURGGAGGARG



RGGGGAAGU





 27
GUUUUUUAGGAUTGGRGGUUURGGGUUURGUTUUUAUUUAUUUAUUTARGUAGGGGG



RGTUUTGUTUAGGUAATTUUTUURGRGRGUUURGTRGGGGAURGGGRGGGGARGGGAG



AAGGAAAAGGGUUUUTGGUTURGGGAUUAGGGUTUXGGAGGGTGURGGGRGGGGAGR



GGAAUAGGGAARGGGUTGGTGGRGGUUUUAAGRGGGAGGGARGGAURGAUARGRGGU



UUUUTGGRGGUUTTGRGAUTRGURGAUUTGRGGAAUUTRGTRGURGUUUTUAUAGUUU



RGRGGUUAURGUU





 28
GGRGGTGGURGRGGGGUTGTGAGGGRGGRGARGAGGTTURGUAGGTRGGRGAGTRGUA



AGGURGUUAGGGGGURGRGTGTRGGTURGTUUUTUURGUTTGGGGURGUUAUUAGUUR



GTTUUUTGTTURGUTUUURGUURGGUAUUUTUXGGAGUUUTGGTUURGGAGUUAGGGG



UUUTTTTUUTTUTUURGTUUURGUURGGTUUURGARGGGGRGRGRGGGAGGAATTGUUT



GAGUAGGARGUUUUUTGRGTAGGTGGGTGGGTGGGAGRGGGGUURGGGGURGUUAGTU



UTGGGGGGU





 29
AAAATGTTTGGUAUUTUATTGATUATGTTTAGUTGATUATUUUTGGGGUTGGGGAGGGU



AGUUAGGUUAGUUAGRGRGUAGGGUAGGGGRGGGRGGAGGAGAAGUUTGGAGGAGGU



TGARGGGAAGUUTRGAGGAGGGGUAUUURGGTUXGAGGUTGGGUTGGGAARGUTGUTU



UAUAGRGUTGTGAGTGGURGGGAGGAUTTAURGUUAUUAURGUTGUUTUTGGGGUATU



TUUUAUURGUURGGGATGUTGURGUUTUUTTTUUAUAATGUUTGTTGATUAATTTTTTA



ATUAAGAAG





 30
UTTUTTGATTAAAAAATTGATUAAUAGGUATTGTGGAAAGGAGGRGGUAGUATUURGG



GRGGGTGGGAGATGUUUUAGAGGUAGRGGTGGTGGRGGTAAGTUUTUURGGUUAUTUA



UAGRGUTGTGGAGUAGRGTTUUUAGUUUAGUUTXGGAURGGGGTGUUUUTUUTRGAGG



UTTUURGTUAGUUTUUTUUAGGUTTUTUUTURGUURGUUUUTGUUUTGRGRGUTGGUTG



GUUTGGUTGUUUTUUUUAGUUUUAGGGATGATUAGUTAAAUATGATUAATGAGGTGUU



AAAUATTTT





 31
GAGUUUAGTTRGUATUTUTAUAGRGUUAUAUATUTAGGUUAGUUUAGUTURGGTUUUA



GTRGGTUTUTGRGGAGUUUUAGUUAGUTURGRGTUTTGGTUUTGGUTTGRGGGTGGUAU



AUAGAUAAGRGAURGGGGTGGUURGGAGAGGTXGTGUUUUTGGUTGRGAGARGARGRG



AUAGUAGGGRGUTURGGGGGURGUAGRGGRGTRGAAGGRGGTUUUTGGGGGRGGGGUT



UTGGUARGAGGGGGAUUUTUURGGGTUAAGTTUAUAGAGGRGGAGGGGUUTGGGUTGR



GUUUUAGAG





 32
UTUTGGGGRGUAGUUUAGGUUUUTURGUUTUTGTGAAUTTGAUURGGGAGGGTUUUUU



TRGTGUUAGAGUUURGUUUUUAGGGAURGUUTTRGARGURGUTGRGGUUUURGGAGRG



UUUTGUTGTRGRGTRGTUTRGUAGUUAGGGGUAXGAUUTUTURGGGUUAUUURGGTRG



UTTGTUTGTGTGUUAUURGUAAGUUAGGAUUAAGARGRGGAGUTGGUTGGGGUTURGU



AGAGAURGAUTGGGAURGGAGUTGGGUTGGUUTAGATGTGTGGRGUTGTAGAGATGRG



AAUTGGGUTU





 33
GRGGRGGGGGUTGUTUTGGGRGRGUUURGGGRGAAGTGRGUUUAGTUTURGGUUURGG



UUUUTRGGRGRGUURGAUTTUURGGURGUUUUTGAGUUUAGUAGURGRGGGTUURGGG



ATRGGUTAAGAGTAGUTGUAARGUUTRGURGGAXGGAGTUUTTTUUTTTUURGGGARGU



TGGGUUATGAGUTURGRGGUUAUUTGAGGUAUAGGGGAGTUTGUTRGGUUAGGAUAGU



UTUUURGAAGTUURGTGUUUTRGUUTUTGUAUTGRGGGARGUUAGRGUTRGGUUUTGG



RGGAGGRGT





 34
ARGUUTURGUUAGGGURGAGRGUTGGRGTUURGUAGTGUAGAGGRGAGGGUARGGGAU



TTRGGGGAGGUTGTUUTGGURGAGUAGAUTUUUUTGTGUUTUAGGTGGURGRGGAGUT



UATGGUUUAGRGTUURGGGAAAGGAAAGGAUTUXGTURGGRGAGGRGTTGUAGUTAUT



UTTAGURGATUURGGGAUURGRGGUTGUTGGGUTUAGGGGRGGURGGGAAGTRGGGRG



RGURGAGGGGURGGGGURGGAGAUTGGGRGUAUTTRGUURGGGGRGRGUUUAGAGUA



GUUUURGURGU





 35
AAATGGTGAAATATUUTUTAAAAATATGTTUUUUAAGGUUAAUTTRGRGGUTGGTAGUU



UUTTURGARGUUTTTGUUTUUUAGAAAATUAUAAUAAAGRGATRGGAAATTUAGUUAR



GGTUURGGGAAGAAGGAGTAGUAGTGAGGUUUXGGAAUUUAUTGRGGURGAAAUTGU



UATGUTUTUTTTAAUUAAAATAAAAAAGATAAGAAGAAGAAGTAAAAUUUTTTAATAU



ATUAAATATARGGAATTTTAATUTTTAAAGRGATAUATTGTUTATTATTTTAGTAUATGA



RGTAAAUU





 36
GGTTTARGTUATGTAUTAAAATAATAGAUAATGTATRGUTTTAAAGATTAAAATTURGTA



TATTTGATGTATTAAAGGGTTTTAUTTUTTUTTUTTATUTTTTTTATTTTGGTTAAAGAGA



GUATGGUAGTTTRGGURGUAGTGGGTTUXGGGGUUTUAUTGUTAUTUUTTUTTUURGGG



AURGTGGUTGAATTTURGATRGUTTTGTTGTGATTTTUTGGGAGGUAAAGGRGTRGGAA



GGGGUTAUUAGURGRGAAGTTGGUUTTGGGGAAUATATTTTTAGAGGATATTTUAUUAT



TT





 37
GTGGUAGGGGTAAGGRGUTTUUATTTGUUTGAAAGGUTUTGUUUTAUAUAAAAATAGA



AAUTGGTTGUATGUATGUAAAGGATGGUTGAGTGGTAATAAUTGGAGGAAUTGRGGAU



AGURGGAGGUTGRGGGGURGGAGGGTUTTTGGGTXGGTAUTUTGUUUUAURGGAGGTU



UAUAGGGUUTUUTUUATUUAGGGTGGGURGGUAAGTUTGUUTATUAGRGATUTGGGUA



AGUUTGUTAUTTTTTATGAUUTUAUTTGURGAAAUTUAAGUUARGUUTGGGTAAGTAUA



TTUTGUAUA





 38
TGTGUAGAATGTAUTTAUUUAGGRGTGGUTTGAGTTTRGGUAAGTGAGGTUATAAAAAG



TAGUAGGUTTGUUUAGATRGUTGATAGGUAGAUTTGURGGUUUAUUUTGGATGGAGGA



GGUUUTGTGGAUUTURGGTGGGGUAGAGTAUXGAUUUAAAGAUUUTURGGUUURGUA



GUUTURGGUTGTURGUAGTTUUTUUAGTTATTAUUAUTUAGUUATUUTTTGUATGUATG



UAAUUAGTTTUTATTTTTGTGTAGGGUAGAGUUTTTUAGGUAAATGGAAGRGUUTTAUU



UUTGUUAU





 39
AUTUTGGAAGTGTGUARGGURGTTGTGUAGGGTGGATGGTGTTGAUUTTTTGAUUTGAA



AAUAGTTGGGGGUTGGGGAGRGGAGGAAGGATGGRGGAAGAGAGGAAAGAGUUARGA



GAAUAAUTAGGRGGGATGTAUTTTTGAGUUUTGUXGGGTGTUTURGATRGGAGTUTGGG



GTTGAGATTTGGGUTGUAUTTGTUUURGGTGTGTUTUTURGGRGGAGTAUUUTGAAGGT



GUARGAGGTGGGGAGUATAGGUTGAGGTGGGTAATRGGGTUUTGGATAGAAAUAUAAU



UUTRGTUU





 40
GGARGAGGGTTGTGTTTUTATUUAGGAUURGATTAUUUAUUTUAGUUTATGUTUUUUAU



UTRGTGUAUUTTUAGGGTAUTURGURGGAGAGAUAUAURGGGGAUAAGTGUAGUUUAA



ATUTUAAUUUUAGAUTURGATRGGAGAUAUUXGGUAGGGUTUAAAAGTAUATUURGUU



TAGTTGTTUTRGTGGUTUTTTUUTUTUTTURGUUATUUTTUUTURGUTUUUUAGUUUUUA



AUTGTTTTUAGGTUAAAAGGTUAAUAUUATUUAUUUTGUAUAARGGURGTGUAUAUTT



UUAGAGT





 41
AAAGAUTTGGTTUUAGAAURGURGUAAUAAGTGGAAGRGGUAGUTUTRGGUTGAGUTG



GAGGRGGUUAAUATGGRGUARGRGTRGGRGUAGAUTUTGGTGAGUATGURGUTGGTGT



TURGGGAUAGTTRGUTGUTGRGRGTGURGGTGUXGRGUTRGUTRGUUTTTUURGRGURG



UTUTAUTAUURGGGAAGUAAUUTUTRGGUUTTAUUTUTUTAUAAUUTATAUAAUAAGU



TRGAUTAUTGAURGGUURGURGUUURGRGURGUUUUUAGUTGUURGUAGAGURGGGRG



RGTAUTGTA





 42
TAUAGTARGRGUURGGUTUTGRGGGUAGUTGGGGGRGGRGRGGGGRGGRGGGURGGTU



AGTAGTRGAGUTTGTTGTATAGGTTGTAGAGAGGTAAGGURGAGAGGTTGUTTUURGGG



TAGTAGAGRGGRGRGGGAAAGGRGAGRGAGRGXGGUAURGGUARGRGUAGUAGRGAA



UTGTUURGGAAUAUUAGRGGUATGUTUAUUAGAGTUTGRGURGARGRGTGRGUUATGT



TGGURGUUTUUAGUTUAGURGAGAGUTGURGUTTUUAUTTGTTGRGGRGGTTUTGGAAU



UAAGTUTTT





 43
UUAGRGUAUAGUURGGUUAGGGGRGUUUTUUUTGURGURGURGGUUUTTTGATRGUUR



GRGGUURGRGGUURGUAGAUUAUAGUUAGRGUTGTGUTGGGUAGGTGGRGGUAGRGG



GGRGRGGRGRGUTUAGGRGUARGGGTUUURGGGUXGRGGRGRGUTUUURGUUARGURG



UAUATUAAGGUURGGURGGURGGRGGGRGUUTTUATTAGUAGUUTGAAATTATAATAT



TATGTTAAAGAAUAAAGUTGUTUUURGGAAAAATATGTGUTGUATATUTGAUAAAGAT



AAATTGGATTA





 44
TAATUUAATTTATUTTTGTUAGATATGUAGUAUATATTTTTURGGGGAGUAGUTTTGTTU



TTTAAUATAATATTATAATTTUAGGUTGUTAATGAAGGRGUURGURGGURGGURGGGUU



TTGATGTGRGGRGTGGRGGGGAGRGRGURGXGGUURGGGGAUURGTGRGUUTGAGRGR



GURGRGUUURGUTGURGUUAUUTGUUUAGUAUAGRGUTGGUTGTGGTUTGRGGGURGR



GGGURGRGGGRGATUAAAGGGURGGRGGRGGUAGGGAGGGRGUUUUTGGURGGGUTG



TGRGUTGG





 45
URGTUURGGGUTUUTGGRGGUTGTRGUTGRGGTTUUTTUURGRGGGURGGGUUUUTTUU



UTGRGUUTTRGURGUUTUUTRGRGUUTGUURGGGGUURGUAGUUTURGUAURGGGAAU



URGGAGGAUURGAGGRGGGRGUAGGGGRGAAGUXGGGGURGGGGAGGGGURGUUTRG



UTURGGGTTRGAGARGGAAGAAAUARGRGGRGUAGGUTURGGAGRGARGGUTURGARG



GGGAUURGTTAAATAATTTATTGATGATAUAAAGRGAUTRGRGUUUAUURGGGGURGU



UUURGGATTU





 46
GAATURGGGGGRGGUUURGGGTGGGRGRGAGTRGUTTTGTATUATUAATAAATTATTTA



ARGGGTUUURGTRGGAGURGTRGUTURGGAGUUTGRGURGRGTGTTTUTTURGTUTRGA



AUURGGAGRGAGGRGGUUUUTUUURGGUUUXGGUTTRGUUUUTGRGUURGUUTRGGGT



UUTURGGGTTUURGGTGRGGAGGUTGRGGGUUURGGGUAGGRGRGAGGAGGRGGRGAA



GGRGUAGGGAAGGGGUURGGUURGRGGGAAGGAAURGUAGRGAUAGURGUUAGGAGU



URGGGARGG





 47
UTTGTUUAGGARGURGURGGURGGGGUTGUAAGGGAGGGGAAGGGAGGGAGGTUAGR



GGURGGRGGGGTUUUUUTURGRGUUUAUURGUUURGUAUUUUURGRGRGGGUUAUTU



AUURGGGUUAGUUAGARGRGGGTUUUTUUAGGGRGXGUUUTGUAUUARGURGGGUUA



GAAGATGGGRGGGRGUUURGGUAGUTRGGUUAGGGGUTTGGGGTAGURGRGRGUUAUA



GRGGURGRGGGUURGAAGTAAARGURGGRGGARGARGRGAGUURGTTGAGURGGGGUA



GUUUUUUUAGGAG





 48
UTUUTGGGGGGGUTGUUURGGUTUAARGGGUTRGRGTRGTURGURGGRGTTTAUTTRGG



GUURGRGGURGUTGTGGRGRGRGGUTAUUUUAAGUUUUTGGURGAGUTGURGGGGRGU



URGUUUATUTTUTGGUURGGRGTGGTGUAGGGXGRGUUUTGGAGGGAUURGRGTUTGG



UTGGUURGGGTGAGTGGUURGRGRGGGGGGTGRGGGGRGGGTGGGRGRGGAGGGGGAU



UURGURGGURGUTGAUUTUUUTUUUTTUUUUTUUUTTGUAGUUURGGURGGRGGRGTU



UTGGAUAAG





 49
UTURGGUUTUATUTTUTURGTGGAGGTGUUUTTUAGUAAGTTTGUUAAUAAUAURGAGG



GUUAGTGRGGTGAGGUUAUAGGGUTUURGGGUATRGTUTGGUATTRGRGGGGGRGGGG



GTGURGGGUAGGGGRGAGGUUAUUARGTGURGXGTGTGURGGTGTUTUTGUTTTUTGG



UTGUTUTGUTGAGTGUAGGUUAUAGGUATGAGGUTTARGUUTGURGGTAUUTGUAGUT



UUUUAGTAUUATAGGGAUTGTUUUAGGGTTGTTUTRGGGGGAUAGTGAGGUAUAGGUA



GGGUURGUT





 50
AGRGGGUUUTGUUTGTGUUTUAUTGTUUUURGAGAAUAAUUUTGGGAUAGTUUUTATG



GTAUTGGGGAGUTGUAGGTAURGGUAGGRGTAAGUUTUATGUUTGTGGUUTGUAUTUA



GUAGAGUAGUUAGAAAGUAGAGAUAURGGUAUAXGRGGUARGTGGTGGUUTRGUUUU



TGUURGGUAUUUURGUUUURGRGAATGUUAGARGATGUURGGGAGUUUTGTGGUUTUA



URGUAUTGGUUUTRGGTGTTGTTGGUAAAUTTGUTGAAGGGUAUUTUUARGGAGAAGA



TGAGGURGGAG





 51
UUAURGRGGUUTTTTUAUUUAAURGUUUUUTUUTGRGTGGGGGUUURGUATUUUUTGG



AUTGGRGTGGGUTUTGGGGUURGATGUUUTGGUAGUUURGGUUATUTUTGURGUTGGU



RGRGGGTAUUTGUTUAUUTGTUUARGURGTGGUXGAUURGGGGATUAURGAUAGURGG



GUUATGUUTRGAGTUURGURGUURGRGURGUTGUTRGGUTTUTUAGAAARGUAUUTUU



ARGURGUUAGURGGGGUTUUAGGGTUUAURGUURGGGUURGGAGGAUTGGRGAUTUU



UTURGAGGTTG





 52
UAAUUTRGGAGGGAGTRGUUAGTUUTURGGGUURGGGRGGTGGAUUUTGGAGUUURGG



UTGGRGGRGTGGAGGTGRGTTTUTGAGAAGURGAGUAGRGGRGRGGGRGGRGGGAUTR



GAGGUATGGUURGGUTGTRGGTGATUUURGGGTXGGUUARGGRGTGGAUAGGTGAGUA



GGTAUURGRGGUUAGRGGUAGAGATGGURGGGGUTGUUAGGGUATRGGGUUUUAGAG



UUUARGUUAGTUUAGGGGATGRGGGGUUUUUARGUAGGAGGGGGRGGTTGGGTGAAA



AGGURGRGGTGG





 53
ATGUTAGTGUAGTTUUUTGRGUAGURGUUAGGTGGRGTUAAGGURGURGUUTGGGGGG



URGGGUAGGURGAGGUUUUTGUURGTRGUAGTUUUAGUUTRGUTUAUUAUTTGGUURG



GGAGTTGGUTGRGGGUAGRGGUTTGGUAGUUTGXGGURGGGGGRGGARGGTGGGGRGG



TGTGGGTTTUAGUUTUUURGGAGGGUUUTUARGGUTGAGUAAARGTTRGGGUTGATGTR



GGUAAUATGRGGAATUAATTTTRGGGGAAUTUAGUAGUUAAAUUATUUAUUTTTGGGR



GGGAAGUAG





 54
UTGUTTUURGUUUAAAGGTGGATGGTTTGGUTGUTGAGTTUUURGAAAATTGATTURGU



ATGTTGURGAUATUAGUURGAARGTTTGUTUAGURGTGAGGGUUUTURGGGGAGGUTG



AAAUUUAUAURGUUUUAURGTURGUUUURGGUXGUAGGUTGUUAAGURGUTGUURGU



AGUUAAUTUURGGGUUAAGTGGTGAGRGAGGUTGGGAUTGRGARGGGUAGGGGUUTRG



GUUTGUURGGUUUUUUAGGRGGRGGUUTTGARGUUAUUTGGRGGUTGRGUAGGGAAUT



GUAUTAGUAT





 55
GGAGRGGTGRGGAGGUAGUUAGGUUURGUURGURGUAGURGRGGUAGURGURGGAGG



ATTUUTGTUUTAATATGGAGUTGGGATTUUUURGGUUURGUUUURGUUUURGGUURGR



GGGGAGAUAGAGGUTGGUAGUAGGGRGGGGGGAAGXGUTRGUTTGGGGGURGGUAAR



GGGGGGAAGGGATGUUTAAGTGUAGAUUUAGGTUUTRGURGTGUUUUUARGTUUUTGU



UTUAGTTTUUUUTTUAGTAAGGTTAATTAGUTGAGAGGGAAAUUARGAATUAUTGUAG



AUTAUAGRGUTG





 56
UAGRGUTGTAGTUTGUAGTGATTRGTGGTTTUUUTUTUAGUTAATTAAUUTTAUTGAAG



GGGAAAUTGAGGUAGGGARGTGGGGGUARGGRGAGGAUUTGGGTUTGUAUTTAGGUAT



UUUTTUUUUURGTTGURGGUUUUUAAGRGAGXGUTTUUUUURGUUUTGUTGUUAGUUT



UTGTUTUUURGRGGGURGGGGGRGGGGGRGGGGURGGGGGAATUUUAGUTUUATATTA



GGAUAGGAATUUTURGGRGGUTGURGRGGUTGRGGRGGGRGGGGUUTGGUTGUUTURG



UAURGUTUU





 57
RGGAGTGGAGUTTTGGGAAUUUUTRGGUUAAGUAUAGRGGTTRGAAAATAUAGUTGAA



AUUUAGRGGGUUUTTAGUARGRGUUUUAGRGURGGAGUAGGGTUAGGGTUTTUTTGRG



AUURGGUTURGUTUUAGATUUUUUUAGUTUTRGGXGGRGGAUURGGGURGRGTGTGAG



RGRGUTTTGUAUUTUUTATUUUUAGGGTURGURGAGAGUUARGATTTTTTAUAGAAAAT



GAGUAATAAAGAGATTTTGTAUTGTUUTGAUTGGGGAGTUUUAGGURGRGGGGGARGG



AGRGUUUUT





 58
AGGGGRGUTURGTUUUURGRGGUUTGGGAUTUUUUAGTUAGGAUAGTAUAAAATUTUT



TTATTGUTUATTTTUTGTAAAAAATRGTGGUTUTRGGRGGAUUUTGGGGATAGGAGGTG



UAAAGRGRGUTUAUARGRGGUURGGGTURGUXGURGAGAGUTGGGGGGATUTGGAGRG



GAGURGGGTRGUAAGAAGAUUUTGAUUUTGUTURGGRGUTGGGGRGRGTGUTAAGGGU



URGUTGGGTTTUAGUTGTATTTTRGAAURGUTGTGUTTGGURGAGGGGTTUUUAAAGUT



UUAUTURG





 59
AAAAATAUUUTAGATTUATAAAUAAAAGUTTGUAGTTAUUUAUAGUUUAATAUAAARG



AUURGARGUUUTUAUTTUTATAGUURGTGAGTUTUUUAGUUUUTAAUAGGUTRGTUTU



UUUAGARGUUURGGGTGAAAAGGTTRGRGURGUXGGTGGAGAGTUUTATTGGTTUTATT



TUTGTUTTUAUTUUAAGGUUUUAGGAURGGGGAGAGGTUUTGGTUTAAUTTTGGUTGTU



UUARGGTUUAAGGAUUTUAGRGUTUAGUURGAAARGUTAAGUUAAGRGTGGAGAURG



URGGGRGUA





 60
TGRGUURGGRGGTUTUUARGUTTGGUTTAGRGTTTRGGGUTGAGRGUTGAGGTUUTTGG



AURGTGGGAUAGUUAAAGTTAGAUUAGGAUUTUTUUURGGTUUTGGGGUUTTGGAGTG



AAGAUAGAAATAGAAUUAATAGGAUTUTUUAUXGGRGGRGRGAAUUTTTTUAUURGGG



GRGTUTGGGGAGARGAGUUTGTTAGGGGUTGGGAGAUTUARGGGUTATAGAAGTGAGG



GRGTRGGGTRGTTTGTATTGGGUTGTGGGTAAUTGUAAGUTTTTGTTTATGAATUTAGGG



TATTTTT





 61
AGUUARGAUUTUTGUUUUTATGGGGTUUAGRGRGUAUTTGGGTGRGGGTGATUUUTUR



GGAAGTRGUTUTGUTUUTUTGGURGGGTUTUUTUUTUTTUURGGUUAUTTATAUUUTTG



AGUAUUAAGAGTTRGUUUATTTAGGURGUUTUXGGGAARGGAAGGGTUUAUUUUAURG



UUAGGUTUTUAAAGGGTGGGGTGGRGUUTRGGGTGGGGRGGGUAGGAGGTGGGTGAGG



ARGGGAGAGAAGGGGRGAGRGGGGGUARGGGGRGGGGURGGUTUAGTRGGGGTAGAT



GATGAAGURG





 62
RGGUTTUATUATUTAUUURGAUTGAGURGGUUURGUUURGTGUUUURGUTRGUUUUTT



UTUTUURGTUUTUAUUUAUUTUUTGUURGUUUUAUURGAGGRGUUAUUUUAUUUTTTG



AGAGUUTGGRGGTGGGGTGGAUUUTTURGTTUUXGGAGGRGGUUTAAATGGGRGAAUT



UTTGGTGUTUAAGGGTATAAGTGGURGGGAAGAGGAGGAGAUURGGUUAGAGGAGUA



GAGRGAUTTURGGAGGGATUAUURGUAUUUAAGTGRGRGUTGGAUUUUATAGGGGUAG



AGGTRGTGGUT





 63
URGUTTGGGTAAURGUAGUUTGUUTGRGTUTUTTUUTTUUTURGRGTGGGTTUTAGUAA



UATUUAUTGUAGURGGGUUAGGRGAGURGGRGRGTAUUATRGGRGRGGGGGGAGGAG



AGGGURGGGUUTGGGAAGATGUTGXGGAGGAXGUTGXGGATTXGXGAGUURGGGGTA



AGGRGGRGGRGUAURGUUUUUTUURGURGUTTUUUUUUUAUUURGUUUUUUAURGUR



GUUUTTAGUUUTUUUURGGGATGAGAGAGAGTRGRGUTGRGGAGUAAUUUUAGTGGAT



GGGTURGRGGGG





 64
UUURGRGGAUUUATUUAUTGGGGTTGUTURGUAGRGRGAUTUTUTUTUATUURGGGGG



AGGGUTAAGGGRGGRGGTGGGGGGRGGGGTGGGGGGGAAGRGGRGGGAGGGGGRGGT



GRGURGURGUUTTAUUURGGGUTXGXGAATUXGUAGXGTUUTUXGUAGUATUTTUUUA



GGUURGGUUUTUTUUTUUUUURGRGURGATGGTARGRGURGGUTRGUUTGGUURGGUT



GUAGTGGATGTTGUTAGAAUUUARGRGGAGGAAGGAAGAGARGUAGGUAGGUTGRGGT



TAUUUAAGRGG





 65
ATUTUUUUTTUTGUUTGTGATATGGRGGGUTGUATTAUAAGUTGGGRGTRGAGATAAAG



RGGGGAGURGRGGGARGGRGGUUUAGRGURGGGGUUURGGGTGGGGURGGUUAGGGA



GATAAGGGUUTUUUAGUUUUATGAATTATTUAUXGGUAUTGUUTUUTUTGGUTGGGRG



GURGUUUTGGGRGUTGAGATTGRGTUTTUUAGAGGGGUUTGGGTAGGGTGGGAGGGGG



GTURGTGGGGAAGGGUAGUAGGUTGTAGAGGGGTUTTUUTATGGGGGATGGGGAGAGG



GGAGGAUTGT





 66
AUAGTUUTUUUUTUTUUUUATUUUUUATAGGAAGAUUUUTUTAUAGUUTGUTGUUUTT



UUUUARGGAUUUUUUTUUUAUUUTAUUUAGGUUUUTUTGGAAGARGUAATUTUAGRG



UUUAGGGRGGURGUUUAGUUAGAGGAGGUAGTGUXGGTGAATAATTUATGGGGUTGG



GAGGUUUTTATUTUUUTGGURGGUUUUAUURGGGGUUURGGRGUTGGGURGURGTUUR



GRGGUTUUURGUTTTATUTRGARGUUUAGUTTGTAATGUAGUURGUUATATUAUAGGU



AGAAGGGGAGAT





 67
AGGTUATUUAGUAGUAGGGUTUUARGTRGGTUTRGTRGATGUUUUAGAAGGUUAGUTU



UTUUTRGAAGAGRGGUURGUAUARGTUTGRGGGGUAGTGUAGUTTGURGGTGRGGTAG



TAATTGAGUAUATAGGRGAAGARGUURGGGTGUXGGTRGAAGAAGAAUTRGRGGURGU



UAURGGGATGGTRGUTGGUUUTGURGURGRGGGAAUTGUAGTTGUURGRGURGUUUTR



GAAGUAGURGUUTGGUURGGGGGAUAGRGGGGGRGUTUTRGGRGGRGGRGAUAGTGG



AGGRGGRGARG





 68
RGTRGURGUUTUUAUTGTRGURGURGURGAGAGRGUUUURGUTGTUUUURGGGUUAGG



RGGUTGUTTRGAGGGRGGRGRGGGUAAUTGUAGTTUURGRGGRGGUAGGGUUAGRGAU



UATUURGGTGGRGGURGRGAGTTUTTUTTRGAUXGGUAUURGGGRGTUTTRGUUTATGT



GUTUAATTAUTAURGUAURGGUAAGUTGUAUTGUUURGUAGARGTGTGRGGGURGUTU



TTRGAGGAGGAGUTGGUUTTUTGGGGUATRGARGAGAURGARGTGGAGUUUTGUTGUT



GGATGAUUT





 69
RGTATTAAUAGGTTUUUUTURGRGUAUAUTGAUATATTTUTTATUUUUUATAATGAATT



UAGUUATATGGUATTUTTTUUUATRGAAGGUUATRGGGAATGGUTTTAGGAAGUTGATT



TTUAAGUTTTAAGRGGUAGUAGGTGURGGUAGXGRGGGGAURGATRGATGGAGAGAAG



GRGGGUAAGARGURGGGAAGRGUATTUUTUUTUAAURGAGTGUUAUAAURGUUUTUUR



GAAGTGUUURGGGGUTTRGAGUATUAUUTRGRGGTAATURGGGAGGGTGGAGGGATGR



GGUTGGAU





 70
GTUUAGURGUATUUUTUUAUUUTUURGGATTAURGRGAGGTGATGUTRGAAGUUURGG



GGUAUTTRGGGAGGGRGGTTGTGGUAUTRGGTTGAGGAGGAATGRGUTTUURGGRGTUT



TGUURGUUTTUTUTUUATRGATRGGTUUURGXGUTGURGGUAUUTGUTGURGUTTAAAG



UTTGAAAATUAGUTTUUTAAAGUUATTUURGATGGUUTTRGATGGGAAAGAATGUUATA



TGGUTGAATTUATTATGGGGGATAAGAAATATGTUAGTGTGRGRGGAGGGGAAUUTGTT



AATARG





 71
GTUTUTGUTATUUAGGUUTATGAGAATUAAGUTTTTAURGTTUUUTTTGGGGUUTGGAT



AGTTTTUAAGUTGUUTTUTUUTUAUATUATGTGAGTAGAGURGGUUAAGAAAAUUAGG



GAGAUATUTUUUUUUAGUUTGGUUUAGAUTTUXGGGUUUUAUUUUAGGAGAGAGUUT



UUUAUTUTGGUUAGTGUUUTGUAAAGUUTTRGUUUUAUUURGUUUUAATTTUTUUTTA



TGUUTGGUTUATTUUTTAGGGGUTGAGTTGGGAGATAAGAUTTGGGGTTGUAGTTGUTG



GGGATUATT





 72
AATGATUUUUAGUAAUTGUAAUUUUAAGTUTTATUTUUUAAUTUAGUUUUTAAGGAAT



GAGUUAGGUATAAGGAGAAATTGGGGRGGGGTGGGGRGAAGGUTTTGUAGGGUAUTGG



UUAGAGTGGGAGGUTUTUTUUTGGGGTGGGGUUXGGAAGTUTGGGUUAGGUTGGGGGG



AGATGTUTUUUTGGTTTTUTTGGURGGUTUTAUTUAUATGATGTGAGGAGAAGGUAGUT



TGAAAAUTATUUAGGUUUUAAAGGGAARGGTAAAAGUTTGATTUTUATAGGUUTGGAT



AGUAGAGAU





 73
GRGURGGGGUUTARGAAGUUTGGGURGGGGGURGGGGGGRGGGGARGRGGGAUURGG



GGARGRGGGGRGUTUAGUUAGGUUUUUTUUAGURGRGURGGGGURGTUURGAGURGR



GRGUAUAAARGGATGGGURGGTGURGUUTGURGGGXGRGRGGGGGTRGGTGUUTTUTG



RGTGGRGRGRGTGTUUURGGGTUTURGTGRGGURGGRGUATTGGUUTRGRGUTUTURGG



AGGGGAUTGAGUAGGTGAAUAGGUURGGAGUUTGTRGTGGAGGGGUURGGGAAGGUU



TRGUTGUAGAAG





 74
UTTUTGUAGRGAGGUUTTUURGGGUUUUTUUARGAUAGGUTURGGGUUTGTTUAUUTG



UTUAGTUUUUTURGGAGAGRGRGAGGUUAATGRGURGGURGUARGGAGAUURGGGGA



UARGRGRGUUARGUAGAAGGUAURGAUUUURGRGXGUURGGUAGGRGGUAURGGUUU



ATURGTTTGTGRGRGRGGUTRGGGARGGUUURGGRGRGGUTGGAGGGGGUUTGGUTGA



GRGUUURGRGTUUURGGGTUURGRGTUUURGUUUUURGGUUUURGGUUUAGGUTTRGT



AGGUUURGGRGU





 75
GUAUAAARGGATGGGURGGTGURGUUTGURGGGRGRGRGGGGGTRGGTGUUTTUTGRG



TGGRGRGRGTGTUUURGGGTUTURGTGRGGURGGRGUATTGGUUTRGRGUTUTURGGAG



GGGAUTGAGUAGGTGAAUAGGUURGGAGUUTGTXGTGGAGGGGUURGGGAAGGUUTR



GUTGUAGAAGUAGGATGGGAGUAGGATURGUAGGGATGRGUAGRGGGGTURGRGGAG



UTUURGGRGGGGGRGRGTTTUUAGGURGGGGAURGRGGTGUUAGUUUTGUUUTRGRGG



ATRGGGTUTRG





 76
RGAGAUURGATURGRGAGGGUAGGGUTGGUAURGRGGTUUURGGUUTGGAAARGRGUU



UURGURGGGAGUTURGRGGAUUURGUTGRGUATUUUTGRGGATUUTGUTUUUATUUTG



UTTUTGUAGRGAGGUUTTUURGGGUUUUTUUAXGAUAGGUTURGGGUUTGTTUAUUTG



UTUAGTUUUUTURGGAGAGRGRGAGGUUAATGRGURGGURGUARGGAGAUURGGGGA



UARGRGRGUUARGUAGAAGGUAURGAUUUURGRGRGUURGGUAGGRGGUAURGGUUU



ATURGTTTGTGU





 77
UTTRGGGUAGURGAGGGRGRGGGATGAUTRGGGUAGGRGTGTGGUUTURGAUTGAUUA



GGGTTGGGUURGGGATUAGAGUTTTGUTTGGAAGTTUTUTGGGTGGUAGAGAUTRGGGU



AAURGGAGUUTGAGUUTUURGRGGGGAAGAGUTXGGAUTURGGAGGTRGRGURGUUTT



GGGUTTGAATTUAGTUUTTUUTTAUTAUTRGTGGUTTTGUTTAUATUATTTAAUTUTUUA



TTTUUTTGTUTATAUAGTGGGUTUATAAGGAGGRGGTAAGGAGATGATGATGTUTTTGA



AGAGTT





 78
AAUTUTTUAAAGAUATUATUATUTUUTTAURGUUTUUTTATGAGUUUAUTGTATAGAUA



AGGAAATGGAGAGTTAAATGATGTAAGUAAAGUUARGAGTAGTAAGGAAGGAUTGAAT



TUAAGUUUAAGGRGGRGRGAUUTURGGAGTUXGAGUTUTTUUURGRGGGAGGUTUAGG



UTURGGTTGUURGAGTUTUTGUUAUUUAGAGAAUTTUUAAGUAAAGUTUTGATUURGG



GUUUAAUUUTGGTUAGTRGGAGGUUAUARGUUTGUURGAGTUATUURGRGUUUTRGGU



TGUURGAAG





 79
URGUAGUUAUTAUTRGUUUUAUUTTUTUAUUTURGAGGGGTTGAAUURGAGTTGTUTGT



TGGGGTTTAGGGAUTUAGGATRGGGTUTGAGGGAUTTRGAUATAAGTGRGTGGRGGTAG



TGGGTATAUAGGGGAGGGGGGURGGGUUUUTXGUTUUTTUTGGAAAURGGGUUUUAUT



TGUAGGUURGGUUAUUTTGGGTTUTGGTGGURGAAGURGGAGUTGTGTTTUTRGUAGAU



TRGGGGAGUTAUATTGTGRGTAGGUAATTGTTTAGTTTGAAAGGAGGUAUATTTUAUUA



RGUAGU





 80
GUTGRGTGGTGAAATGTGUUTUUTTTUAAAUTAAAUAATTGUUTARGUAUAATGTAGUT



UUURGAGTUTGRGAGAAAUAUAGUTURGGUTTRGGUUAUUAGAAUUUAAGGTGGURGG



GUUTGUAAGTGGGGUURGGTTTUUAGAAGGAGXGAGGGGUURGGUUUUUUTUUUUTGT



ATAUUUAUTAURGUUARGUAUTTATGTRGAAGTUUUTUAGAUURGATUUTGAGTUUUT



AAAUUUUAAUAGAUAAUTRGGGTTUAAUUUUTRGGAGGTGAGAAGGTGGGGRGAGTAG



TGGUTGRGG





 81
UTUUUTGRGGUTUUAUTAGTTTTUTTRGUUURGUUUAGURGUUUAUTUTTUTRGGUTAG



GGAAGAAGAUUAGAGGGTGUTUAGUTGGAAAAUTUTGGTGTUTUAGUTTAGGGUUTUU



TURGGGAAGAGUTAAUTGUTUUUAGGTGAAGUXGGTGUURGRGGGRGGTURGTAUAUU



URGUAGURGGUTRGUAURGUTRGAGAGUUTRGGURGUTGTGTUTTUUARGTUTGUAGUT



UAGUUAGGGRGRGUAGGGRGAGTGGGGTUUAUTGGRGGGTAAAGGGGAUUAGGARGG



RGAGGATGG





 82
UUATUUTRGURGTUUTGGTUUUUTTTAUURGUUAGTGGAUUUUAUTRGUUUTGRGRGU



UUTGGUTGAGUTGUAGARGTGGAAGAUAUAGRGGURGAGGUTUTRGAGRGGTGRGAGU



RGGUTGRGGGGTGTARGGAURGUURGRGGGUAUXGGUTTUAUUTGGGAGUAGTTAGUT



UTTUURGGAGGAGGUUUTAAGUTGAGAUAUUAGAGTTTTUUAGUTGAGUAUUUTUTGG



TUTTUTTUUUTAGURGAGAAGAGTGGGRGGUTGGGRGGGGRGAAGAAAAUTAGTGGAG



URGUAGGGAG





 83
TAUATATGTAUARGTGTGUAUAURGGTUUTRGRGAGGRGGUUURGRGGGGTUATAGRGR



GGUAGRGTAGGURGRGGGGTAGGGGTUUAGUTGGGGUTTGUUUATGUURGGUAGUAGG



ATGTAGGRGAGRGGRGGUTGUAGUUXGGGGUTGGGUUAXGRGUTGUAGTTGUARGGGA



TUATGTAGUURGGGTTGUURGGGUTGGGGTGRGAGTGRGTGTGUUUUURGGRGGRGGR



GGURGURGUTGUAGURGURGURGURGRGURGTGGAAGGRGUURGRGUURGRGGTRGGG



TAGUUUAGU





 84
GUTGGGUTAUURGAURGRGGGRGRGGGRGUUTTUUARGGRGRGGRGGRGGRGGUTGUA



GRGGRGGURGURGURGURGGGGGGUAUARGUAUTRGUAUUUUAGUURGGGUAAUURG



GGUTAUATGATUURGTGUAAUTGUAGRGXGTGGUUUAGUUUXGGGUTGUAGURGURGU



TRGUUTAUATUUTGUTGURGGGUATGGGUAAGUUUUAGUTGGAUUUUTAUUURGRGGU



UTARGUTGURGRGUTATGAUUURGRGGGGURGUUTRGRGAGGAURGGTGTGUAUARGT



GTAUATATGTA





 85
ARGURGUUAGUTUTGATTGGUUUAGRGGTAGGAAAGGTTAAAUUAAAAATTTTTTTAUA



GUUUTAGTGTGRGUUTGTAGUTRGGAAAATTAATTGTGGUTATAGURGUUTRGATRGUT



GTUTUUUUAGUUTRGURGRGGURGUTURGGGAXGRGUURGUURGURGUURGGUTUTUU



UUUUUTTTGGGUTGUTGUTGUTGUTGUTGTGAUTGUTGUTGRGAGAGGAGGAGGAGGA



GGAGGAAGUAGRGGGGGGGGGAGRGGGGGGTGGGGGGGGAGAUUAAGAAGTAUAGTT



GGGAGRGAG





 86
UTRGUTUUUAAUTGTAUTTUTTGGTUTUUUUUUUUAUUUUURGUTUUUUUUUURGUTG



UTTUUTUUTUUTUUTUUTUUTUTRGUAGUAGUAGTUAUAGUAGUAGUAGUAGUAGUUU



AAAGGGGGGGAGAGURGGGRGGRGGGRGGGRGXGTUURGGAGRGGURGRGGRGAGGU



TGGGGAGAUAGRGATRGAGGRGGUTATAGUUAUAATTAATTTTURGAGUTAUAGGRGU



AUAUTAGGGUTGTAAAAAAATTTTTGGTTTAAUUTTTUUTAURGUTGGGUUAATUAGAG



UTGGRGGRGT





 87
AGGUAGAATAAAAUUUUUTUUUUTAGAGURGGGGTGGUTUAGRGGAATUATRGAGAAT



GAGAURGUTGGTTGUTAATGGGUTTGGGGAAAATGGGATGUAATTTUUURGGTGTTTTT



UAGGUUUAGAGUTATTGAATAAATGAAGTGRGXGURGGRGGAGTUAGTAAUTUAUTGR



GRGGUTUURGGUAGGRGGGGGRGGAGTGGGGGURGUAGAAURGGARGTGUUTGGRGA



GGTTUAGAGGRGUTAGRGGTGTGGTGGGTGGGUAGRGURGGGATGGUTGGAGGGAGGG



GUTARGGGGG





 88
UUUURGTAGUUUUTUUUTUUAGUUATUURGGRGUTGUUUAUUUAUUAUAURGUTAGRG



UUTUTGAAUUTRGUUAGGUARGTURGGTTUTGRGGUUUUUAUTURGUUUURGUUTGUR



GGGAGURGRGUAGTGAGTTAUTGAUTURGURGGXGRGUAUTTUATTTATTUAATAGUTU



TGGGUUTGAAAAAUAURGGGGAAATTGUATUUUATTTTUUUUAAGUUUATTAGUAAUU



AGRGGTUTUATTUTRGATGATTURGUTGAGUUAUUURGGUTUTAGGGGAGGGGGTTTTA



TTUTGUUT





 89
UUUTGURGAGGTTATGGTGUUTGTTTUUAGUAGUTUTGAGUUUARGRGGAAUATGAGTR



GUTGATAAAUAAGGUTTGUAGTTGRGAGGGGUUTRGGGGTGGGTTTUTGGTTGAGGAAR



GURGGGGAATGGUTGATGGAGGAAGUUUUTGUXGGGAGUAGGAGUAGRGGAAAUUTA



UATRGGUUAUAUAGATUURGGRGGGGGAGGGAGGGUAARGUTUAGAAGUAGAGUTGR



GRGATGTGUUTTTUTGGGUTGUTUAGUUUAGGGUURGAGAUUTGUTTGUUTGAGGAGG



GGUAGATGUA





 90
TGUATUTGUUUUTUUTUAGGUAAGUAGGTUTRGGGUUUTGGGUTGAGUAGUUUAGAAA



GGUAUATRGRGUAGUTUTGUTTUTGAGRGTTGUUUTUUUTUUUURGURGGGATUTGTGT



GGURGATGTAGGTTTURGUTGUTUUTGUTUUXGGUAGGGGUTTUUTUUATUAGUUATTU



UURGGRGTTUUTUAAUUAGAAAUUUAUUURGAGGUUUUTRGUAAUTGUAAGUUTTGTT



TATUAGRGAUTUATGTTURGRGTGGGUTUAGAGUTGUTGGAAAUAGGUAUUATAAUUT



RGGUAGGG





 91
GGUUURGARGUUAGUTGTUUUUURGAGAAGUTURGUAGRGRGTRGUTUUAGGAGTGRG



AGGAGUUATAGATGGRGUTGURGTUUAGUUAGUURGTUAUUTGGTTGGUUTGRGGGGU



ARGRGGRGGGTGAGUURGGGTRGAGAGGRGGRGGXGGGUUAGGGAAGGURGGGGUUR



GGRGGGTGTURGRGGUTGGGGAGTGGGRGUUTUTUUUUTUUAGGUUUTGUUAGGUURG



AAGUUUAGGUUUUAUUTGGUTGGGGTGRGGTUUUTTUURGURGUUTTUUURGUUTUAU



UAGGTUURGGG





 92
UURGGGAUUTGGTGAGGRGGGGAAGGRGGRGGGAAGGGAURGUAUUUUAGUUAGGTG



GGGUUTGGGUTTRGGGUUTGGUAGGGUUTGGAGGGGAGAGGRGUUUAUTUUUUAGUR



GRGGAUAUURGURGGGUUURGGUUTTUUUTGGUUXGURGURGUUTUTRGAUURGGGUT



UAUURGURGRGTGUUURGUAGGUUAAUUAGGTGARGGGUTGGUTGGARGGUAGRGUU



ATUTATGGUTUUTRGUAUTUUTGGAGRGARGRGUTGRGGAGUTTUTRGGGGGGAUAGUT



GGRGTRGGGGUU





 93
GTTTTTRGTTTUUAATGUUUTGGAUUTTTAGAGAGUTUATUATUTTTUUTTATGGTRGUA



AGTUTTGAAAGAAAGAGUAAGAGAGRGAGRGGGTTGGGTTGGGGUTGGAGTAGURGAG



GURGGUUTGGGTURGGGUAGTUAGGUUTGAXGRGGUUURGRGUUUTTUUURGGUAGAG



AAGUURGGGARGGUUATGTGRGTGGGUTGRGGGAGTUAGATUUARGAUUAGTTTATUU



TGRGGGTGTRGUURGAUUTRGAGTGGUARGRGGUUTGUUTUAAGTGTGURGAGTGUAG



UUAGTAUU





 94
GGTAUTGGUTGUAUTRGGUAUAUTTGAGGUAGGURGRGTGUUAUTRGAGGTRGGGRGA



UAUURGUAGGATAAAUTGGTRGTGGATUTGAUTUURGUAGUUUARGUAUATGGURGTU



URGGGUTTUTUTGURGGGGAAGGGRGRGGGGURGXGTUAGGUUTGAUTGUURGGAUUU



AGGURGGUUTRGGUTAUTUUAGUUUUAAUUUAAUURGUTRGUTUTUTTGUTUTTTUTTT



UAAGAUTTGRGAUUATAAGGAAAGATGATGAGUTUTUTAAAGGTUUAGGGUATTGGAA



ARGAAAAAU





 95
TGTAUUUTGGGTTUUUUTAUTTTUUUUUAGTTGGGUUUUAUATUTGGGTUTGGUTUTTA



AGTUTTGGGUATATGGGATAGAGAATTTAAGGATUUAGATAUTTTGUAATUUURGGGUT



AGTAGGAGGAAAAGTGGUTUUTUTGGGAAUUXGGATGGGURGAAUAGUAGUTTURGGU



AGAGGUUUTUAGGTTTUAGAGTTUTUUAAGTGGGGAGAAGGGRGGUUTGUTUAGUURG



RGUAUURGTGGUAGUAUUAUAGAGGGAATAAAAGUAGGGTAAAUAATTTGAAGATUU



UUARGAAGG





 96
UUTTRGTGGGGATUTTUAAATTGTTTAUUUTGUTTTTATTUUUTUTGTGGTGUTGUUARG



GGTGRGRGGGUTGAGUAGGURGUUUTTUTUUUUAUTTGGAGAAUTUTGAAAUUTGAGG



GUUTUTGURGGAAGUTGUTGTTRGGUUUATUXGGGTTUUUAGAGGAGUUAUTTTTUUTU



UTAUTAGUURGGGGATTGUAAAGTATUTGGATUUTTAAATTUTUTATUUUATATGUUUA



AGAUTTAAGAGUUAGAUUUAGATGTGGGGUUUAAUTGGGGGAAAGTAGGGGAAUUUA



GGGTAUA





 97
UTGUUTGUAGUURGAGGAGUTGAUTAATGUTUTGGAGATUAGUAAUATRGTGTTUAUU



AGUATGTTTGUUUTGGAGATGUTGUTGAAGUTGUTGGUUTGRGGUUUTUTGGGUTAUAT



URGGAAUURGTAUAAUATUTTRGARGGUATUATXGTGGTUATUAGGTGGGTUUUUAUU



UTUTUUUUAGGAAGAGGGGUURGGGAAGUTUUAUTUTUTGGUAGAAATUUUAUUTGUA



GAGUAAAAUUUAGAGUAUAGGAGGAAGTARGARGATAGUTUTTTATGAUAGGURGTGG



GAAGUAGGT





 98
AUUTGUTTUUUARGGUUTGTUATAAAGAGUTATRGTRGTAUTTUUTUUTGTGUTUTGGG



TTTTGUTUTGUAGGTGGGATTTUTGUUAGAGAGTGGAGUTTUURGGGUUUUTUTTUUTG



GGGAGAGGGTGGGGAUUUAUUTGATGAUUAXGATGATGURGTRGAAGATGTTGTARGG



GTTURGGATGTAGUUUAGAGGGURGUAGGUUAGUAGUTTUAGUAGUATUTUUAGGGUA



AAUATGUTGGTGAAUARGATGTTGUTGATUTUUAGAGUATTAGTUAGUTUUTRGGGUTG



UAGGUAG





 99
UUUUUTGGAAGGTGUTAATTTUTGAGGUUTUUAGGGGAAUAATGAGGAGGAGAAAAAT



UUUAGTGTGAAAATGATGTUAGRGGAGTTGUTTGTUUUTTTGTUTGTUTGTUUTTTATAA



GUUATUUUUTUTGUAGAGGUTGUTGGGURGGXGGGAUTGTUUUTUUTUUTUTTTGUUU



ATUTUTTTGGURGGGTGAGTUTUATUTUAAGAUTUUTUAUTGTAUTUTUAUAGUTTGGT



UTUUATAUAAATGAAGTTUAUUUTUTGGGUTUTGAAAUAGUTTUTUAUTUUAUUUAAA



AAGATUU





100
GGATUTTTTTGGGTGGAGTGAGAAGUTGTTTUAGAGUUUAGAGGGTGAAUTTUATTTGT



ATGGAGAUUAAGUTGTGAGAGTAUAGTGAGGAGTUTTGAGATGAGAUTUAUURGGUUA



AAGAGATGGGUAAAGAGGAGGAGGGAUAGTUUXGURGGUUUAGUAGUUTUTGUAGAG



GGGATGGUTTATAAAGGAUAGAUAGAUAAAGGGAUAAGUAAUTURGUTGAUATUATTT



TUAUAUTGGGATTTTTUTUUTUUTUATTGTTUUUUTGGAGGUUTUAGAAATTAGUAUUT



TUUAGGGGG





101
RGTRGTAGTTGGGGURGAGGTURGTGTGGTAGGGGAUTGGGAUAGGAGTRGGAGTRGU



AGGGRGAGGGUUUAGATRGGGGUTGGAAGUUAUAGGUUTUTUAUUTRGUTTGGURGAG



RGGURGGGAUTURGGGUURGUAGRGGATGGAAGXGGGRGUTGUUUTGUURGGRGGRGG



URGGGGUUTTUTGGGGTTTTUURGRGGGRGGUTRGGUAGGGRGGUAGUAGUTGURGRG



GAGAGGARGAURGUUAURGGTGUAAUUAGGTUUURGRGUUUUTGUURGGUUTUTGGG



GRGUUUAAGRG





102
RGUTTGGGRGUUUUAGAGGURGGGUAGGGGRGRGGGGAUUTGGTTGUAURGGTGGRGG



TRGTUUTUTURGRGGUAGUTGUTGURGUUUTGURGAGURGUURGRGGGAAAAUUUUAG



AAGGUUURGGURGURGURGGGUAGGGUAGRGUUXGUTTUUATURGUTGRGGGUURGG



AGTUURGGURGUTRGGUUAAGRGAGGTGAGAGGUUTGTGGUTTUUAGUUURGATUTGG



GUUUTRGUUUTGRGAUTURGAUTUUTGTUUUAGTUUUUTAUUAUARGGAUUTRGGUUU



UAAUTARGARG





103
RGUAGGURGUAGTGARGTRGGRGGGRGUTGUATTAAGGRGAGGGGGUTTUUAGAGUTU



AGUUAAUAGUUAGGAGUAGTGAUUAAGURGURGGAGUTGGGGAGAGARGUAURGGGG



RGGRGAUTGGGUUAGGAGAUUAGGGAUTGAGGGAXGRGUURGGGGAGGGUUAGUAAU



AAGURGRGGUURGGGRGRGAUAGRGGRGGTURGRGURGAGURGTTUUAGURGURGGUU



TAUTGTAGURGUTGRGUUAGGAUATTTTTTTTTAAAGUTUTUUAAGUTGUUUUUUTUUT



UUURGAUTUUT





104
AGGAGTRGGGGAGGAGGGGGGUAGUTTGGAGAGUTTTAAAAAAAAATGTUUTGGRGUA



GRGGUTAUAGTAGGURGGRGGUTGGAARGGUTRGGRGRGGAURGURGUTGTRGRGUUR



GGGURGRGGUTTGTTGUTGGUUUTUUURGGGRGXGTUUUTUAGTUUUTGGTUTUUTGGU



UUAGTRGURGUUURGGTGRGTUTUTUUUUAGUTURGGRGGUTTGGTUAUTGUTUUTGGU



TGTTGGUTGAGUTUTGGAAGUUUUUTRGUUTTAATGUAGRGUURGURGARGTUAUTGRG



GUUTGRG





105
RGUUUTRGGUUURGUUUUUTGUURGUUUUTUUUTUTRGGGGTURGGGGRGRGAGUTGR



GGRGGRGGRGGUUARGGTUATTGGRGURGAGRGGTTURGGUTGAUTGGARGGGGRGGG



RGTUURGGGUAGUUTAGRGRGGTAUUTUURGUUUXGRGRGUUUAGURGGRGAGGGAUA



TTGGAUUAGGGTRGGGGGTRGRGGURGUTUUAGRGAGGTAAGAGURGGGAAGAURGGG



AGAGAUUAUUTUTTUUATUUTGGGGGGGTUUUTGGGGGARGGTUTUUUAURGGTGUTG



GGURGRGGRG





106
RGURGRGGUUUAGUAURGGTGGGAGAURGTUUUUUAGGGAUUUUUUUAGGATGGAAG



AGGTGGTUTUTUURGGTUTTUURGGUTUTTAUUTRGUTGGAGRGGURGRGAUUUURGAU



UUTGGTUUAATGTUUUTRGURGGUTGGGRGRGXGGGGRGGGAGGTAURGRGUTAGGUT



GUURGGGARGUURGUUURGTUUAGTUAGURGGAAURGUTRGGRGUUAATGAURGTGGU



RGURGURGURGUAGUTRGRGUUURGGAUUURGAGAGGGAGGGGRGGGUAGGGGGRGG



GGURGAGGGRG





107
RGUUUTURGGUURGGUUTUUTURGURGGUURGGUTUURGAGAGGRGUAGUUAGUTUTU



RGUUATGTUTGRGGGGAUTUTURGAGGGGGRGGTUAGUATUUARGGGUTGAGURGGGG



GTGGUURGURGRGUTUTUTGGUURGUTGAGTUUXGUAGUTUURGTTAUARGGUUTUUR



GGARGRGRGUTTUUATUTRGRGAUUURGGGGGRGUUTUUTURGAATAAGTATGTGGTGU



UTGRGAGGAUUARGGTGGGAGUTGAGUAUTAUUUUAUUUURGAGGGGAUAGTGTGTGT



ARGGGGARG





108
RGTUUURGTAUAUAUAUTGTUUUUTRGGGGGTGGGGTAGTGUTUAGUTUUUAURGTGG



TUUTRGUAGGUAUUAUATAUTTATTRGGAGGAGGRGUUUURGGGGTRGRGAGATGGAA



GRGRGRGTURGGGAGGURGTGTAARGGGAGUTGXGGGAUTUAGRGGGUUAGAGAGRGR



GGRGGGUUAUUUURGGUTUAGUURGTGGATGUTGAURGUUUUUTRGGAGAGTUUURGU



AGAUATGGRGGAGAGUTGGUTGRGUUTUTRGGGAGURGGGURGGRGGAGGAGGURGGG



URGGAGGGRG





109
RGGGGTGUAGAGGTAAGAATGGGGGUAGAAAAUUUUUAGGTRGTGGTUUTGGGUUUAG



AAAGTTGUUUUAGUUTGRGRGUUUUTTUUUAGUUUUTUAGGGTUUTTUUTUAUUURGR



GGARGGTUUUATURGGGTGGUAAAGTTAGTGTGXGGRGUUTTGGAGUTUUUUUTURGG



TUUUTUURGTUURGUURGTUTGUUUUTAGGTRGGUTAUUUUUUAAUUUUTURGUUTGT



GUUAUUUTUTUUUUAGUUTTTGGTGGUAUTGUTUTUUTUUURGRGGGGUTRGGGUUTG



GUTURGARGA





110
TRGTRGGAGUUAGGUURGAGUUURGRGGGGAGGAGAGUAGTGUUAUUAAAGGUTGGG



GAGAGGGTGGUAUAGGRGGAGGGGTTGGGGGGTAGURGAUUTAGGGGUAGARGGGRG



GGARGGGAGGGAURGGAGGGGGAGUTUUAAGGRGUXGUAUAUTAAUTTTGUUAUURG



GATGGGAURGTURGRGGGGTGAGGAAGGAUUUTGAGGGGUTGGGAAGGGGRGRGUAG



GUTGGGGUAAUTTTUTGGGUUUAGGAUUARGAUUTGGGGGTTTTUTGUUUUUATTUTTA



UUTUTGUAUUURG





111
GGTAATTTRGGUUUUUTGAGUTTGGUTTAGTTTTTURGRGAAGTGUARGGGGGURGTTTT



AGGATAUUUAGUTUUUAUUTGGAGUTUUAGAGUTUURGGGGAUUUUUTTGTURGUURG



TUTUUTAGGGUUTGGUAUTUUUTGGUUUXGUAGUUXGGGGAUUTUUAUUTTUUUUAGG



RGGUAGUUAUAGGTUURGURGGGUURGTURGAGGTUTGRGGURGURGAAGTRGGGGTU



TUAGGGRGTUAGGGAGUAAUUAGGURGRGGGGAGGGAGGURGGRGURGGRGRGGAAT



TTUTTTATU





112
GATAAAGAAATTURGRGURGGRGURGGUUTUUUTUUURGRGGUUTGGTTGUTUUUTGA



RGUUUTGAGAUUURGAUTTRGGRGGURGUAGAUUTRGGARGGGUURGGRGGGAUUTGT



GGUTGURGUUTGGGGAAGGTGGAGGTUUUXGGGUTGXGGGGUUAGGGAGTGUUAGGU



UUTAGGAGARGGGRGGAUAAGGGGGTUUURGGGAGUTUTGGAGUTUUAGGTGGGAGUT



GGGTATUUTAAAARGGUUUURGTGUAUTTRGRGGAAAAAUTAAGUUAAGUTUAGGGGG



URGAAATTAUU





113
AGATTGGGAATUTGGAGGGTAAAATGURGGGTUUUTTUURGAGUUUTTAGAGUURGAA



RGTTGTRGAATRGGTUAATGTUUAUUURGUTGUTUAUUTUTGTUUUAGUAGRGURGGGG



UUAGRGRGUUUTUURGURGRGTUTGRGGAGUTGRGGGAAAAGUAGGTUUURGGGGGGT



ATRGAGTGTUUAGGGATATUUARGUAGAUATUUTTGTAUTTGUAAATAUAAAGAAAUA



UAUAGGAUAGAGATUAGGUTRGRGUUAGGGUTRGATUTUUTRGGGGUTUAGGGTTGGA



GGURGTAUA





114
TGTARGGUUTUUAAUUUTGAGUUURGAGGAGATRGAGUUUTGGRGRGAGUUTGATUTU



TGTUUTGTGTGTTTUTTTGTATTTGUAAGTAUAAGGATGTUTGRGTGGATATUUUTGGAU



AUTRGATAUUUUURGGGGAUUTGUTTTTUURGUAGUTURGUAGARGRGGRGGGAGGGR



GRGUTGGUUURGGRGUTGUTGGGAUAGAGGTGAGUAGRGGGGTGGAUATTGAURGATT



RGAUAARGTTRGGGUTUTAAGGGUTRGGGAAGGGAUURGGUATTTTAUUUTUUAGATT



UUUAATUT





115
AGGGUUTUAGRGGRGGUAUURGUATUUTUTTTUTTATGGUAUAAGUTGAAGGRGGRGG



URGRGGUAGGGAAGGTGTAGGGGTGRGGGAAGAGUURGURGUAGUURGGGAAUTTUTG



UAGGARGUUUURGAARGAGUUUTTGUTGGGUAUXGGGATGAUTGGGTAGUTGRGRGGG



UUTTTGGUUUUTGUUURGGUAUURGUUUURGRGUURGRGUUUARGUUUARGURGGUUA



UAUAGUUAUUUUUAGRGURGUUUUUAUUAGTUUURGRGURGUURGAAGUAGUAGUUA



UAGAGAGGUTG





116
UAGUUTUTUTGTGGUTGUTGUTTRGGGRGGRGRGGGGAUTGGTGGGGGRGGRGUTGGG



GGTGGUTGTGTGGURGGRGTGGGRGTGGGRGRGGGRGRGGGGGRGGGTGURGGGGUAG



GGGUUAAAGGUURGRGUAGUTAUUUAGTUATUUXGGTGUUUAGUAAGGGUTRGTTRGG



GGGRGTUUTGUAGAAGTTUURGGGUTGRGGRGGGUTUTTUURGUAUUUUTAUAUUTTU



UUTGURGRGGURGURGUUTTUAGUTTGTGUUATAAGAAAGAGGATGRGGGTGURGURG



UTGAGGUUUT





117
AUTARGGTURGURGGGUUARGAUAAAATGUTUAGUUUUAAUTTRGARGRGUAUUAUAU



TGUUATGUTGAUURGRGGTGAGUAAUAUUTGTUURGRGGUUTGGGUAUUUUAUUTGRG



GUUATGATGTRGUAUUTGAARGGUUTGUAUUAUUXGGGUUAUAUTUAGTUTUARGGGU



RGGTGUTGGUAUUUAGTRGRGAGRGGUUAUUUTRGTUUTUATRGGGUTRGUAGGTGGU



UARGTRGGGUUAGUTGGAAGAAATUAAUAUUAAAGAGGTGGUUUAGRGUATUAUAGR



GGAGUTGAAGU





118
GUTTUAGUTURGUTGTGATGRGUTGGGUUAUUTUTTTGGTGTTGATTTUTTUUAGUTGGU



URGARGTGGUUAUUTGRGAGUURGATGAGGARGAGGGTGGURGUTRGRGAUTGGGTGU



UAGUAURGGUURGTGAGAUTGAGTGTGGUUXGGGTGGTGUAGGURGTTUAGGTGRGAU



ATUATGGURGUAGGTGGGGTGUUUAGGURGRGGGAUAGGTGTTGUTUAURGRGGGTUA



GUATGGUAGTGTGGTGRGRGTRGAAGTTGGGGUTGAGUATTTTGTRGTGGUURGGRGGA



URGTAGT





119
TGGGGTUAGTAGATUAGTUTUTTUAGAUAUTGATGUAGAAGUTGGGAUTGGTAAGTAG



GTATTATGTGUTRGGAGRGUTAGGGGAUAGGAGUAAATGGAGAAGAAAAGRGGAGGUT



TTUTURGUURGGAGTATRGATRGGAATUUURGUXGGTARGURGUAGAGGGUUUTRGUR



GTTGGGUUURGGGGGTTTAAUAAGUUUAGURGUTURGUAGGRGGUTRGGURGGAUTUT



UAGAURGGTGUUTGGAAGAUAURGTUUUTGUUUUUUTUURGUUAAAUUTGUUTUTTUT



UTTTUTUTUA





120
TGAGAGAAAGAGAAGAGGUAGGTTTGGRGGGAGGGGGGUAGGGARGGTGTUTTUUAGG



UAURGGTUTGAGAGTURGGURGAGURGUUTGRGGAGRGGUTGGGUTTGTTAAAUUUUR



GGGGUUUAARGGRGAGGGUUUTUTGRGGRGTAUXGGRGGGGATTURGATRGATAUTUR



GGGRGGAGAAAGUUTURGUTTTTUTTUTUUATTTGUTUUTGTUUUUTAGRGUTURGAGU



AUATAATAUUTAUTTAUUAGTUUUAGUTTUTGUATUAGTGTUTGAAGAGAUTGATUTAU



TGAUUUUA





121
AGUTURGAGUUUARGUTGUAGUUAGATURGGATGAGTURGTUUTURGUUURGGGRGGG



UTUTRGUTUTRGUTGGUUUTUAGRGURGRGUAGUUAGUAGUATUUUUAURGTGARGUT



RGUATUAUAUURGGGRGURGGURGUUAUUATUXGRGURGURGURGTUAGGAUUUTUUT



UURGGGUATRGTRGURGURGRGGGGTRGGGAGGARGRGGRGRGRGGGAGGRGGRGGTR



GUAGGGRGAGUUURGGGARGUUURGAGURGGGGURGGGGURGGGGAGAGGGRGUAGR



GAGGTGGGGGU





122
GUUUUUAUUTRGUTGRGUUUTUTUUURGGUUURGGUUURGGUTRGGGGRGTUURGGGG



UTRGUUUTGRGAURGURGUUTUURGRGRGURGRGTUUTUURGAUUURGRGGRGGRGAR



GATGUURGGGAGGAGGGTUUTGARGGRGGRGGRGXGGATGGTGGRGGURGGRGUURGG



GTGTGATGRGAGRGTUARGGTGGGGATGUTGUTGGUTGRGRGGRGUTGAGGGUUAGRG



AGAGRGAGAGUURGUURGGGGRGGAGGARGGAUTUATURGGATUTGGUTGUAGRGTGG



GUTRGGAGUT





123
AGUUUUTGGRGTUTTTUTRGGGGUUAGAGUTTTGUUTUTAAATGGTUTTTGTTTGUAGA



RGATUTGUTGTGUAGATUATGAAURGTRGURGUAGTGUUAGAUAGAUTUTTUATURGG



AURGGURGTUUUAUTGGGTUUUUTUAGGAAAGXGUAGAAGURGGGGAUUUUAAAURG



RGTUUAGUTUUTUUUAUURGUUUTTUTRGGAGURGRGUAUTTGGTAAUTTGRGTGTGAA



GAAUTUARGGURGTGTTGUUAGGAAAUTGRGGGGAGUAGUUTTTGTGGTUTUAUATAT



GRGTAAUAT





124
ATGTTARGUATATGTGAGAUUAUAAAGGUTGUTUUURGUAGTTTUUTGGUAAUARGGU



RGTGAGTTUTTUAUARGUAAGTTAUUAAGTGRGRGGUTURGAGAAGGGRGGGTGGGAG



GAGUTGGARGRGGTTTGGGGTUUURGGUTTUTGXGUTTTUUTGAGGGGAUUUAGTGGG



ARGGURGGTURGGATGAAGAGTUTGTUTGGUAUTGRGGRGARGGTTUATGATUTGUAUA



GUAGATRGTUTGUAAAUAAAGAUUATTTAGAGGUAAAGUTUTGGUUURGAGAAAGARG



UUAGGGGUT





125
GUTTGAAUAGTTTTTTUUAATGTTRGATATTTAUATTTTTTGTUAUTTTTATTTTAGTUUT



URGRGAAGGAGUUTUTUAAATATTUURGGAGUAUAGGUTAATTTAGAARGTGTTATUUT



GAUAAGGRGGUUUAGUUAGGGAGGAGARGUXGGGGTURGRGURGRGGGGRGGGRGUT



TUUURGGAUURGGGGGAGGRGGGARGUAGGRGAAGGURGUUURGGGAGAGRGGGGTU



URGGGAGAGRGGGGTUURGGUTGTGGGGGARGRGGGURGAGGUTGTRGRGAAGURGUT



GARGGURG





126
RGGURGTUAGRGGUTTRGRGAUAGUUTRGGUURGRGTUUUUUAUAGURGGGAUUURGU



TUTUURGGGAUUURGUTUTUURGGGGRGGUUTTRGUUTGRGTUURGUUTUUUURGGGT



URGGGGAAGRGUURGUUURGRGGRGRGGAUUUXGGRGTUTUUTUUUTGGUTGGGURGU



UTTGTUAGGATAAUARGTTUTAAATTAGUUTGTGUTURGGGAATATTTGAGAGGUTUUT



TRGRGGAGGAUTAAAATAAAAGTGAUAAAAAATGTAAATATRGAAUATTGGAAAAAAU



TGTTUAAGU





127
UUTTRGGGGAUUAGAURGRGUTUUUTUAGATGGUTGGGGAGGGAGUAGAUTURGGGTG



AAGGUTGGGGGAGGTAURGGGATGURGAGTARGUUAGAGUAGGRGGGGGATGGGTTUR



GGUTTUUTGURGUUTRGGUATUTRGUTTTGUAUXGGGUAAAGAAGGGGUUARGAURGG



RGAAGAGRGRGTGGAGAUAUAGGGAUURGRGATUUAGGGGUAGGAAUUURGUUUUUT



UURGGAAAUUTUURGGGUUUTGAGTRGTGUURGGRGUTUUUUAUUUUAUUUUAUUUU



RGURGUUUUTGU





128
GUAGGGGRGGRGGGGGTGGGGTGGGGTGGGGAGRGURGGGUARGAUTUAGGGUURGG



GAGGTTTURGGGAGGGGGRGGGGTTUUTGUUUUTGGATRGRGGGTUUUTGTGTUTUUAR



GRGUTUTTRGURGGTRGTGGUUUUTTUTTTGUUXGGTGUAAAGRGAGATGURGAGGRGG



UAGGAAGURGGAAUUUATUUUURGUUTGUTUTGGRGTAUTRGGUATUURGGTAUUTUU



UUUAGUUTTUAUURGGAGTUTGUTUUUTUUUUAGUUATUTGAGGGAGRGRGGTUTGGT



UUURGAAGG





129
GGATGGGTUURGGRGRGGUUUAGUUUUTGUURGGUURGURGGGUAGAGAUTGAAURGR



GGATUUUUAURGTUUTGTGGARGAURGGAUAGAGAGAGGUAUTGAURGATRGUUAGUA



GUUTUURGGTGGGAURGRGTUTUUTGUAUAUUUXGRGUAGRGUUUUURGURGGAGURG



UAURGGGUAAGURGGRGAGGGAGRGGGGUTGATTGGRGGURGURGGRGGUUAGGGGA



GGGGGRGURGRGRGGGGUUATGGUAGGUTRGGAGGRGTUUTAGUURGAGURGGAGURG



ATURGAGUUUA





130
TGGGUTRGGATRGGUTURGGUTRGGGUTAGGARGUUTURGAGUUTGUUATGGUUURGR



GRGGRGUUUUUTUUUUTGGURGURGGRGGURGUUAATUAGUUURGUTUUUTRGURGGU



TTGUURGGTGRGGUTURGGRGGGGGGRGUTGRGXGGGGTGTGUAGGAGARGRGGTUUU



AURGGGAGGUTGUTGGRGATRGGTUAGTGUUTUTUTUTGTURGGTRGTUUAUAGGARGG



TGGGGATURGRGGTTUAGTUTUTGUURGGRGGGURGGGUAGGGGUTGGGURGRGURGG



GAUUUATUU





131
AGAAGAGGAAAAURGAGURGGRGGUTGRGGURGGGUATRGTATGGRGUTAGAGAAUTT



RGGRGGRGAGRGGGAUUTGRGUUTGGGURGURGUUTUUURGUURGRGGTUURGGGAUR



GTTAUTTTGAAAAGGAGTUURGAGGUUTGGRGUUXGGRGRGRGATRGGGAUUURGRGT



UUAGUTURGGGGAUURGGURGGRGUUUUUUAUURGRGAGRGGUURGRGAGUUAUTUT



UAGGUUURGGGAAAUTTTUAAGAGGGTUTGGGGGGTGGGGGGAGTAAAAAGGGGAGG



GGGTAGGUTGGG





132
UUUAGUUTAUUUUUTUUUUTTTTTAUTUUUUUUAUUUUUUAGAUUUTUTTGAAAGTTT



UURGGGGUUTGAGAGTGGUTRGRGGGURGUTRGRGGGTGGGGGGRGURGGURGGGTUU



URGGAGUTGGARGRGGGGTUURGATRGRGRGUXGGGRGUUAGGUUTRGGGAUTUUTTT



TUAAAGTAARGGTUURGGGAURGRGGGRGGGGAGGRGGRGGUUUAGGRGUAGGTUURG



UTRGURGURGAAGTTUTUTAGRGUUATARGATGUURGGURGUAGURGURGGUTRGGTTT



TUUTUTTUT





133
TTUTUUUTGAAAUTTGTTTGAAAAUUUAAGTGAAAAURGRGARGATUTGUAUAUTUAAA



AGUAAGTGUUAAGTAAGTGUUUTGRGGTGGUUTRGGRGRGUUURGGGGTGAGRGRGUA



AAGURGGGAGRGAGGTGURGRGAGUTGRGRGUXGUUURGGGURGGUUTRGRGTGTGGG



RGGUTGGGRGGUTGGGRGGRGGGAGGARGGUUTURGRGGGUTURGGGAUTGUURGGUT



GGUTGUTRGUAUAAUTTTTTTTTTTTUUUURGTUTGUTGAUTTTTRGGGUUAGGTGAAGT



GTTTGGG





134
UUUAAAUAUTTUAUUTGGUURGAAAAGTUAGUAGARGGGGGAAAAAAAAAAAGTTGTG



RGAGUAGUUAGURGGGUAGTUURGGAGUURGRGGAGGURGTUUTUURGURGUUUAGU



RGUUUAGURGUUUAUARGRGAGGURGGUURGGGGXGGRGRGUAGUTRGRGGUAUUTR



GUTUURGGUTTTGRGRGUTUAUUURGGGGRGRGURGAGGUUAURGUAGGGUAUTTAUT



TGGUAUTTGUTTTTGAGTGTGUAGATRGTRGRGGTTTTUAUTTGGGTTTTUAAAUAAGTT



TUAGGGAGAA





135
ATTURGGGAGATURGRGUUUAGGUURGRGRGUTRGGGGURGUTUTGGUUTUAGAGURG



UTGUURGAUUUAGGAAURGGUAURGRGTRGUUAAGGGUAGTUATTGGRGGURGUAGAR



GGAGGAGGARGGRGTTGGURGGGARGRGGAUAGXGUAGGGUAGRGGRGGGGGRGRGG



GURGGGGUUARGGGRGUAGGGGURGGAGURGUTGUAGURGUAAGURGTTGUARGTGG



AUTTUAAGGAGUTRGGUTGGGARGAUTGGATUATRGRGURGUTGGAUTARGAGGRGTA



UUAUTGRGAGGG





136
UUUTRGUAGTGGTARGUUTRGTAGTUUAGRGGRGRGATGATUUAGTRGTUUUAGURGA



GUTUUTTGAAGTUUARGTGUAARGGUTTGRGGUTGUAGRGGUTURGGUUUUTGRGUUR



GTGGUUURGGUURGRGUUUURGURGUTGUUUTGXGUTGTURGRGTUURGGUUAARGUR



GTUUTUUTURGTUTGRGGURGUUAATGAUTGUUUTTGGRGARGRGGTGURGGTTUUTGG



GTRGGGUAGRGGUTUTGAGGUUAGAGRGGUUURGAGRGRGRGGGUUTGGGRGRGGATU



TUURGGAAT





137
GGGGURGUAGGGGGUTGGAAGGAAGTGRGUAGTGTGGRGAGAGRGRGAAUAAAGUUU



TUTURGGAGUUURGTUAUUUUTRGGTGAUUUUAGGUURGUUURGUTGAGURGRGGGGU



TUURGGGUUTRGUUTURGAGUAGGURGUAURGUUXGGTGGGRGUARGTUAGGUUTURG



RGGURGUURGGGUUAGTGUTUUUUTRGGTUUURGUAGGURGAGUURGRGGURGGUUUR



GAAGGRGRGAGGGAUAGRGRGGURGGRGGTGGAGUUTUAUTUAGGUARGGAGUUUAU



AGAGRGAGGUTG





138
UAGUUTRGUTUTGTGGGUTURGTGUUTGAGTGAGGUTUUAURGURGGURGRGUTGTUU



UTRGRGUUTTRGGGGURGGURGRGGGUTRGGUUTGRGGGGAURGAGGGGAGUAUTGGU



URGGGRGGURGRGGAGGUUTGARGTGRGUUUAUXGGGRGGTGRGGUUTGUTRGGAGGR



GAGGUURGGGAGUUURGRGGUTUAGRGGGGRGGGUUTGGGGTUAURGAGGGGTGARG



GGGUTURGGAGAGGGUTTTGTTRGRGUTUTRGUUAUAUTGRGUAUTTUUTTUUAGUUUU



UTGRGGUUUU





139
URGUTGUUUURGGAUUUTUTUTGUUTGUAUAAUTRGTRGUTUTTRGRGUTGUAGAAUUT



GUAGUUUTGGGURGAGGAUAAUAAAGTGGUTTUAGTGTURGGGUTRGUUTRGGTGGTG



TGAGRGARGUURGTURGATRGGRGTGGAGRGUXGGGUURGGAGRGGTGGAGRGRGRGG



UTGUUTGRGTUUATGGTUTAGTGGUAGURGGGRGRGTGAGGAGRGGUAGGUUTTGAGG



UTGTRGTRGAGGGUTUUTUUAUUAURGGURGGUTUUUAAGUUAGRGTTGRGUAGATGU



ARGGUUAGU





140
GUTGGURGTGUATUTGRGUAARGUTGGUTTGGGAGURGGURGGTGGTGGAGGAGUUUT



RGARGAUAGUUTUAAGGUUTGURGUTUUTUARGRGUURGGUTGUUAUTAGAUUATGGA



RGUAGGUAGURGRGRGUTUUAURGUTURGGGUUXGGRGUTUUARGURGATRGGARGGG



RGTRGUTUAUAUUAURGAGGRGAGUURGGAUAUTGAAGUUAUTTTGTTGTUUTRGGUU



UAGGGUTGUAGGTTUTGUAGRGRGAAGAGRGARGAGTTGTGUAGGUAGAGAGGGTURG



GGGGUAGRGG





141
AUUATTGTUATAGTAAUAUAUAATTRGGGUUUARGTAGAUTTAATUURGAGAGGUAATT



GTTUUUTTGUTTGGGRGGUTARGUTUUURGRGGGGUTGUUTGUAGUUUURGGGUUUTT



GUAGUTURGGGARGGRGRGRGGRGGRGGAGGUXGRGGGGUUUUAAGRGUUAGUUTGG



UUURGGRGUAGATGRGUTGUUURGGURGUAGUUUAGURGURGRGTGTGTTGTUAGGAR



GATRGGAAARGRGTGTGTGGGGAGATGGGTGUUAGTGTRGUUTTGTUUATTATUUAAAA



UUUAGTRGU





142
GRGAUTGGGTTTTGGATAATGGAUAAGGRGAUAUTGGUAUUUATUTUUUUAUAUARGR



GTTTURGATRGTUUTGAUAAUAUARGRGGRGGUTGGGUTGRGGURGGGGUAGRGUATU



TGRGURGGGGUUAGGUTGGRGUTTGGGGUUURGXGGUUTURGURGURGRGRGURGTUU



RGGAGUTGUAAGGGUURGGGGGUTGUAGGUAGUUURGRGGGGAGRGTAGURGUUUAA



GUAAGGGAAUAATTGUUTUTRGGGATTAAGTUTARGTGGGUURGAATTGTGTGTTAUTA



TGAUAATGGT





143
RGRGTURGUUTUUUTGGAUUATTTUAUTUUTTUAAGTUAUTGGUTUUAURGRGTTTTUT



GTTUUUAUUURGTUAUAAUTTTGGGGUTTAAAGGUAUUAGGATUTGGUATUUURGGGA



TGUUAUUTGTUTTUUAGGATGTGTUUTGGUTUUXGATGUUUUAAGUTAAGUUURGGAU



AGGUTGGGAAUUTUTUUUTAGUAGUUUUTGUUUTGGTUUUTAGGGUUURGUAGGUUTT



GGGGTGGUAGTGGUUTTGTUUUATGTUATUUUAGAGGUUTRGGGAGGUAGATGGTTTT



GTUTAGGAA





144
TTUUTAGAUAAAAUUATUTGUUTUURGAGGUUTUTGGGATGAUATGGGAUAAGGUUAU



TGUUAUUUUAAGGUUTGRGGGGUUUTAGGGAUUAGGGUAGGGGUTGUTAGGGAGAGG



TTUUUAGUUTGTURGGGGUTTAGUTTGGGGUATXGGGAGUUAGGAUAUATUUTGGAAG



AUAGGTGGUATUURGGGGATGUUAGATUUTGGTGUUTTTAAGUUUUAAAGTTGTGARG



GGGTGGGAAUAGAAAARGRGGTGGAGUUAGTGAUTTGAAGGAGTGAAATGGTUUAGGG



AGGRGGARGRG





145
UTTTUTTTGTTATUTUURGTGAAAUUTTUAUTTAGUAGGTGGARGGAGUUURGRGAURG



GGUAGAGTURGGGUTRGUURGAGGAUAGGAGGAGGAGRGGGAGUURGRGRGTUURGG



GAGAGRGUUURGAGTGUAGGTUUURGUUURGUUXGGRGAGUUURGUTGGAGRGAGUU



UAGRGRGURGGGGUTGGGGGGRGGUUARGAUUUUUUUTGAAGGGGGTGGUUARGGAG



RGUAUUURGAGAAGRGAGUUUUUUTUUUUAGAGRGUTGUTUUTGRGGUTGUTGUTGUT



GUTGGTGAUUAA





146
TTGGTUAUUAGUAGUAGUAGUAGURGUAGGAGUAGRGUTUTGGGGAGGGGGGUTRGUT



TUTRGGGGTGRGUTURGTGGUUAUUUUUTTUAGGGGGGGTRGTGGURGUUUUUUAGUU



URGGRGRGUTGGGUTRGUTUUAGRGGGGUTRGUXGGGRGGGGRGGGGAUUTGUAUTRG



GGGRGUTUTUURGGGARGRGRGGGUTUURGUTUUTUUTUUTGTUUTRGGGRGAGUURG



GAUTUTGUURGGTRGRGGGGUTURGTUUAUUTGUTAAGTGAAGGTTTUARGGGAGATA



AUAAAGAAAG





147
GUUAGRGRGGGURGURGGRGATGARGGURGRGAAGUAGGAGURGUAGUUUAUUURGG



GGGUUAGGGRGAGUUAGGRGUAGURGGRGGAUUAGGTGAGAGTRGGUAGURGRGGUU



AGGUUUTUURGGGAGGGGTGGUTUUAGTGRGRGUTUXGUURGUUTUURGUTTUUUAGG



UTGGGUTUURGRGUUTUUUTUTTUTUAUUUTUUUURGUUURGUUUUAGTTUUAGGUTU



TUUTGUTTUTUUARGGAUTUTGRGGGAAGTTAGAGUUTUTGRGTGRGUTURGGGGUURG



GRGAGAGGATG





148
UATUUTUTRGURGGGUUURGGAGRGUARGUAGAGGUTUTAAUTTUURGUAGAGTURGT



GGAGAAGUAGGAGAGUUTGGAAUTGGGGRGGGGRGGGGGAGGGTGAGAAGAGGGAGG



RGRGGGAGUUUAGUUTGGGAAGRGGGAGGRGGGXGGAGRGRGUAUTGGAGUUAUUUU



TUURGGGAGGGUUTGGURGRGGUTGURGAUTUTUAUUTGGTURGURGGUTGRGUUTGG



UTRGUUUTGGUUUURGGGGTGGGUTGRGGUTUUTGUTTRGRGGURGTUATRGURGGRG



GUURGRGUTGGU





149
GGUTGAAGGTGUUURGGGGAAUUURGGRGGGRGGUUUAURGAGGGAGGGAGAGGRGG



URGGGAUUAAGGAATGGGGUUTUTTGGTTUUUUATTAARGUARGUTGAAGAAATUTGU



TGRGUTUUTGARGGURGUTUAURGGGTTRGAGUUUXGTUUTUUTATAGURGGGGRGUTR



GUTGGUUAAAGRGAUURGAGUAGGRGAATGAUUTTTAGGRGGARGGGGTTTTUUUTUT



GUTTTUTTGTTTUTTTTGAGGAGARGGGTGTGTGTTTGTGAGGTGGGGATGGGGGAAGAG



TGTUUUAG





150
UTGGGAUAUTUTTUUUUUATUUUUAUUTUAUAAAUAUAUAUURGTUTUUTUAAAAGAA



AUAAGAAAGUAGAGGGAAAAUUURGTURGUUTAAAGGTUATTRGUUTGUTRGGGTRGU



TTTGGUUAGRGAGRGUUURGGUTATAGGAGGAXGGGGUTRGAAUURGGTGAGRGGURG



TUAGGAGRGUAGUAGATTTUTTUAGRGTGRGTTAATGGGGAAUUAAGAGGUUUUATTU



UTTGGTUURGGURGUUTUTUUUTUUUTRGGTGGGURGUURGURGGGGTTUUURGGGGU



AUUTTUAGUU





151
GRGAGTTGTAAAUUTUAGAGAAAGGUAUTTGTUUUUAGUAAAARGUTTGGAGAGGAUR



GTGUARGUTGTGUTGUUUURGUUURGAGARGRGURGGGURGURGGGTUAURGGTTTTU



RGAAAGGGAUURGGUAGAGAUAAAGTGUUTTRGUXGUTGRGATAGGTTGGTTTTAUTTT



GUAATAAAUAGUUUUTAATGGGAURGGGRGURGGGRGGAGAGUTRGGUURGGGGRGR



GGUUTTTGURGUUTGGUTUTGRGGGURGUUURGURGGGRGUUAGGTTTTGGGGGGTGG



UURGGUUURG





152
RGGGGURGGGUUAUUUUUUAAAAUUTGGRGUURGGRGGGGRGGUURGUAGAGUUAGG



RGGUAAAGGURGRGUUURGGGURGAGUTUTURGUURGGRGUURGGTUUUATTAGGGGU



TGTTTATTGUAAAGTAAAAUUAAUUTATRGUAGXGGRGAAGGUAUTTTGTUTUTGURGG



GTUUUTTTRGGAAAAURGGTGAUURGGRGGUURGGRGRGTUTRGGGGRGGGGGUAGUA



UAGRGTGUARGGTUUTUTUUAAGRGTTTTGUTGGGGAUAAGTGUUTTTUTUTGAGGTTT



AUAAUTRGU





153
TTGRGGAGTURGURGRGGUUTRGGUTUURGUURGGRGUURGGUUTGGUUUUAURGURG



UTUAUTRGGTURGUATRGURGUUAUUTURGGAGUTGGTGGGGAGUURGGRGAGGGAGG



GUUTGGAAGGGGUUUTGGGRGURGAGTUUUURGUXGGRGURGAUAURGUUTGUUAGG



AGUAGURGGUUTGUTRGAGGTGAUTGUAGURGRGRGGTTUTGGRGRGGUTTUTTUAUU



AAUATGAGRGGGTUTUTGRGTURGAGAGTGAGRGUAGURGGGUAGRGUUTAGTGGATT



AUAGUAGARGU





154
GRGTUTGUTGTAATUUAUTAGGRGUTGUURGGUTGRGUTUAUTUTRGGARGUAGAGAU



URGUTUATGTTGGTGAAGAAGURGRGUUAGAAURGRGRGGUTGUAGTUAUUTRGAGUA



GGURGGUTGUTUUTGGUAGGRGGTGTRGGRGUXGGRGGGGGAUTRGGRGUUUAGGGUU



UUTTUUAGGUUUTUUUTRGURGGGUTUUUUAUUAGUTURGGAGGTGGRGGRGATGRGG



AURGAGTGAGRGGRGGTGGGGUUAGGURGGGRGURGGGRGGGAGURGAGGURGRGGR



GGAUTURGUAA





155
TAGGAGGUURGUTUTGUAUUTTUUTTAUTGTGGARGGGUUUTUTGAGUTUTGAGGUUTG



GRGGGAGAGRGRGTGUAGUTRGAGUTUUTUTTUUUAUUUAGUUUURGRGUUUTAUUTG



GTRGAUUTTURGUAGUUTUAGUURGGTUTTGUXGRGUTRGTUUTTGUAUAGGTGGATUT



RGRGUAUUURGGGUTTGATUTUAGUTRGURGUARGUUUAGGUTGTAUURGGTTAURGG



TGUUAUUATUTGGURGGGUURGGGGUURGAGAURGUTGTUTGUAGAUAUUAGGGGGU



AGGGGGTUA





156
TGAUUUUUTGUUUUUTGGTGTUTGUAGAUAGRGGTUTRGGGUUURGGGUURGGUUAGA



TGGTGGUAURGGTAAURGGGTAUAGUUTGGGRGTGRGGRGAGUTGAGATUAAGUURGG



GGTGRGRGAGATUUAUUTGTGUAAGGARGAGRGXGGUAAGAURGGGUTGAGGUTGRGG



AAGGTRGAUUAGGTAGGGRGRGGGGGUTGGGTGGGAAGAGGAGUTRGAGUTGUARGRG



UTUTUURGUUAGGUUTUAGAGUTUAGAGGGUURGTUUAUAGTAAGGAAGGTGUAGAGR



GGGUUTUUTA





157
UUTGTURGRGUTUUUAGUUUUUARGUAGUUAGAUAUURGRGGGTGUTGAGATGAAGAG



TGAAGTUAUUAGGAGAGAUAGGAAAUAGRGRGGGUUTRGGGGAUURGAGGGRGRGGA



AGUTRGGGGGURGGGGTRGAGUAUAGATTGGGAGGXGUAGRGUTGGGRGUARGTUUUR



GTRGGUURGGRGGUUUUTAATGAGGRGRGUTGTGRGUAGAUTGUTAAGAGUAGUATGA



GUARGGUTURGGRGGUUUUUAGGGUUURGRGGGTRGGRGUUAUUURGGAGRGRGGTG



UURGGAATUAUT





158
AGTGATTURGGGUAURGRGUTURGGGGTGGRGURGAUURGRGGGGUUUTGGGGGURGU



RGGAGURGTGUTUATGUTGUTUTTAGUAGTUTGRGUAUAGRGRGUUTUATTAGGGGURG



URGGGURGARGGGGARGTGRGUUUAGRGUTGXGUUTUUUAATUTGTGUTRGAUUURGG



UUUURGAGUTTURGRGUUUTRGGGTUUURGAGGUURGRGUTGTTTUUTGTUTUTUUTGG



TGAUTTUAUTUTTUATUTUAGUAUURGRGGGTGTUTGGUTGRGTGGGGGUTGGGAGRGR



GGAUAGG





159
UATUUTTUURGGAAAAGTAUAAAUAGTTUUTUAGARGAGGTUUUUUAUUTUUUARGRG



UTUUUUAGUUUTUUUTUUUTGRGGAGAGUUURGRGAUAGUUTUUUUAAUAUUTGTGAA



TUATURGGGAGGUTGUUAURGURGAGRGATURGXGUAUUAUUUUUTTUURGGGUURGG



GUARGGUUAGGGAGGAUAGTTAGGGTTGTTGUTTTATAATTATUAUTTTTAATUTUTAAT



ARGAUUAGUAUAAGTAGUUTTTGTUTUUURGUUUTGATTTGAGUATURGAGGGUUUUU



RGAGGUAG





160
UTGUUTRGGGGGGUUUTRGGATGUTUAAATUAGGGRGGGGAGAUAAAGGUTAUTTGTG



UTGGTRGTATTAGAGATTAAAAGTGATAATTATAAAGUAAUAAUUUTAAUTGTUUTUUU



TGGURGTGUURGGGUURGGGAAGGGGGTGGTGXGRGGATRGUTRGGRGGTGGUAGUUT



UURGGATGATTUAUAGGTGTTGGGGAGGUTGTRGRGGGGUTUTURGUAGGGAGGGAGG



GUTGGGGAGRGRGTGGGAGGTGGGGGAUUTRGTUTGAGGAAUTGTTTGTAUTTTTURGG



GAAGGATG





161
URGGAGARGAUTUUAGGGUTGGGTGAGGRGUTGAUUUUUAGGAGUTGGGGTGURGAGG



GGRGRGGGUUAUAGRGGTGRGAGUUAGTRGGGRGUURGRGRGGTGGGGRGRGRGGRGR



GGGGATTGGRGGGRGUTUUURGGTGUUXGUAGUTUTTUAGXGTAGURGGGAAGAGURG



RGRGTUTGRGRGUUAGUUUURGUUUTGGGUURGURGUURGAGUTUTUTGGRGUAGRGU



TAGUTURGURGRGUTUAGUTGUUUTGRGURGGUAUUUUTGGTUATGAGRGUUUUUTRG



ARGUTGUUUU





162
GGGGUAGRGTRGAGGGGGRGUTUATGAUUAGGGGTGURGGRGUAGGGUAGUTGAGRGR



GGRGGAGUTAGRGUTGRGUUAGAGAGUTRGGGRGGRGGGUUUAGGGRGGGGGUTGGR



GRGUAGARGRGRGGUTUTTUURGGUTAXGUTGAAGAGUTGXGGGUAURGGGGAGRGUU



RGUUAATUUURGRGURGRGRGUUUUAURGRGRGGGRGUURGAUTGGUTRGUAURGUTG



TGGUURGRGUUUUTRGGUAUUUUAGUTUUTGGGGGTUAGRGUUTUAUUUAGUUUTGGA



GTRGTUTURGG





163
RGTGUUARGUAAARGURGTRGTURGUAURGGTRGRGAUTRGGUAAGGGAGRGGGRGGA



GAGUTGAUTRGRGGRGGAGGGGGGTUAUTRGURGGARGGAARGUTGRGRGUAGUUATR



GUTRGUTGTUAGURGRGTUUUAAUURGUTAGGAXGUTGGGUUUTGURGGRGGGATUUT



UUUUTTAUTRGGAAAGGGGAGGRGURGGUUAUAGTAGGRGARGAGURGRGUTRGGUUA



UUAURGRGGTGGURGGRGGAAUUUTRGUTUTUUUUURGTUAUUURGTRGAGGGGGAAG



UTGAGGAGGG





164
UUUTUUTUAGUTTUUUUUTRGARGGGGTGARGGGGGGAGAGRGAGGGTTURGURGGUU



AURGRGGTGGTGGURGAGRGRGGUTRGTRGUUTAUTGTGGURGGRGUUTUUUUTTTURG



AGTAAGGGGAGGATUURGURGGUAGGGUUUAGXGTUUTAGRGGGTTGGGARGRGGUTG



AUAGRGAGRGATGGUTGRGRGUAGRGTTURGTURGGRGAGTGAUUUUUUTURGURGRG



AGTUAGUTUTURGUURGUTUUUTTGURGAGTRGRGAURGGTGRGGARGARGGRGTTTGR



GTGGUARG





165
UURGGRGAGARGAATGUAGUAUARGGURGUUTTTATGGGGUURGUAGAUAGRGRGTRG



UUAGGUTAAUUUTGRGTGGAAAATTRGGAGGTGGAAGGRGAGGRGUUTTATTGAGGGG



GURGGUAGRGGRGGRGGRGGRGGRGAGGGGGRGGXGGGGGUTGTGRGGUURGGGURG



GAAARGTGAGURGGGUTGGGGGRGGRGAUUAUUUURGRGUATTUUURGGUUUTUURGG



GAUUAURGRGRGUUURGGURGGUAGGTGGAGGAGUAGGAGGRGUUUTUAURGTUUUR



GUUUTGGGAGGA





166
TUUTUUUAGGGRGGGGARGGTGAGGGRGUUTUUTGUTUUTUUAUUTGURGGURGGGGR



GRGRGGTGGTUURGGGAGGGURGGGGAATGRGRGGGGGTGGTRGURGUUUUUAGUURG



GUTUARGTTTURGGUURGGGURGUAUAGUUUUXGURGUUUUUTRGURGURGURGURGU



RGUTGURGGUUUUUTUAATAAGGRGUUTRGUUTTUUAUUTURGAATTTTUUARGUAGG



GTTAGUUTGGRGARGRGUTGTUTGRGGGUUUUATAAAGGRGGURGTGTGUTGUATTRGT



UTRGURGGG





167
TUTGATGGTGGURGRGTGTTGGGUTTUAGTAGUUUUTGGAGUUUATUTAUTRGAAATAA



ATATTTUTRGGTAGUUATGGAAGTTGGAGUTGAGAAGUURGGGRGGGGGTGUUTGURG



GATGUUUURGGTTUUUUTUTTTTUUUAUTRGUXGUUAAUTTAAUTTTTURGGGGGATGG



ATRGGUTGGTTGAGAAAGAGGAUARGUATAUTRGGTGTGAARGAGGTUARGAAUUUTU



TGAUUUUAGGGAGAGATTTUTGUUAAGRGTAAGGTGTUTTTGGATUUUUUUAUUTUTGT



UUUAGGT





168
AUUTGGGAUAGAGGTGGGGGGATUUAAAGAUAUUTTARGUTTGGUAGAAATUTUTUUU



TGGGGTUAGAGGGTTRGTGAUUTRGTTUAUAURGAGTATGRGTGTUUTUTTTUTUAAUU



AGURGATUUATUUUURGGAAAAGTTAAGTTGGXGGRGAGTGGGAAAAGAGGGGAAURG



GGGGUATURGGUAGGUAUUUURGUURGGGUTTUTUAGUTUUAAUTTUUATGGUTAURG



AGAAATATTTATTTRGAGTAGATGGGUTUUAGGGGUTAUTGAAGUUUAAUARGRGGUU



AUUATUAGA





169
GGRGGRGATRGGAGRGGRGGRGGTGGTUTRGGRGGRGGRGGRGGRGGRGGRGGUAGGG



AGRGGGUTUURGGTGURGGGUAURGGGRGGGRGGRGGGGAAGATGAURGRGGGRGURG



GRGTGUTUUTTUTGUTGUTUTRGUTUTURGGRGXGUTURGGGTAAGTTGURGUUTUURG



UUUURGURGTTRGGAAGUUURGGGUAGRGGGAGGTRGTUUURGGATUURGRGGGGRGU



TUAUAUAUURGGRGGGGUTUTUURGGGUTUUUURGURGRGUTUUURGUTGUATUUAGU



URGGRGUUU





170
GGGRGURGGGUTGGATGUAGRGGGGAGRGRGGRGGGGGAGUURGGGAGAGUUURGUR



GGGTGTGTGAGRGUUURGRGGGATURGGGGARGAUUTUURGUTGUURGGGGUTTURGA



ARGGRGGGGGRGGGAGGRGGUAAUTTAUURGGAGXGRGURGGAGAGRGAGAGUAGUA



GAAGGAGUARGURGGRGUURGRGGTUATUTTUUURGURGUURGUURGGTGUURGGUAU



RGGGAGUURGUTUUUTGURGURGURGURGURGURGURGURGAGAUUAURGURGURGUT



URGATRGURGUU





171
URGRGUTGRGGGTGGGRGGRGGGGTAGGAUTGRGGGGUAUTUTUAUUUURGAGUUUTR



GGRGGGGUTGGAGUUTGRGTGTURGGRGGGGUUURGGGGGUTGGGAGUTGGGURGGGU



TTGGGURGGGAAGURGGARGURGGGRGGGRGRGGXGRGGGAGGGRGUUURGGGAGGG



RGAGRGGGTUTUURGUTGUUTUTGUAGAGUUURGRGGGURGGATTGUUAGUTTTGUTUT



GRGUUTGGRGAGGTGRGRGGUURGRGGGGGUAGAGAGRGRGGRGGUTURGGGGGRGUU



UUTGGGRGGA





172
TURGUUUAGGGGRGUUUURGGAGURGURGRGUTUTUTGUUUURGRGGGURGRGUAUUT



RGUUAGGRGUAGAGUAAAGUTGGUAATURGGUURGRGGGGUTUTGUAGAGGUAGRGG



GAGAUURGUTRGUUUTUURGGGGRGUUUTUURGXGURGRGUURGUURGGRGTURGGUT



TUURGGUUUAAGUURGGUUUAGUTUUUAGUUUURGGGGUUURGURGGAUARGUAGGU



TUUAGUUURGURGAGGGUTRGGGGGTGAGAGTGUUURGUAGTUUTAUUURGURGUUUA



UURGUAGRGRGG





173
UURGGRGTURGRGTUUUURGGRGRGRGUUTTGGGGAURGGGTTGGTGGRGUUURGRGT



GGGGUURGGTGGGUTTUURGGAGGGTTURGGGGGTRGGUUTGRGGRGRGTGRGGGGGA



GGAGARGGTTURGGGGGAURGGURGRGAUTGRGGXGGRGGTGGTGGGGGGAGURGRGG



GGATRGURGAGGGURGGTRGGURGUUURGGGTGURGRGRGGTGURGURGGRGGRGGTG



AGGUUURGRGRGTGTGTUURGGUTGRGGTRGGURGRGUTRGAGGGGTUUURGTGGRGT



UUUUTTUUUU





174
GGGGAAGGGGARGUUARGGGGAUUUUTRGAGRGRGGURGAURGUAGURGGGAUAUAR



GRGRGGGGUUTUAURGURGURGGRGGUAURGRGRGGUAUURGGGGRGGURGAURGGU



UUTRGGRGATUUURGRGGUTUUUUUUAUUAURGUXGURGUAGTRGRGGURGGTUUUUR



GGAAURGTUTUUTUUUURGUARGRGURGUAGGURGAUUUURGGAAUUUTURGGGAAG



UUUAURGGGUUUUARGRGGGGRGUUAUUAAUURGGTUUUUAAGGRGRGRGURGGGGG



ARGRGGARGURGGG





175
UUTTTUTRGRGUUTTUUURGTRGUUURGGUUTRGUURGTGGTUTUTRGTUTTUTUURGG



UURGUTUTTURGAAURGGGTRGGRGRGTUUUURGGGTGRGUUTRGUTTUURGGGUUTGU



RGRGGUUUTTUUURGAGGRGTURGTUURGGGXGTRGGRGTRGGGGAGAGUURGTUUTU



UURGRGTGGRGTRGUUURGTTRGGRGRGRGRGTGRGUURGAGRGRGGUURGGTGGTUU



UTUURGGAUAGGRGTTRGTGRGARGTGTGGRGTGGGTRGAUUTURGUUTTGURGGTRGU



TRGUUUT





176
AGGGRGAGRGAURGGUAAGGRGGAGGTRGAUUUARGUUAUARGTRGUARGAARGUUTG



TURGGGAGGGAUUAURGGGURGRGUTRGGGRGUARGRGRGRGURGAARGGGGRGARGU



UARGRGGGGAGGARGGGUTUTUUURGARGURGAXGUURGGGARGGARGUUTRGGGGA



AGGGURGRGGUAGGUURGGGAAGRGAGGRGUAUURGGGGGARGRGURGAUURGGTTR



GGAAGAGRGGGURGGGAGAAGARGAGAGAUUARGGGRGAGGURGGGGRGARGGGGAA



GGRGRGAGAAAGG





177
GGGRGGGTGGTTGGGGRGTURGGTTRGURGRGUUURGUUURGGUUUUAURGGTUURGG



URGURGUUUURGRGUURGUTRGUTUUUTUURGTURGUURGTURGRGGUURGTURGTUR



GTURGTURGTRGTUUTUUTRGUTTGRGGGGRGUXGGGUURGTUUTRGRGAGGUUUUURG



GURGGURGTURGGURGRGTRGGGGUUTRGURGRGUTUTAUUTAUUTAUUTGGTTGATUU



TGUUAGTAGUATATGUTTGTUTUAAAGATTAAGUUATGUATGTUTAAGTARGUARGGUR



GGTAUAG





178
UTGTAURGGURGTGRGTAUTTAGAUATGUATGGUTTAATUTTTGAGAUAAGUATATGUT



AUTGGUAGGATUAAUUAGGTAGGTAGGTAGAGRGRGGRGAGGUUURGARGRGGURGGA



RGGURGGURGGGGGGUUTRGRGAGGARGGGUUXGGRGUUURGUAAGRGAGGAGGARG



ARGGARGGARGGARGGARGGGURGRGGARGGGRGGARGGGAGGGAGRGAGRGGGRGR



GGGGGRGGRGGURGGGAURGGTGGGGURGGGGRGGGGRGRGGRGAAURGGARGUUUU



AAUUAUURGUUU





179
TATTUAGAUTGGGAGUTGGGGTUAGAGTGTUTURGTUTURGGAGGGGGAUUTTUUAGA



UUURGGGRGGGAGGGGUUUAUAGUAGGGTGUUURGGRGGUUUUAGGAGGGGGTURGG



GUUTRGGGRGAAGGUTGRGGRGUUURGGAAGGAGUXGRGUARGUUUUTGUARGRGGTG



UURGUTGRGGAGGUUARGGATURGGAGGTGAGAGRGUUUURGUUURGUTUUUTGUUUA



GUURGRGRGRGGUURGGTURGGGGUTGGGGGRGGGRGUUAAGAGGGGRGURGGGRGU



AGTGGGGRGGUU





180
GGURGUUUUAUTGRGUURGGRGUUUUTUTTGGRGUURGUUUUUAGUUURGGAURGGGU



RGRGRGRGGGUTGGGUAGGGAGRGGGGRGGGGGRGUTUTUAUUTURGGATURGTGGUU



TURGUAGRGGGUAURGRGTGUAGGGGRGTGRGXGGUTUUTTURGGGGRGURGUAGUUT



TRGUURGAGGUURGGAUUUUUTUUTGGGGURGURGGGGUAUUUTGUTGTGGGUUUUTU



URGUURGGGGTUTGGAAGGTUUUUUTURGGAGARGGAGAUAUTUTGAUUUUAGUTUUU



AGTUTGAATA





181
GRGAUTTRGTUTGGUUUUAAAAUUTTTGUUUTUUATTUUUUAGRGTUURGGAURGGTUU



TTGUTUATUTUTUAGGGGUAAUAUUTGAUUUARGGGGUURGTUURGGAGUTUTUTTRG



AUTURGGGAUUAGTTUUUAGUUUTTUAGTAUTXGGUATAURGGAAGGAGGATTUUTGU



TUUUTTUTUTUUTUUTAGAUUURGAGGUTTGGAGUTTAUTUTUUAGATGAGAUTAAAAA



GUUUTAAATTAATUUUUUTATAGRGUAUUUUTUUUTRGUAGRGUUUTGGTRGGGGGUU



TUUATTGT





182
AUAATGGAGGUUUURGAUUAGGGRGUTGRGAGGGAGGGGTGRGUTATAGGGGGATTAA



TTTAGGGUTTTTTAGTUTUATUTGGAGAGTAAGUTUUAAGUUTRGGGGTUTAGGAGGAG



AGAAGGGAGUAGGAATUUTUUTTURGGTATGUXGAGTAUTGAAGGGUTGGGAAUTGGT



UURGGAGTRGAAGAGAGUTURGGGARGGGUUURGTGGGTUAGGTGTTGUUUUTGAGAG



ATGAGUAAGGAURGGTURGGGARGUTGGGGAATGGAGGGUAAAGGTTTTGGGGUUAGA



RGAAGTRGU





183
UUARGGURGAGGGGURGGAGUTGUUTUTGTGRGAGGGAGUUUTGGURGRGGRGUAGGT



AGGAURGGGGAAUUUAAGGAGGGRGGGAGGAAAGRGUUUUTGGTGGGGGAGGGGURG



TGGRGGGGTUTGGGGGUUAAGGGUTURGGGURGAAXGAGGGGUAUARGURGGAGUAG



UTUUAGUUTGGGAGUATTGGGRGTGAARGTGGGGGAAAGTAGGGAUUAGATTAUAGGA



TUAAGGUTTTUUURGGUTUAGAAUTGGATTGTTUAGTGUUUUTAGAAGGGGUAGRGGG



TRGUUUARGRGA





184
TRGRGTGGGRGAUURGUTGUUUUTTUTAGGGGUAUTGAAUAATUUAGTTUTGAGURGG



GGAAAGUUTTGATUUTGTAATUTGGTUUUTAUTTTUUUUUARGTTUARGUUUAATGUTU



UUAGGUTGGAGUTGUTURGGRGTGTGUUUUTXGTTRGGUURGGAGUUUTTGGUUUUUA



GAUUURGUUARGGUUUUTUUUUUAUUAGGGGRGUTTTUUTUURGUUUTUUTTGGGTTU



UURGGTUUTAUUTGRGURGRGGUUAGGGUTUUUTRGUAUAGAGGUAGUTURGGUUUUT



RGGURGTGG





185
GAGAARGGAGUTGUURGTGRGGGGTGRGRGUUAAGGRGGGGGAUAGGARGGGUURGG



RGTUTGURGAGAUUTAGGUTGUURGUATTURGUTRGRGGUTUUUUTTUTGUUTUURGUT



UTAGRGGRGURGGAGURGXGUTGGUUUURGUUURGUURGGUAGUTUUXGXGAGTUAG



AGUURGGTGUUUUUAGAURGRGGGUAGTRGGGGUUTUATTURGGGUUAGAGUAGGAA



AGAGUURGAUUUAUUTUUTRGGTTUTTUUAGGGAAUUUUTTUTRGGAGGGRGUUUTGG



GUUTURGRGUUA





186
TGGRGRGGAGGUUUAGGGRGUUUTURGAGAAGGGGTTUUUTGGAAGAAURGAGGAGGT



GGGTRGGGUTUTTTUUTGUTUTGGUURGGAATGAGGUUURGAUTGUURGRGGTUTGGG



GGUAURGGGUTUTGAUTXGXGGGAGUTGURGGGRGGGGRGGGGGUUAGXGRGGUTUR



GGRGURGUTAGAGRGGGAGGUAGAAGGGGAGURGRGAGRGGAATGRGGGUAGUUTAG



GTUTRGGUAGARGURGGGUURGTUUTGTUUUURGUUTTGGRGRGUAUUURGUARGGGU



AGUTURGTTUTU





187
AGTAGGTGAAUTTGAGGTAGAAGRGGGARGTGTAUTTUTURGGUTGURGGTRGGGGTRG



RGGUTUTRGTTGAGRGTGTUUURGAAGAUUTUUTTGGUUAGRGRGATGRGUURGUAUA



UUATGATGRGRGUUAUARGURGGAATTTGGRGTXGGUUTGGTTGTRGRGUARGGTGGTG



TAGGAGUUURGGTAGUUUAGRGTGAGGAAGUURGAGRGUTTGTUUTGRGRGURGURGU



RGURGUUAUUAURGTGRGUTUURGGGUURGAGGGUARGGRGGURGURGUUURGRGUA



GUAGUAGRG





188
RGUTGUTGUTGRGRGGGGRGGRGGURGURGTGUUUTRGGGUURGGGAGRGUARGGTGG



TGGRGGRGGRGGRGGRGRGUAGGAUAAGRGUTRGGGUTTUUTUARGUTGGGUTAURGG



GGUTUUTAUAUUAURGTGRGRGAUAAUUAGGUXGARGUUAAATTURGGRGTGTGGRGR



GUATUATGGTGTGRGGGRGUATRGRGUTGGUUAAGGAGGTUTTRGGGGAUARGUTUAA



RGAGAGURGRGAUUURGAURGGUAGURGGAGAAGTAUARGTUURGUTTUTAUUTUAAG



TTUAUUTAUT





189
GURGRGAUUUUTGRGUTUUUAGUAGGGUUAAGAGGAUUTRGRGGGUAUUAGRGTURG



GGRGGGAAGGGARGTGTGUUUAAGUUTRGUUTUUTGGUUUTUAGTGGGUTGGGARGUU



UTTGATUAURGGRGUAGGAAAGAGGUTUUUUAGUUXGTGAGUTTRGTURGGGRGUUAG



GGUAGGGATGGUTGGTGGTGTGUAUTGGAGAGUARGARGGTGARGUTGRGTGGGAAAG



AGARGTGGGAAGGGUATAGURGGATTATUUAUTUAGUTUUAATTTTUTUUAAGRGUUA



UTUAUUUUAUA





190
TGTGGGGTGAGTGGRGUTTGGAGAAAATTGGAGUTGAGTGGATAATURGGUTATGUUUT



TUUUARGTUTUTTTUUUARGUAGRGTUAURGTRGTGUTUTUUAGTGUAUAUUAUUAGU



UATUUUTGUUUTGGRGUURGGARGAAGUTUAXGGGUTGGGGAGUUTUTTTUUTGRGUR



GGTGATUAAGGGRGTUUUAGUUUAUTGAGGGUUAGGAGGRGAGGUTTGGGUAUARGTU



UUTTUURGUURGGARGUTGGTGUURGRGAGGTUUTUTTGGUUUTGUTGGGAGRGUAGG



GGTRGRGGU





191
CTGGGTTTGGAGTTGGGTAGRGRGGCCAGGTGARGGTCTCCTTCCCTGGGCRGTCAGGGC



TGCAGGRGGCTGTGACACTCRGGAGGCCTRGACAGAGGGGTCCCAGGRGCAGRGTACCR



GGGCTCCTCTTGCCTCAGRGGAGRGTCCCAXGGCAGTCCRGGACCRGRGCCTCTCCRGCC



RGGCTCCTGCARGCCCAGRGAGCCTGCAGCCTGGGATCCTCRGCTCCTGCATCCRGGCTR



GGGATGGGTCCRGGCTCCCCACCTCARGCRGGRGGGGCCACCCTTTCACTCRGCCTCCAT



C





192
GATGGAGGRGGAGTGAAAGGGTGGCCCRGCRGGRGTGAGGTGGGGAGCRGGGACCCAT



CCRGAGCRGGGATGCAGGAGRGGAGGATCCCAGGCTGCAGGCTRGCTGGGRGTGCAGG



AGCRGGGRGGGAGAGGRGRGGGTCRGGGACTGCXGTGGGARGCTCRGCTGAGGCAAGA



GGAGCCRGGGTARGCTGRGCCTGGGACCCCTCTGTRGAGGCCTCRGGAGTGTCACAGCR



GCCTGCAGCCCTGARGGCCCAGGGAAGGAGACRGTCACCTGGCRGRGCTACCCAACTCC



AAACCCAG





193
UUUTUAUUTUTAGUUUUTRGGUTTUAGUTUAGGUUUUTRGGGGAGUATUUUTTGURGT



GAGAUTGAUAGUUTTTGGGGGRGUAGGGTUUTGTTUTUTGRGUTUTAGUUUATUTGTGR



GUAGAGUUTRGTTUUUAGGRGUUTGGAAUURGGXGGGUATTGARGTUAAGRGURGGRG



GAGRGUTGUUTAUAGARGGTTGAUURGGGUUUTUUTUUAUAUUUUUTTUUTTUTTRGU



UTUUTUUUTUTTTUUTGUARGGGGGUTRGGGUTUAUTATAAAAGGTGGGAGRGRGTGGT



GUUUUAGU





194
GUTGGGGUAUUARGRGUTUUUAUUTTTTATAGTGAGUURGAGUUUURGTGUAGGAAAG



AGGGAGGAGGRGAAGAAGGAAGGGGGTGTGGAGGAGGGUURGGGTUAAURGTUTGTA



GGUAGRGUTURGURGGRGUTTGARGTUAATGUUXGURGGGTTUUAGGRGUUTGGGAAR



GAGGUTUTGRGUAUAGATGGGUTAGAGRGUAGAGAAUAGGAUUUTGRGUUUUUAAAG



GUTGTUAGTUTUARGGUAAGGGATGUTUUURGAGGGGUUTGAGUTGAAGURGAGGGGU



TAGAGGTGAGGG





195
TTGUTGUTAAATGTUAUAAAAGTUAUUTAAAGGUAUAGAGGAGGURGUTUTGTTTTTGR



GAAAUTTGUTAAAATTAATUTGRGUTGGGUUAUTTGUAGAAAGUAGAAUUAUUTUURG



UUUUUAUUTRGUUTUUAGURGURGGGGTTUAGGXGTTTGTGAAAGAUAGAAUUTTTGG



GUTAGGGAUURGGGUAUTGGTGUTTRGAAGTURGAATURGURGGURGAGAAAARGAUA



AGAGAAAGAAAATUUAGRGGGRGUTUTUTUUAGRGUUAGGURGGTGTAGGAGGGRGUT



GGGGUTRGG





196
URGAGUUUUAGRGUUUTUUTAUAURGGUUTGGRGUTGGAGAGAGRGUURGUTGGATTT



TUTTTUTUTTGTRGTTTTUTRGGURGGRGGATTRGGAUTTRGAAGUAUUAGTGUURGGGT



UUUTAGUUUAAAGGTTUTGTUTTTUAUAAAXGUUTGAAUUURGGRGGUTGGAGGRGAG



GTGGGGGRGGGAGGTGGTTUTGUTTTUTGUAAGTGGUUUAGRGUAGATTAATTTTAGUA



AGTTTRGUAAAAAUAGAGRGGUUTUUTUTGTGUUTTTAGGTGAUTTTTGTGAUATTTAG



UAGUAA





197
AURGAGRGUTGGAGGURGUTUUARGRGRGAGUTRGAAUUARGGAGGGUTUTUAGUTRG



GAUAAGRGTRGUTGTUTAAGAGUTUUAAGUTUUARGGAAUTTTGATTTTATGUURGGGA



GUURGGTUATUUAUTTUTGUATUTUAGAUAAGXGURGGAGGUTRGTGUAGUTTUUTRG



RGTUUTUTTUUTGGARGRGGGGRGUUUAUUTTAGTUATAGUUUUTGGTUURGGUAUTG



UTUARGURGTRGGTTTUUUUAUTGUUUAGGUTUUUTUAGUURGAAUUUTGRGTUTUTGT



TUAUATTG





198
UAATGTGAAUAGAGARGUAGGGTTRGGGUTGAGGGAGUUTGGGUAGTGGGGAAAURGA



RGGRGTGAGUAGTGURGGGAUUAGGGGUTATGAUTAAGGTGGGRGUUURGRGTUUAGG



AAGAGGARGRGAGGAAGUTGUARGAGUUTURGGXGUTTGTUTGAGATGUAGAAGTGGA



TGAURGGGUTUURGGGUATAAAATUAAAGTTURGTGGAGUTTGGAGUTUTTAGAUAGR



GARGUTTGTURGAGUTGAGAGUUUTURGTGGTTRGAGUTRGRGRGTGGAGRGGUUTUUA



GRGUTRGGT





199
AAUAGUAGGUTGAAUUAGAAUTAAGAGAAAATTGGGUAGAGAGAAGGUAATGGRGAG



TUUAUUTAGGGGUTGGGGUTGRGGAGAGUTGUTGUTGUUUTTUATGUTUUTGGGGARG



UTGTGRGAGUUAGGATURGGGUAGATURGUTAUTXGATGURGGAGGAGUTGGAUAAAG



GUTUUTTRGTRGGUAAUATAGUUAAGGAUUTTGGGUTGGAGUUUUAGGAGUTGGRGGA



GRGRGGAGTURGUATRGTUTUUAGAGGTAGGARGUAGUTTTTTGUUUTGAAUURGRGA



AGRGGUAGUTT





200
AAGUTGURGUTTRGRGGGTTUAGGGUAAAAAGUTGRGTUUTAUUTUTGGAGARGATGR



GGAUTURGRGUTURGUUAGUTUUTGGGGUTUUAGUUUAAGGTUUTTGGUTATGTTGUR



GARGAAGGAGUUTTTGTUUAGUTUUTURGGUATXGAGTAGRGGATUTGUURGGATUUT



GGUTRGUAUAGRGTUUUUAGGAGUATGAAGGGUAGUAGUAGUTUTURGUAGUUUUAG



UUUUTAGGTGGAUTRGUUATTGUUTTUTUTUTGUUUAATTTTUTUTTAGTTUTGGTTUAG



UUTGUTGTT





201
GGTGTUURGRGAGUAGGTGTUUAGUAGURGRGRGUUUAGGRGUARGURGGGUAGUAGU



TRGGGGTRGGRGTTGARGRGGTUUAGRGRGTAUAGUATGGUUTUUAGURGGTGUARGU



UUTGUTUUTTUTTUAGUTGUURGUARGUURGGUUXGURGRGUUURGRGRGTGUAURGG



GAAUAGGURGUUUAGRGTUAGGURGUURGUUAGGRGUAUAGAGUURGURGRGRGRGU



UAGGUURGUUTGRGUUAGUUARGUUAGRGGUAGUAGRGUUARGAGUAGRGGUTUURG



GGUTUTURGGGG





202
UUURGGAGAGUURGGGAGURGUTGUTRGTGGRGUTGUTGURGUTGGRGTGGUTGGRGU



AGGRGGGUUTGGRGRGRGRGGRGGGUTUTGTGRGUUTGGRGGGRGGUUTGARGUTGGG



RGGUUTGTTUURGGTGUARGRGRGGGGRGRGGXGGGURGGGRGTGRGGGUAGUTGAAG



AAGGAGUAGGGRGTGUAURGGUTGGAGGUUATGUTGTARGRGUTGGAURGRGTUAARG



URGAUUURGAGUTGUTGUURGGRGTGRGUUTGGGRGRGRGGUTGUTGGAUAUUTGUTR



GRGGGAUAUU





203
GAAUUAGGGTAGGUATAGUAAAGGUAAUAGGTGGGARGGGGAGUUAGGGAGTGGAAA



RGURGGAGGTUUTUAGGUTGGGGATUURGGAGTUUTRGUTUAGATTURGATTURGGAG



AAGGUUAATTURGGGAUUUTATUUATGTUUUATTUXGGGUAUUTTUUTUAAAAGTAGG



GGTGGGAGGGGUATAAGURGGTUAAGTATTTUURGGGUUTTURGGAGUAATUTTGUUT



AAGRGTTUATATTTAARGUATTGGAUTGGGAAAUATTTGGAGATUATTGATTAAGAAAT



AUTUAAAUUT





204
AGGTTTGAGTATTTUTTAATUAATGATUTUUAAATGTTTUUUAGTUUAATGRGTTAAATA



TGAARGUTTAGGUAAGATTGUTURGGAAGGUURGGGAAATAUTTGAURGGUTTATGUU



UUTUUUAUUUUTAUTTTTGAGGAAGGTGUUXGGAATGGGAUATGGATAGGGTUURGGA



ATTGGUUTTUTURGGAATRGGAATUTGAGRGAGGAUTURGGGATUUUUAGUUTGAGGA



UUTURGGRGTTTUUAUTUUUTGGUTUUURGTUUUAUUTGTTGUUTTTGUTATGUUTAUU



UTGGTTU





205
TTUTRGTRGGTAGRGUTUTGGUUTTGGGRGUURGURGUTTTGGUTATGGAGGTAUAGTG



GURGRGTUURGGGGAGUUTGGGUUTUUTTGRGGUTURGAGUUTURGRGGRGUURGRGU



UURGAUTUTURGGTUURGGUTUTUTUUAGGUUXGGUTGTUTURGGTUUUTUAUTGAUTT



RGUUAGURGUAUUAUUUAUUTUTTTUTUURGUAGARGTAAAUURGAATARGUUURGGU



UTTGGGUUTAGGGUUTRGGUUTRGUUTGGUTUTAUAGGATTRGGGGGRGGGGTAGGUR



GGUAGAGU





206
GUTUTGURGGUUTAUUURGUUUURGAATUUTGTAGAGUUAGGRGAGGURGAGGUUUTA



GGUUUAAGGURGGGGRGTATTRGGGTTTARGTUTGRGGGAGAAAGAGGTGGGTGGTGR



GGUTGGRGAAGTUAGTGAGGGAURGGAGAUAGUXGGGUUTGGAGAGAGURGGGAURG



GAGAGTRGGGGRGRGGGRGURGRGGAGGUTRGGAGURGUAAGGAGGUUUAGGUTUUU



RGGGARGRGGUUAUTGTAUUTUUATAGUUAAAGRGGRGGGRGUUUAAGGUUAGAGRG



UTAURGARGAGAA





207
RGUAUAURGARGGUUTUURGGGTTRGGRGGGGARGAUURGAGUTAGGAGUURGRGGGG



GURGTGGGAGUTGUTURGURGAGGTGGAUURGGGGRGUURGUAUUUUTUAUUTTUTTT



URGTGGGGTURGGGGUUAGGGARGUAGRGGGGGAXGGRGGGUATUAGURGGGUAGRG



UURGAGURGTUUUTGGURGGGTUUUUAUAUUTGRGTGUTRGGGUATUUUUAGGGTRGG



GGGRGRGGTGAATRGTGGTUUURGUAGUURGGGGUURGUUAGGUURGRGGAGTUAGUU



UAUUUTGGRGA





208
TRGUUAGGGTGGGUTGAUTURGRGGGUUTGGRGGGUUURGGGUTGRGGGGAUUARGAT



TUAURGRGUUUURGAUUUTGGGGATGUURGAGUARGUAGGTGTGGGGAUURGGUUAG



GGARGGUTRGGGRGUTGUURGGUTGATGUURGUXGTUUUURGUTGRGTUUUTGGUUUR



GGAUUUUARGGAAAGAAGGTGAGGGGTGRGGGRGUUURGGGTUUAUUTRGGRGGAGU



AGUTUUUARGGUUUURGRGGGUTUUTAGUTRGGGTRGTUUURGURGAAUURGGGAGGU



RGTRGGTGTGRG





209
GAUUAAAAGGAGUTURGRGUUAGGURGGAGGUTGRGUURGTUAUTRGRGGTUURGGUR



GGGTUUUTGGRGRGTAGTUAGGURGUAURGUURGAGUUUUAURGRGRGUUUAUUURGG



URGGGTGRGTURGGUTRGRGGURGTUUUTUURGXGAUUTGTGGUURGGGGUTGUTGRG



GGRGUURGGGGAAGAGAGGRGGGGGURGRGGGGGGUAGGAGGAGRGGUTGRGGURGG



UAUAGRGUUAGGGRGAGTGAGGRGGGTGGRGRGGGGGAGGRGGRGGAGTAAAGAGAG



GURGURGGUTGG





210
UUAGURGGRGGUUTUTUTTTAUTURGURGUUTUUUURGRGUUAUURGUUTUAUTRGUU



UTGGRGUTGTGURGGURGUAGURGUTUUTUUTGUUUUURGRGGUUUURGUUTUTUTTU



UURGGGRGUURGUAGUAGUUURGGGUUAUAGGTXGRGGGAGGGARGGURGRGAGURG



GARGUAUURGGURGGGGTGGGRGRGRGGTGGGGUTRGGGRGGTGRGGUUTGAUTARGR



GUUAGGGAUURGGURGGGAURGRGAGTGARGGGRGUAGUUTURGGUUTGGRGRGGAG



UTUUTTTTGGTU





211
GURGGUAUUTGURGUTURGUURGGGATTAGGGAGUTUURGGUTTGTGGGGGGTGRGGG



RGGURGGTGGTUUAGUTRGUURGUUURGGURGAGARGUTGGGUURGGUUUUUAUAGG



UTGRGUUTGARGGGAURGGRGGGAGGUUTTTGTTXGUAGUURGGAGGUUUUAGGUTUU



AAAUUAUAUTRGGGUTGRGGGGAGRGAGRGRGGGRGTTGURGUTAATTGUTGUTAATTT



TGTTUUATTAAUTTTATTTAUTUTTGAAUUUUTTAATTGTTTTUUAUTTATTTTTAGTAAT



TTTATAA





212
TTATAAAATTAUTAAAAATAAGTGGAAAAUAATTAAGGGGTTUAAGAGTAAATAAAGTT



AATGGAAUAAAATTAGUAGUAATTAGRGGUAARGUURGRGUTRGUTUUURGUAGUURG



AGTGTGGTTTGGAGUUTGGGGUUTURGGGUTGXGAAUAAAGGUUTUURGURGGTUURG



TUAGGRGUAGUUTGTGGGGGURGGGUUUAGRGTUTRGGURGGGGRGGGRGAGUTGGAU



UAURGGURGUURGUAUUUUUUAUAAGURGGGAGUTUUUTAATUURGGGRGGAGRGGU



AGGTGURGGU





213
TUAGUAURGGGGAUAGUTUUTGUUTRGUUAAUTTRGGUAGUTUTTUTRGATGTUTRGUR



GRGGGUTGTGUUTUAUAGGUTARGGGAGGGGAGAGTGTUTUUUUARGURGGGGTUURG



GUUTUTGGGTTTTAGGGAGRGRGAATGGGTUTURGAUAGUAARGGGAGUAGURGGTGG



RGUUTUAGGUTGRGGTGGUAARGAGUURGAUTGUAUTARGGUTTTGRGGGAURGRGUU



AGRGRGGAGGAGAURGAGUUUATUTUAGRGGGURGGGURGGAUUUAGGTGAGRGGUU



UTGGUTUUUU





214
GGGGAGUUAGGGURGUTUAUUTGGGTURGGUURGGUURGUTGAGATGGGUTRGGTUTU



UTURGRGUTGGRGRGGTUURGUAAAGURGTAGTGUAGTRGGGUTRGTTGUUAURGUAG



UUTGAGGRGUUAURGGUTGUTUURGTTGUTGTRGGAGAUUUATTRGRGUTUUUTAAAA



UUUAGAGGURGGGAUUURGGRGTGGGGAGAUAUTUTUUUUTUURGTAGUUTGTGAGGU



AUAGUURGRGGRGAGAUATRGAGAAGAGUTGURGAAGTTGGRGAGGUAGGAGUTGTUU



URGGTGUTGA





215
TTUUTURGAGGUURGUAGGGAGGGGGRGGTGRGGAATGGATGRGURGAGRGGGUAGRG



UTUAGUUTUTRGUTUAUAUUUUUAGUAGGUAGURGRGTUUURGTGURGGUATUUTRGU



TGURGURGGUTUUUTRGGRGUUUURGGGUXGUTUUUUAXGRGRGRGURGGGAUUTGUA



RGAGUUUUUTRGTRGAUTRGGAGRGRGATUTGGGRGRGTGUUTUUUTGTUUTTGTUUTU



TGUTUTRGTUTGGGGARGTGTGUUURGUAUUUUUTGUAURGRGRGUTUUTUTAUUUUTU



URGUTUUU





216
GGGAGRGGGAGGGGTAGAGGAGRGRGRGGTGUAGGGGGTGRGGGGUAUARGTUUUUA



GARGAGAGUAGAGGAUAAGGAUAGGGAGGUARGRGUUUAGATRGRGUTURGAGTRGA



RGAGGGGGUTRGTGUAGGTUURGGRGRGRGXGTGGGGAGXGGUURGGGGGRGURGAGG



GAGURGGRGGUAGRGAGGATGURGGUARGGGGARGRGGUTGUUTGUTGGGGGTGTGAG



RGAGAGGUTGAGRGUTGUURGUTRGGRGUATUUATTURGUAURGUUUUUTUUUTGRGG



GUUTRGGAGGAA





217
AAGGGGAGGGRGGGGURGAUURGGAUUUTUUAGGGAARGUUUTTGAGTAAUTRGRGUA



UTTGGGAUUUATTUUUAUUTAGGAUUATAGGUTUAAGATGGUUTGGTGGATGURGURG



GUARGRGUUTUTUUTUTGGRGGGAAUXGAAGGRGUXGGTAGGTTTTUAUAUTTGUAGU



RGATRGGUTAAGAGAARGRGGGATTUAGURGAGAAGUUAUTGGGAGUURGAGGAGRGG



AGUAGAGGUAUUUAGGUAGUUTGRGRGGAGAAATRGGATRGGUTAGGARGGUUTGUA



GUUUUTGRGRG





218
RGRGUAGGGGUTGUAGGURGTUUTAGURGATURGATTTUTURGRGUAGGUTGUUTGGGT



GUUTUTGUTURGUTUUTRGGGUTUUUAGTGGUTTUTRGGUTGAATUURGRGTTUTUTTA



GURGATRGGUTGUAAGTGTGAAAAUUTAUXGGRGUUTTXGGTTUURGUUAGAGGAGAG



GRGRGTGURGGRGGUATUUAUUAGGUUATUTTGAGUUTATGGTUUTAGGTGGGAATGG



GTUUUAAGTGRGRGAGTTAUTUAAGGGRGTTUUUTGGAGGGTURGGGTRGGUUURGUU



UTUUUUTT





219
TGTGGRGGGGGUTTGGAGUTGUTGAGAGURGAGAGGRGUAGAGRGUAAGUTGGUAGGU



TGGGUTGUTATUURGGRGRGUAGATGUUURGURGUUAGTRGAGRGRGAAUATUTUTUR



GGAAUATRGATUTATUAUUTUUUTTTAAGGAUUXGGAURGGGAAATTTUUATTTTUTGT



TTTGGGAATAAGAAATAAAAGRGAUUAAGUTUTTGUUUTAATTTUUUUURGRGGGUUU



TTUUARGRGGGUTGGRGGGATUAGAAGGARGGGTURGAGUTRGGGGGRGRGGGGTTUU



TGTGAAUTU





220
GAGTTUAUAGGAAUUURGRGUUUURGAGUTRGGAUURGTUUTTUTGATUURGUUAGUU



RGRGTGGAAGGGUURGRGGGGGGAAATTAGGGUAAGAGUTTGGTRGUTTTTATTTUTTA



TTUUUAAAAUAGAAAATGGAAATTTUURGGTUXGGGTUUTTAAAGGGAGGTGATAGAT



RGATGTTURGGAGAGATGTTRGRGUTRGAUTGGRGGRGGGGUATUTGRGRGURGGGATA



GUAGUUUAGUUTGUUAGUTTGRGUTUTGRGUUTUTRGGUTUTUAGUAGUTUUAAGUUU



URGUUAUA





221
UAGUUUTTGGUTTTUURGUTTUAGGUAAAATUTTUUUTUUTTUUTUTTTTTTUTGGGGUU



TTUUUUARGAUUUUTUTTUUTAGUUUTTUTGATURGTUUUUTGATGUATGAUTGGGGUU



AURGGAGGGGUTGAUUUTUURGGAGAGUUUXGTRGGTUUTGGTGGTUTTGGGAURGGA



GAGRGAUAGATGTGGAAAURGAGGUUUUTUAGTGAAGAGUTGUUAGGGTGGTRGUUTT



AGAGUAAAGGRGTTUUTUATTURGUUTGRGUAGUTGUUUUTURGUURGGUTGURGUUU



UAGUURG





222
RGGGUTGGGGRGGUAGURGGGRGGAGGGGUAGUTGRGUAGGRGGAATGAGGAARGUU



TTTGUTUTAAGGRGAUUAUUUTGGUAGUTUTTUAUTGAGGGGUUTRGGTTTUUAUATUT



GTRGUTUTURGGTUUUAAGAUUAUUAGGAURGAXGGGGUTUTURGGGAGGGTUAGUUU



UTURGGTGGUUUUAGTUATGUATUAGGGGARGGATUAGAAGGGUTAGGAAGAGGGGTR



GTGGGGAAGGUUUUAGAAAAAAGAGGAAGGAGGGAAGATTTTGUUTGAAGRGGGAAA



GUUAAGGGUTG





223
GGGAAAGGGGGGAGAGGGAGAGGAGGRGRGGGGTGGGGGAGGGGAGTGAGUAGGGAG



URGGGAGAGGGAGGAGGGGRGGGAAUUAGGGGAGRGGUURGAAUUURGTTTGGTURG



GAUUURGUAGUUAURGUTGGGTUTRGURGURGGGTXGUUUTTRGRGTGGAGATURGGT



URGRGUUUUUTUUURGGTUTUUTUUUUTUUUUTUUUUTURGUUUUUUTUUUTURGGUU



UAUAUAGUUTUTTUUAGAAAGAAGTUAUTUTAGAGURGRGRGAUUUAGUUUUAGAGTU



RGURGGGGTURG





224
RGGAUUURGGRGGAUTUTGGGGUTGGGTRGRGRGGUTUTAGAGTGAUTTUTTTUTGGAA



GAGGUTGTGTGGGURGGAGGGAGGGGGGRGGAGGGGAGGGGAGGGGAGGAGAURGGG



GAGGGGGRGRGGAURGGATUTUUARGRGAAGGGXGAUURGGRGGRGAGAUUUAGRGG



TGGUTGRGGGGTURGGAUUAAARGGGGTTRGGGURGUTUUUUTGGTTUURGUUUUTUU



TUUUTUTUURGGUTUUUTGUTUAUTUUUUTUUUUUAUUURGRGUUTUUTUTUUUTUTU



UUUUUTTTUUU





225
RGGTURGRGUUUUUTUUURGGTUTUUTUUUUTUUUUTUUUUTURGUUUUUUTUUUTUR



GGUUUAUAUAGUUTUTTUUAGAAAGAAGTUAUTUTAGAGURGRGRGAUUUAGUUUUA



GAGTURGURGGGGTURGUUUAURGGGTUTUUTGXGXGUUUUTUUURGUUUUTUUURGG



GUAUAGUURGTTUARGAAAUUTAAGGRGURGGUUARGRGUUAUUTUUUURGGGURGG



GGTUTUUTRGGTUUURGRGRGGGRGUTGGTTUTUURGGGTGGGRGGUAGUUURGUUUT



GTGUUUTUUTGG





226
UUAGGAGGGUAUAGGGRGGGGUTGURGUUUAUURGGGAGAAUUAGRGUURGRGRGGG



GAURGAGGAGAUUURGGUURGGGGGAGGTGGRGRGTGGURGGRGUUTTAGGTTTRGTG



AARGGGUTGTGUURGGGGAGGGGRGGGGAGGGGXGXGUAGGAGAUURGGTGGGRGGA



UUURGGRGGAUTUTGGGGUTGGGTRGRGRGGUTUTAGAGTGAUTTUTTTUTGGAAGAGG



UTGTGTGGGURGGAGGGAGGGGGGRGGAGGGGAGGGGAGGGGAGGAGAURGGGGAGG



GGGRGRGGAURG





227
GRGGTRGGRGUUUUARGUTUUUTGAARGUUUUUUAGGRGGUAUUAGTGURGGGUAGA



GTUUUUTRGGRGGURGRGGGRGTUAAATRGAUAUUTGAUTUUAUAGUTUUUTTUUUTU



TUUTUTTUTTUUAUUTUUURGGGGGTUUAGGUAUXGURGTGRGTUUAUTUURGGTUTUU



ARGGUTTAGGUAGARGGAGTGGGGGAUTURGGGGAUURGRGRGTUUTUTUUTUUTRGG



UUUTGGRGGGAGGAGURGGGUTGGGGTTTURGRGGGURGRGGRGRGTTTTAGGGUTGU



RGGGGAUTGU





228
GUAGTUUURGGUAGUUUTAAAARGRGURGRGGUURGRGGAAAUUUUAGUURGGUTUUT



UURGUUAGGGURGAGGAGGAGAGGARGRGRGGGTUUURGGAGTUUUUUAUTURGTUTG



UUTAAGURGTGGAGAURGGGAGTGGARGUARGGXGGTGUUTGGAUUUURGGGGAGGTG



GAAGAAGAGGAGAGGGAAGGGAGUTGTGGAGTUAGGTGTRGATTTGARGUURGRGGUR



GURGAGGGGAUTUTGUURGGUAUTGGTGURGUUTGGGGGGRGTTUAGGGAGRGTGGGG



RGURGAURGU





229
GUUUTUUTURGTGUTGGGUUTGTUUTAUUTUUAGGGRGGAGGRGRGGGUTUTGRGTUR



GGAGGRGUUTRGGGRGGUAGUTURGGTGGGGURGRGTUTGGTGRGGGGUURGGGAUUU



AGUAGGGUAGUUXGGGATGGAGUUAGGRGGGAGUXGARGGAGURGUTTAUAUUURGU



XGURGGTGTRGURGRGUTTUTUUTTUURGGGGAUUAURGGGTUUUTGGRGGURGURGU



RGURGUTGURGRGGUURGGGAAGUTGRGGUUTAUAGUAGTGGRGGRGGAGRGGRGGGT



GRGGGUUTGGU





230
GUUAGGUURGUAUURGURGUTURGURGUUAUTGUTGTAGGURGUAGUTTUURGGGURG



RGGUAGRGGRGGRGGRGGURGUUAGGGAUURGGTGGTUUURGGGAAGGAGAAGRGRG



GRGAUAURGGXGGXGGGGTGTAAGRGGUTURGTXGGUTUURGUUTGGUTUUATUUXGG



GUTGUUUTGUTGGGTUURGGGUUURGUAUUAGARGRGGUUUUAURGGAGUTGURGUUR



GAGGRGUUTURGGARGUAGAGUURGRGUUTURGUUUTGGAGGTAGGAUAGGUUUAGU



ARGGAGGAGGGU





231
AGAAAAGUAGRGARGTGGRGTTUAUUURGUTGUAGAAUTRGGAUUAUTRGGGUTRGGT



GUAGGGATTGGUTUUAGGUTTGURGTRGGGGTRGGGAGURGAGGARGAGGAGGRGGUR



GGGGGRGGUTGUTGUURGGARGGRGGRGGUTGUTXGRGUTGUTGUTGUTGUTGRGURG



GGAGTGGRGGUTURGRGGGUTRGGGRGGUTURGGRGGRGTRGURGGUURGGGRGGRGG



RGGGGRGGGUTRGGUTGRGUTGTGUUTGRGUUTGGGUAGGGAGUAGRGGRGUTAUTUA



UTGTGGGAUT





232
AGTUUUAUAGTGAGTAGRGURGUTGUTUUUTGUUUAGGRGUAGGUAUAGRGUAGURGA



GUURGUUURGURGURGUURGGGURGGRGARGURGURGGAGURGUURGAGUURGRGGA



GURGUUAUTUURGGRGUAGUAGUAGUAGUAGRGXGAGUAGURGURGURGTURGGGUA



GUAGURGUUUURGGURGUUTUUTRGTUUTRGGUTUURGAUUURGARGGUAAGUUTGGA



GUUAATUUUTGUAURGAGUURGAGTGGTURGAGTTUTGUAGRGGGGTGAARGUUARGT



RGUTGUTTTTUT





233
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAATGUATTTAGAG



GARGGGAGUTGUUTUTAGGGAGAAAGGGGAGGGGGGAGGGGAGAAGAAAAAGGAAAG



AGRGRGTTTUUTRGURGGGGTTAURGGGGTGGXGRGGGUTTRGRGGURGAGGGGUTGUR



GGUURGGUURGUAGUTUUTRGRGGURGGUTGGGAAGTGGRGGGTURGGUTAGTURGRG



GGRGGGRGGAGRGRGURGTRGUTGUUAGTGTUUUUUTTTAAUATTUUTTUUURGAGUUT



TTUUUT





234
AGGGAAAGGUTRGGGGAAGGAATGTTAAAGGGGGAUAUTGGUAGRGARGGRGRGUTUR



GUURGUURGRGGAUTAGURGGAUURGUUAUTTUUUAGURGGURGRGAGGAGUTGRGGG



URGGGURGGUAGUUUUTRGGURGRGAAGUURGXGUUAUUURGGTAAUUURGGRGAGG



AAARGRGUTUTTTUUTTTTTUTTUTUUUUTUUUUUUTUUUUTTTUTUUUTAGAGGUAGU



TUURGTUUTUTAAATGUATTAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUAUA



UAUAUAUAUAU





235
UTUUTGGGRGAUUTAAAUTTRGATAAUTGUTGGAAAGGTUUAGUAGGAGAGGAGGGRG



AGGAGGGGRGGAGUUAGGAGGUURGGUUURGUUUAURGRGRGUURGUUTUTUTUTGU



AGAUUAURGGUTAGAGUAGGAGUARGAGUTUTTUXGUTGTTTUUAGGATUUUTGURGG



UTGGGUARGRGUUAAAAGUAGUUUTGGGUUUTGGGTATRGRGUTTGGGGGGAGGGTAU



UUURGURGGUTGGGUARGRGUUAAGAGUAGUUUTGGGUUUTGGGTATRGTGUTTAGGG



GGAGGGTATRG





236
RGATAUUUTUUUUUTAAGUARGATAUUUAGGGUUUAGGGUTGUTUTTGGRGRGTGUUU



AGURGGRGGGGGTAUUUTUUUUUUAAGRGRGATAUUUAGGGUUUAGGGUTGUTTTTGG



RGRGTGUUUAGURGGUAGGGATUUTGGAAAUAGXGGAAGAGUTRGTGUTUUTGUTUTA



GURGGTGGTUTGUAGAGAGAGGRGGGRGRGRGGTGGGRGGGGURGGGUUTUUTGGUTU



RGUUUUTUUTRGUUUTUUTUTUUTGUTGGAUUTTTUUAGUAGTTATRGAAGTTTAGGTR



GUUUAGGAG





237
GGRGURGGGRGUTGGGUTTAUAGUAGAGURGRGGGURGRGGGGTRGGAAAGTUUTTUR



GGGGRGGGGURGUAGRGGUUTUTTUURGUAGUUUUTRGGGUURGGGUUURGGTGGAAR



GGAAAUUTUUUUUTAUUURGGGAGGGGUTGUUAGXGGGUTGGGGGTGRGAAAARGGR



GGUAGGAGRGGGRGAGGGGUURGGGURGRGUAUTTTGRGUUTGGGTTTGRGRGURGRG



GURGRGGGAGTUURGRGRGGAURGGURGGARGUURGGUUTUUUUUAGUUUUAGUTTTT



TGTGTGTGTGT





238
AUAUAUAUAUAAAAAGUTGGGGUTGGGGGAGGURGGGRGTURGGURGGTURGRGRGG



GAUTUURGRGGURGRGGRGRGUAAAUUUAGGRGUAAAGTGRGRGGUURGGGUUUUTRG



UURGUTUUTGURGURGTTTTRGUAUUUUUAGUUXGUTGGUAGUUUUTUURGGGGTAGG



GGGAGGTTTURGTTUUAURGGGGUURGGGUURGAGGGGUTGRGGGAAGAGGURGUTGR



GGUUURGUUURGGAAGGAUTTTURGAUUURGRGGUURGRGGUTUTGUTGTAAGUUUAG



RGUURGGRGUU





239
AGGUAUAGAAAGGRGUAGURGUTAGUUAGAGUURGUAUAGAGUUAGAGUUAGGTUUU



UAUTGGRGUAGATGGGGGAUTGUAGGUAUAGUAGTAGUUARGRGGGTGTAAARGTAGA



GURGRGTGAAUURGGGTTGTGGGATUUUAGGUUUXGAUUAGUUUUUATUUURGGUTGG



UATUTRGGTUURGGGGAGTUTUAGUTTUUUTTTUTGUAGAATGGGUTGGAGGRGUUUU



UUAUAGGUURGUUUAGGRGUUUUURGGGGUUAGRGUUUUTUUUUUAUUTGUUURGUU



UUUAUURGRGGG





240
UURGRGGGTGGGGGRGGGGUAGGTGGGGGAGGGGRGUTGGUUURGGGGGGRGUUTGG



GRGGGUUTGTGGGGGGRGUUTUUAGUUUATTUTGUAGAAAGGGAAGUTGAGAUTUUUR



GGGAURGAGATGUUAGURGGGGATGGGGGUTGGTXGGGGUUTGGGATUUUAUAAUUR



GGGTTUARGRGGUTUTARGTTTAUAUURGRGTGGUTAUTGUTGTGUUTGUAGTUUUUUA



TUTGRGUUAGTGGGGAUUTGGUTUTGGUTUTGTGRGGGUTUTGGUTAGRGGUTGRGUUT



TTUTGTGUUT





241
GGGGURGRGGAGTRGGGTGAGGRGGRGGRGGUTGRGGRGGTGGGGURGGGRGAGGTUR



GUTGRGGTUURGGRGGUTURGTGGUTGUTURGUTUTGAGRGUUTGGRGRGUUURGRGU



UUTUUUTGURGGGGURGUTGGGURGGGGATGUAXGRGGGGUURGGGAGUUATGGTURG



UTTRGGGGARGAGUTGGGRGGURGUTATGGGGGUUURGGRGGRGGAGAGRGGGUURGG



GGRGGRGGGGURGGRGGGGRGGGGGGUURGGGTUURGGGGGGUTGUAGUURGGUUAG



RGGGTUUTUTA





242
TAGAGGAUURGUTGGURGGGUTGUAGUUUUURGGGAUURGGGUUUUURGUUURGURG



GUUURGURGUUURGGGUURGUTUTURGURGURGGGGUUUUUATAGRGGURGUUUAGUT



RGTUUURGAAGRGGAUUATGGUTUURGGGUUURGXGTGUATUUURGGUUUAGRGGUUU



RGGUAGGGAGGGRGRGGGGRGRGUUAGGRGUTUAGAGRGGAGUAGUUARGGAGURGU



RGGGAURGUAGRGGAUUTRGUURGGUUUUAURGURGUAGURGURGURGUUTUAUURG



AUTURGRGGUUUU









Compositions for Detecting Methylation

Also provided herein are probes and primers that are complementary to one or more of SEQ ID NOS: 1-242. In embodiments, pairs of primers complementary to nucleotide sequences on either side of a methylation site of interest listed in Table 1 are provided. In embodiments, a plurality of probes and/or primers are provided to detect and/or amplify a polynucleotide (e.g., a polynucleotide obtained by bisulfate treatment of DNA) comprising a methylation site of interest. In embodiments, a probe or primer is complementary to a polynucleotide sequence that encompasses the methylation site of interest. In embodiments, the probe or primer is complementary to a sequence that is proximal to the methylation site of interest (e.g., within 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 75, 50, or 25 nucleotides of the methylation site of interest in a genomic or bisulfate-treatment-derived polynucleotide).


In embodiments, a deoxyribonucleic acid selected from SEQ ID NO:243 to SEQ ID NO:356 is included. In embodiments, the deoxyribonucleic acid selected from SEQ ID NO:243 to SEQ ID NO:356 is hybridized to a complementary DNA sequence having uridine or cytosine. In embodiments, each of the nucleic acids is different. In embodiments, each of the nucleic acids does not simultaneously have the same sequence selected from SEQ ID NO:243 to SEQ ID NO:356. SEQ ID NOS: 243 to 356 are listed in Table 5 below.









TABLE 5







SEQ ID NOS: 243 to 356








SEQ ID NO:
Sequence





243
GTTTTTTTTTTAAAGTAGTTTTT





244
CTCCTACAACCCCCTTCC





245
TTTTGAGTAGTTGGAGTTATAG





246
TAAATTCATCCTCTACCTATTA





247
ATGGTATGAATTAATTAATTTGA





248
CTCCCTAAAAAAAAAAATAAA





249
TATTTGTTTGATTTTAATTATATTT





250
AAACTCTACTCTCTAAACCTTTC





251
ATTTTATTGATTATGTTTAGTTGATTA





252
AAAAATACCCCAAAAACAA





253
GTGGAAGGGAAAAAAAAAGAG





254
ACAAACTCCCCTATACCTCAAATA





255
TTTTTTAAATGGTGAAATAT





256
AATTTTACTTCTTCTTCTTATC





257
TGGTAATAATTGGAGGAATTG





258
ACAAATAAAATCATAAAAAATAACAAAC





259
GATTTTTTGATTTGAAAATAGTT





260
AATCTCAACCCCAAACTC





261
TTAGGTAAAGATTTGGTTTTAGAA





262
AACTTATTATATAAATTATAAAAAAATAAA





263
GGAGGTGTTTTTTAGTAAGTTTG





264
CCTCATACCTATAACCTACACTCA





265
AAGGGTTGTTATGTTAGTGTAGT





266
CCCAAAAATAAATAATTTAACTA





267
ATTTTTGTTTTAATATGGAGTTG





268
AAACCTAAATCTACACTTAAACATC





269
AGGGTTAGGGTTTTTTTG





270
AAATCTCTTTATTACTCATTTTCTATA





271
GTTATTTATATTTTTGAGTATTAAGAGTT





272
ACCAACAAATACAACACCTTCT





273
GGTTTTTTAGTTTTATGAATTATTTA





274
AACCCCTCTACAACCTACTAC





275
GATGAGGAAGTTGAGGTATAG





276
CTCCAACCCATTCTACAA





277
GAGGGGATTGAGTAGGTGAATAG





278
CAAAACAAAAAAAAAATAAAAAAAAAACT





279
AAGGAGAGGAGAAGAGGTATAG





280
AATAATAAAAAAAAACTAAATTCAAAC





281
TTGGGGTTTAGGGATTTAG





282
AATAAAATATACCTCCTTTCAAACTAA





283
AAAGGTTAAATTAAAAATTTTTTTAT





284
CTCCCAACTATACTTCTTAATCTC





285
GGTTTAGAGTTATTGAATAAATGAAGTG





286
CAAAATCAAATTCTCCAACAAA





287
TGATGGAGGAAGTTTTTG





288
AACCCTAAACTAAACAACCC





289
TTAAGGATTTAGATATTTTGTAAT





290
AATAAATTTATAAATTTACTCTCTTAC





291
AATGTTTTGGAGATTAGTAATAT





292
TCTTCCTAAAAAAAAAATAAA





293
GGGAATAATGAGGAGGAGA





294
AAAAATACAATAAAAAATCTTAAAATAAA





295
GGTAGGGGATTGGGATAG





296
AACAAAACAAAACTATAAAATTAAACTAA





297
GGTTAGGAGATTAGGGATTG





298
AAAAAAAAAAACAACTTAAAAAAC





299
TGTTTATTTTAGAGGTGTTTATTT





300
ACCCTAATCCAATATCCC





301
GGTTGGTTAGGTTGTTATTT





302
CAAACACCACATACTTATTC





303
TTTGGGTTTAGAAAGTTG





304
CAAAAACTAAAAAAAAAATAAC





305
TTTTGAGTTTGGTTTAGTT





306
CCTAAAAAAAATAAAAATCC





307
GGAATTTGGAGGGTAAAA





308
CTAATCTCTATCCTATATATTTCTTTATATT





309
TATTATATTGTTATGTTGATT





310
ATATTAATTTCTTCCAACTAA





311
TGGGATTGGTAAGTAGGTATT





312
AAAAAAAAAAACCTATAACCTATAAA





313
ATGGTTTTTGTTTGTAGAC





314
ATTATTATTATTTATTTATTTATTATCA





315
TTTTTTTGAAAGTTAGTGAATTTATTTATT





316
ACCCATCTCCCCACACAC





317
TTGGGGTTTAAAGGTATTAG





318
AAAACAAAAACTACTAAAAAAAAAT





319
TTGGTTAAGGAAGAAAGGAGTAG





320
CACCCCCTTCAAAAAAAA





321
TGGGGTTTTTTGGTTTTTT





322
CCACCTCACAAACACACAC





323
AGAAAGGTATTTGTTTTTAGTAAA





324
TTACAAAATAAAACCAACCTAT





325
GAGTTTTTTTTTTTATTTAGTTTT





326
CCTACCCCCTAATATCTACA





327
TTTTTTTAATATTTGTGAATTAT





328
AAACAACAACCCTAACTATC





329
ATGGAAGTTGGAGTTGAGAAG





330
ACACCTAAAACAAAAATAAAAAAATC





331
ATTAGTTTTTAGTTTTTTAGTATT





332
TCCCCTTAACATTAAATC





333
TTGAGATTAGATTAGAGTTTATTT





334
AAAAAAACCTTAATCCTATAAT





335
TTTTTAGTAGGGTTAAGAGGATTT





336
TCCAATACACACCACCAA





337
TTTGAATGGTAGAGGAAATAGTT





338
ACCCAAAAATTCTATCTTTCAC





339
TTTATGGGTTTTTATTTTAGTA





340
AAAAATATTCCAATATAAACAAA





341
AGAGTTGTTGTTGTTTTTTATGT





342
CAACCCAAAATCCTTAACTATA





343
AAAAGAATTAGGGTAGGTATAGT





344
CTTAATCAATAATCTCCAAATAT





345
TTTGGTTATGGAGGTATAGT





346
AAAAAAAAAATAAATAATAC





347
ATTTTATTTGGGGATTTTTAATA





348
TAAAACAAAATTAACAACAATTAAC





349
TAAGATGGTTTGGTGGATGT





350
AAATCTCTCACTCACCCTTTC





351
GGTTTGGAGTTGTTGAGAG





352
AAAAAAATTAAAACAAAAACTTAATC





353
ATTTTTTTTTTTAGTTTTTTTGAT





354
CACCCTAACAACTCTTCACT





355
GGGGAGAAGAAAAAGGAAAG





356
AAAAAAAATATTAAAAAAAAACACTAACA









In embodiments, aspects include a deoxyribonucleic acid selected from SEQ ID NO:243 to SEQ ID NO:356, hybridized to corresponding a complementary DNA sequence having uridine or cytosine, and in a complex with an enzyme, e.g., a thermostable DNA polymerase. In embodiments, the thermostable DNA polymerase is Taq DNA polymerase.


In some aspects, the method includes deoxyribonucleic acid that has a sequence that is at least 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical or homologous to a nucleic acid having a sequence of at least one of SEQ ID NO:243 to SEQ ID NO:356.


Kit for Detecting Methylation Level of a DCIS Cell Mass

Also provided is a kit including a plurality (e.g., at least about 10, 20, 40, 50, 100, 110 or 118) nucleic acids each independently comprising one sequence selected from SEQ ID NO:243 to SEQ ID NO:356, in which the nucleic acids do not simultaneously include the same sequence.


In some aspects, the kit includes deoxyribonucleic acid that has a sequence that is at least 50%-55%, 55%-60%, 60%-65%, 65%-70%, 70%-75%, 75%-80%, 80%-85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical or homologous to a nucleic acid having a sequence of at least one of SEQ ID NO:243 to SEQ ID NO:356.


The kit provided herein may include enzymes, reagents for deamination of cytosine, buffers, vials, control DNA, devices for collecting DCIS tissue samples, reagents for isolating DNA, reagents for labeling DNA, labels, or any combinations thereof.


The kit provided herein may include enzymes such as thermostable DNA polymerase enzymes, restriction enzymes, and combination thereof.


In embodiments, the kit(s) may further include enzymes, reagents for deamination of cytosine, buffers, vials, control DNA, devices for tissue samples, or reagents for labeling DNA, or any combinations thereof.


In embodiments, a kit provided herein may include a solid carrier capable of adsorbing the nucleic acids containing in a sample of a body fluid, for example blood (whole blood, plasma, or serum). The kit may also contain other components for example, reagents, in concentrated or final dilution form, chromatographic materials for the separation of the nucleic acids, aqueous solutions (buffers, optionally also in concentrated form for final adjusting by the user) or chromatographic materials for desalting nucleic acids which have been eluted with sodium chloride.


In embodiments, a kit provided herein includes materials for purifying nucleic acids, for example, inorganic and/or organic carriers and optionally solutions, excipients and/or accessories. Such agents are known and are commercially available. For solid phase nucleic acid isolation methods, many solid supports have been used including membrane filters, magnetic beads, metal oxides, and latex particles.


In addition, a kit can also contain excipients such as, for example, a protease such as proteinase K, or enzymes and other agents for manipulating nucleic acids, e.g., at least one amplification primer, nucleic acid bases (A, T, G, C, and/or U), and enzymes suitable for amplifying nucleic acids, e.g., DNase, a nucleic acid polymerase and/or at least one restriction endonuclease. Alternatively, a commercial polymerase chain reaction kit may be used to amplify the DNA samples.


Exemplary Techniques for Detecting Specific Sequences

Specific sequences, such as the sequences listed in Table 1 (or portions thereof containing a methylation site of interest), can be detected by numerous methods that are well-established in the art (e.g., PCR-based sequence specific amplification, isozyme markers, northern analysis, sequence specific hybridization, and array based hybridization). In embodiments, the presence or absence of methylation is determined through nucleotide sequencing of the site of interest (e.g., the site in bisulfite-treated DNA or an amplicon thereof). Any of these methods are readily adapted to high throughput analysis.


Some techniques for detecting specific sequences utilize hybridization of a probe nucleic acid to nucleic acids corresponding to the methylation site of interest (e.g., amplified nucleic acids produced using bisulfite-treated DNA as a template or the bisulfite-treated DNA itself). Hybridization formats, including, but not limited to: solution phase, solid phase, mixed phase, or in situ hybridization assays are useful for sequence detection. A non-limiting guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes Elsevier, N.Y., as well as in Sambrook, Berger and Ausubel.


Nucleic acid probes complementary to a methylation site can be cloned and/or synthesized. Any suitable label can be used with a probe. Detectable labels suitable for use with nucleic acid probes include, for example, any composition detectable by spectroscopic, radioisotopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels include biotin for staining with labeled streptavidin conjugate, magnetic beads, fluorescent dyes, radiolabels, enzymes, and colorimetric labels. Other labels include ligands which bind to antibodies labeled with fluorophores, chemiluminescent agents, and enzymes. A probe can also constitute radiolabelled PCR primers that are used to generate a radiolabelled amplicon. Labeling strategies for labeling nucleic acids and corresponding detection strategies can be found, e.g., in Haugland (2003) Handbook of Probes and Research Chemicals Ninth Edition by Molecular Probes, Inc. (Eugene Oreg.). Additional non-limiting details regarding sequence detection strategies are found below.


PCR, RT-PCR and LCR are in particularly broad use as amplification and amplification-detection methods for amplifying nucleic acids (e.g., those comprising a methylation site), facilitating detection of the nucleic acids of interest.


In embodiments, real time PCR or LCR is performed on the amplification mixtures described herein, e.g., using molecular beacons or TaqMan™ probes. A molecular beacon (MB) is an oligonucleotide or peptide nucleic acid (PNA) which, under appropriate hybridization conditions, self-hybridizes to form a stem and loop structure. The MB has a label and a quencher at the termini of the oligonucleotide or PNA; thus, under conditions that permit intra-molecular hybridization, the label is typically quenched (or at least altered in its fluorescence) by the quencher. Under conditions where the MB does not display intra-molecular hybridization (e.g., when bound to a target nucleic acid, e.g., to a region of an amplicon during amplification), the MB label is unquenched. Details regarding standard methods of making and using MBs are well established in the literature and MBs are available from a number of commercial reagent sources. See also, e.g., Leone et al. (1995) “Molecular beacon probes combined with amplification by NASBA enable homogenous real-time detection of RNA.” Nucleic Acids Res. 26:2150-2155; Tyagi and Kramer (1996) “Molecular beacons: probes that fluoresce upon hybridization” Nature Biotechnology 14:303-308; Blok and Kramer (1997) “Amplifiable hybridization probes containing a molecular switch” Mol Cell Probes 11:187-194; Hsuih et al. (1997) “Novel, ligation-dependent PCR assay for detection of hepatitis C in serum” J Clin Microbiol 34:501-507; Kostrikis et al. (1998) “Molecular beacons: spectral genotyping of human alleles” Science 279:1228-1229; Sokol et al. (1998) “Real time detection of DNA:RNA hybridization in living cells” Proc. Natl. Acad. Sci. U.S.A. 95:11538-11543; Tyagi et al. (1998) “Multicolor molecular beacons for allele discrimination” Nature Biotechnology 16:49-53; Bonnet et al. (1999) “Thermodynamic basis of the chemical specificity of structured DNA probes” Proc. Natl. Acad. Sci. U.S.A. 96:6171-6176; Fang et al. (1999) “Designing a novel molecular beacon for surface-immobilized DNA hybridization studies” J. Am. Chem. Soc. 121:2921-2922; Marras et al. (1999) “Multiplex detection of single-nucleotide variation using molecular beacons” Genet. Anal. Biomol. Eng. 14:151-156; and Vet et al. (1999) “Multiplex detection of four pathogenic retroviruses using molecular beacons” Proc. Natl. Acad. Sci. U.S.A. 96:6394-6399. Additional details regarding MB construction and use is found in the patent literature, e.g., U.S. Pat. No. 5,925,517 (Jul. 20, 1999) to Tyagi et al. entitled “Detectably labeled dual conformation oligonucleotide probes, assays and kits;” U.S. Pat. No. 6,150,097 to Tyagi et al (Nov. 21, 2000) entitled “Nucleic acid detection probes having non-FRET fluorescence quenching and kits and assays including such probes” and U.S. Pat. No. 6,037,130 to Tyagi et al (Mar. 14, 2000), entitled “Wavelength-shifting probes and primers and their use in assays and kits.”


PCR detection and quantification using dual-labeled fluorogenic oligonucleotide probes, commonly referred to as “TaqMan™” probes, can also be performed. These probes are composed of short (e.g., 20-25 base) oligodeoxynucleotides that are labeled with two different fluorescent dyes. On the 5′ terminus of each probe is a reporter dye, and on the 3′ terminus of each probe a quenching dye is found. The oligonucleotide probe sequence is complementary to an internal target sequence present in a PCR amplicon. When the probe is intact, energy transfer occurs between the two fluorophores and emission from the reporter is quenched by the quencher by FRET. During the extension phase of PCR, the probe is cleaved by 5′ nuclease activity of the polymerase used in the reaction, thereby releasing the reporter from the oligonucleotide-quencher and producing an increase in reporter emission intensity. Accordingly, TaqMan™ probes are oligonucleotides that have a label and a quencher, where the label is released during amplification by the exonuclease action of the polymerase used in amplification. This provides a real time measure of amplification during synthesis. A variety of TaqMan™ reagents are commercially available, e.g., from Applied Biosystems (Division Headquarters in Foster City, Calif.) as well as from a variety of specialty vendors such as Biosearch Technologies (e.g., black hole quencher probes). Further details regarding dual-label probe strategies can be found, e.g., in WO92/02638.


Other similar methods include e.g. fluorescence resonance energy transfer between two adjacently hybridized probes, e.g., using the “LightCycler™” format described in U.S. Pat. No. 6,174,670.


Amplification and Sequencing Primers

In embodiments, methylation sites are detected using primers, e.g., to amplify and/or sequence polynucleotides comprising the methylation sites.


Suitable primers can be designed and is not intended that the present subject matter be limited to any particular primer or primer pair. For example, primers can be designed using any suitable software program, such as LASERGENE™, e.g., taking account of publicly available sequence information. Flanking sequences for the methylation sites identified herein are publicly available; accordingly, suitable amplification primers can be constructed based on well understood base-pairing rules. The sequence of any amplicon can be detected as has already been discussed above, e.g., by sequencing, hybridization, array hybridization, PCR, LCR, or the like.


In embodiments, the primers are radiolabelled, or labeled by any suitable means (e.g., using a non-radioactive fluorescent tag), to allow for rapid visualization of differently sized amplicons following an amplification reaction without any additional labeling step or visualization step. In embodiments, the primers are not labeled, and the amplicons are visualized following their size resolution, e.g., following agarose or acrylamide gel electrophoresis. In embodiments, ethidium bromide staining of the PCR amplicons following size resolution allows visualization of the different size amplicons.


It is not intended that the primers be limited to generating an amplicon of any particular size. The primers can generate an amplicon of any suitable length for detection (e.g., by sequencing or hybridization). In embodiments, amplification produces an amplicon at least 20 nucleotides in length, or alternatively, at least 50 nucleotides in length, or alternatively, at least 100 nucleotides in length, or alternatively, at least 200 nucleotides in length. Amplicons of any size can be detected and/or sequenced using various technologies described herein and known in the art.


Detection of Methylation Levels Using Sequencing

Sequencing is the process of determining the precise order of nucleotides within a DNA molecule. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Non-limiting examples and descriptions are provided below. However, embodiments are not limited to the use of a particular sequencing assay, technology, or approach.


Sanger sequencing is a method of DNA sequencing based on the selective incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication (Sanger F; Coulson A R (May 1975) J. Mol. Biol. 94 (3): 441-8; Sanger et al. (December 1977) Proc. Natl. Acad. Sci. U.S.A. 74 (12): 5463-7).


In embodiments, next-generation sequencing is used. Non-limiting examples of next-generation sequencing methods include massively parallel signature sequencing (MPSS), single-molecule real-time sequencing, ion semiconductor sequencing, pyrosequencing, sequencing by synthesis, sequencing by ligation, chain termination, DNA nanoball sequencing, helicos single molecule sequencing, single molecule real time sequencing, nanopore DNA sequencing, tunnelling currents DNA sequencing, and sequencing by hybridization.


Many commercially available sequencing technologies, devices, and services are available. In embodiments, an Illumina sequencer is used. In embodiments, PCR products are ligated with a linker and sequenced using a high throughput sequencer, such as an Illumina sequencer. In embodiments, the ligation step can be avoided, omitted, or eliminated by adding a linker to amplification primers.


Array-Based Sequence Detection

Array-based detection can be performed using commercially available arrays, e.g., from Affymetrix (Santa Clara, Calif.) or other manufacturers. Reviews regarding the operation of nucleic acid arrays include Sapolsky et al. (1999) “High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays.” Genetic Analysis: Biomolecular Engineering 14:187-192; Lockhart (1998) “Mutant yeast on drugs” Nature Medicine 4:1235-1236; Fodor (1997) “Genes, Chips and the Human Genome.” FASEB Journal 11:A879; Fodor (1997) “Massively Parallel Genomics.” Science 277: 393-395; and Chee et al. (1996) “Accessing Genetic Information with High-Density DNA Arrays.” Science 274:610-614.


A variety of probe arrays have been described in the literature and can be used for detection of methylation. For example, DNA probe array chips or larger DNA probe array wafers (from which individual chips would otherwise be obtained by breaking up the wafer) may be used in embodiments described herein. DNA probe array wafers generally comprise glass wafers on which high density arrays of DNA probes (short segments of DNA) have been placed. Each of these wafers can hold, for example, approximately 60 million DNA probes that are used to recognize longer sample DNA sequences (e.g., from individuals or populations, e.g., that comprise methylation sites of interest). The recognition of sample DNA by the set of DNA probes on the glass wafer takes place through DNA hybridization. When a DNA sample hybridizes with an array of DNA probes, the sample binds to those probes that are complementary to the sample DNA sequence. By evaluating to which probes the sample DNA for an individual hybridizes more strongly, it is possible to determine whether a known sequence of nucleic acid is present or not in the sample, thereby determining whether a uracil, thymine, or cytosine is present at a polynucleotide site corresponding to a genomic methylation site. One can also use this approach to control the hybridization conditions to permit single nucleotide discrimination, e.g., for the identification of methylation at a site of interest. Arrays provide one convenient embodiment for detecting multiple methylation sites simultaneously (or in series). Of course, any detection technology (PCR, LCR, and/or sequencing etc.) can similarly be used, e.g., with multiplex amplification/detection/sequencing reactions, or simply by running several separate reactions, e.g., simultaneously or in series.


In embodiments, the use of DNA probe arrays to obtain methylation information involves the following general steps: design and manufacture of DNA probe arrays, preparation of the sample, bisulfite treatment, hybridization of sample DNA to the array, detection of hybridization events and data analysis to determine sequence. In embodiments, an array is used to capture polynucleotides containing a methylation site of interest, and the captured polynucleotides are subsequently amplified and/or sequenced. Preferred wafers are manufactured using a process adapted from semiconductor manufacturing to achieve cost effectiveness and high quality, and are available, e.g., from Affymetrix, Inc. of Santa Clara, Calif.


For example, probe arrays can be manufactured by light-directed chemical synthesis processes, which combine solid-phase chemical synthesis with photolithographic fabrication techniques as employed in the semiconductor industry. Using a series of photolithographic masks to define chip exposure sites, followed by specific chemical synthesis steps, the process constructs high-density arrays of oligonucleotides, with each probe in a predefined position in the array. Multiple probe arrays can be synthesized simultaneously on a large glass wafer. This parallel process enhances reproducibility and helps achieve economies of scale.


In embodiments, DNA probe arrays can be used to obtain data regarding presence of sequences (e.g., corresponding to methylated or unmethylated DNA) of interest. The DNA samples may be tagged with biotin and/or a fluorescent reporter group by standard biochemical methods. The labeled samples are incubated with an array, and segments of the samples bind, or hybridize, with complementary sequences on the array. The array can be washed and/or stained to produce a hybridization pattern. The array is then scanned and the patterns of hybridization are detected by emission of light from the fluorescent reporter groups. Because the identity and position of each probe on the array is known, the nature of the DNA sequences in the sample applied to the array can be determined.


In embodiments, the nucleic acid sample to be analyzed is isolated, bisulfite-treated, amplified and, optionally, labeled with biotin and/or a fluorescent reporter group. The labeled nucleic acid sample may then be incubated with the array using a fluidics station and hybridization oven. The array can be washed and or stained or counter-stained, as appropriate to the detection method. After hybridization, washing and staining, the array is inserted into a scanner, where patterns of hybridization are detected. The hybridization data are collected as light emitted from the fluorescent reporter groups already incorporated into the labeled nucleic acid, which is now bound to the probe array. Probes that most clearly match the labeled nucleic acid produce stronger signals than those that have mismatches. Since the sequence and position of each probe on the array are known, by complementarity, the identity of the nucleic acid sample applied to the probe array can be identified. In embodiments, hybridization techniques and conditions that allow only fully complementary nucleotide sequences to hybridize with probes in an array are used.


Prior to amplification and/or detection of a nucleic acid comprising a sequence of interest, the nucleic acid is optionally purified from the samples by any available method, e.g., those taught in Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning—A Laboratory Manual (3rd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 2001 (“Sambrook”); and/or Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2002) (“Ausubel”)). A plethora of kits are also commercially available for the purification of nucleic acids from cells or other samples (see, e.g., EasyPrep™, FlexiPrep™, both from Pharmacia Biotech; StrataClean™, from Stratagene; and, QIAprep™ from Qiagen). Alternately, samples can simply be directly subjected to amplification or detection, e.g., following aliquotting and/or dilution.


Breast Cancer Diagnostic System and Processes

In embodiments, included herein is a system for detecting methylation or unmethylation of a DCIS cancer cell proliferation DNA molecule of a subject. In embodiments, the system provides at least one processor; and at least one memory including program code which when executed by the at least one processor provides operations comprising: contacting an isolated DCIS cancer cell proliferation DNA molecule from the subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; detecting the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, thereby detecting methylation or unmethylation of the DCIS cancer cell proliferation DNA molecule of the subject; generating a diagnosis for the subject based at least in part on the presence or absence of uracil in the reacted DCIS cancer cell proliferation DNA molecule at the methylation site set forth in Table 1; and providing, via a user interface, the diagnosis or prognosis for the subject. In embodiments, the system provides at least one processor; and at least one memory including program code which when executed by the at least one processor provides operations comprising: contacting the plurality of isolated DCIS cancer cell proliferation DNA molecules with a bisulfite salt thereby forming a plurality of reacted DCIS cancer cell proliferation DNA molecules; detecting the level of reacted DCIS cancer cell proliferation DNA molecules in the plurality of reacted DCIS cancer cell proliferation DNA molecules having a uracil at a methylation site set forth in Table 1 thereby detecting the level of methylation or unmethylation in the plurality of DCIS cancer cell proliferation DNA molecules of the subject; generating a diagnosis for the subject based at least in part on the level of methylation or unmethylation at the plurality of methylation sites set forth in Table 1; and providing, via a user interface, the diagnosis or prognosis for the subject.



FIG. 2 depicts a block diagram illustrating an exemplary breast cancer diagnostic system 600. Referring to FIG. 2, the breast cancer diagnostic system 600 can include an input module 610, an isolation module 612, a conversion module 614, a detection module 616, a diagnosis module 618, a treatment module 620, and a user interface (UI) module 622. The breast cancer diagnostic system 600 can be configured to provide a diagnosis indicative of a presence of IDC and/or a risk of developing IDC. Moreover, the breast cancer diagnostic system 600 can be further configured to generate a treatment plan for a subject based on the diagnosis. For instance, when the diagnosis indicates a presence and/or risk of IDC in a subject, the breast cancer diagnostic system 600 can recommend one or more treatments including, for example, surgery (e.g., lumpectomy or mastectomy), radiation therapy, chemotherapy, hormone therapy, targeted therapy, and/or administration of an active agent.


One or more modules of the breast cancer diagnostic system 600 can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof. The breast cancer diagnostic system 600 can further be communicatively coupled with one or more devices including, for example, a device 630. The breast cancer diagnostic system 600 can communicate with the device 620 via a wired and/or wireless network 640 (e.g., a wide area network (WAN), a local area network (LAN), and/or the Internet). As shown in FIG. 2, the breast cancer diagnostic system 600 can be further coupled with a data store 650.


The input module 610 can be adapted to receive and/or collect a sample of a DCIS cancer cell proliferation obtained from a subject. The isolation module 612 can be configured to isolate DNA from the DCIS cancer cell proliferation sample received by the input module 610 thereby forming isolated DCIS cancer cell proliferation DNA. The conversion module 614 can be configured to treat the isolated DCIS cancer cell proliferation DNA including by contacting the isolated DCIS cancer cell proliferation DNA with one or more bisulfite reagents including, for example, a bisulfite salt. Exposing the isolated DCIS cancer cell proliferation DNA to one or more bisulfite reagents can convert cytosine to uracil while 5-mC is left unmodified. Thus, the 5-mC present in the isolated DCIS cancer cell proliferation DNA will remain in the reacted DCIS cancer cell proliferation DNA. Meanwhile, any cytosine in the isolated DCIS cancer cell proliferation DNA will be replaced by uracil in the reacted DCIS cancer cell proliferation DNA. In embodiments, the treatment of the isolated DCIS cancer cell proliferation DNA can be performed by applying one or more kits (e.g., the Bisulflash DNA Modification Kit (Epigentek) or Imprint DNA Modification Kit (Sigma)).


In embodiments, the conversion module 614 can be further adapted to ensure optimal bisulfite conversion (e.g., with desired DNA fragment size for post-bisulfite ligation) by controlling one or more of a concentration of the bisulfite reagents, temperature, and reaction time period. It should be appreciated that the conversion module 614 can be adapted to use a different and/or additional type of reagent without departing from the scope of the present subject matter. For example, the conversion module 614 can treat the isolated DCIS cancer cell proliferation DNA with potassium chloride, which may reduce the thermophilic DNA degradation associated with the conversion of cytosine to uracil. Moreover, the conversion module 614 can be configured to perform additional processing of the reacted DCIS cancer cell proliferation DNA including, for example, desulphonation (e.g., with an alkalized solution), cleansing (e.g., by elution), and amplification (e.g., using the PCR method).


The detection module 616 can be configured to detect a methylation and/or unmethylation of the DCIS cancer cell proliferation DNA. For instance, the detection module 616 can detect methylation by detecting a presence of uracil in the reacted DCIS cancer cell proliferation DNA generated by the conversion module 614. Alternately and/or additionally, the detection module 616 can detect unmethylation by detecting an absence of uracil in the reacted DCIS cancer cell proliferation DNA. In embodiments, the detection module 616 can be configured detect the presence and/or absence of uracil at specific methylation sites. That is, the detection module 616 can be configured to detect the presence and/or absence of uracil at specific chromosomal positions of certain chromosomes. For example, the breast cancer diagnostic system 600 can store a plurality of specific methylation sites (e.g., Table 1) in the data store 650. As such, to detect methylation, the detection module 616 can be configured to obtain, from the data store 650, one or more specific methylation sites at which to test for the presence and/or absence of uracil. Moreover, in embodiments, the detection module 616 can be configured to determine a level of methylation and/or unmethylation at the specific methylation sites. The level of methylation at a particular site can correspond to a proportion of the reacted DCIS cancer cell proliferation DNA that has a cytosine rather than a uracil at that site. By contrast, the level of unmethylation at a particular site can correspond to a proportion of reacted DCIS cancer cell proliferation DNA that has a uracil rather than a cytosine at that site.


In embodiments, the conversion module 614 may amplify the reacted DCIS cancer cell proliferation DNA such as by using a PCR method. The detection of methylation and/or unmethylation in amplified reacted DCIS cancer cell proliferation DNA may require detection of a presence and/or absence of thymidine at a site of interest in amplicons amplified from the reacted DCIS cancer cell proliferation DNA. That is, instead of detecting the presence and/or absence of uracil, the detection module 616 can be configured to detect methylation and/or unmethylation of amplified reacted DCIS cancer cell proliferation DNA by detecting a presence and/or absence of thymidine at specific methylation sites (e.g., as set forth in Table 1).


The diagnosis module 618 can be configured to generate a diagnosis for the subject based on whether the detection module 616 detects methylation and/or unmethylation at the plurality of specific methylation sites (e.g., Table 1). Alternately or additionally, the diagnosis module 618 can be configured to generate a diagnosis for the subject based on a level of methylation and/or unmethylation detected by the detection module 616 at the plurality of specific methylation sites. For instance, diagnosis module 618 can determine that the DCIS cancer cell proliferation is invasive competent when the unmethylation level (e.g., proportion of uracil) at different methylation sites exceeds the corresponding thresholds (e.g., as set forth in Table 2).


The treatment module 620 can be configured to formulate a treatment plan for the subject based on the diagnosis generated by the diagnosis module 618. For instance, when the diagnosis generated by the diagnosis module 618 indicates a presence and/or risk of IDC, the treatment module 620 can prescribe or suggest one or more treatments including, for example, surgery, radiation therapy, chemotherapy, hormone therapy, and/or administration of an active agent. In embodiments, the treatment module 620 can be configured to provide the treatment plan to the device 630 via the network 640. Alternately or additionally, the treatment module 620 can store the treatment plan in the data store 650.


The UI module 622 can be configured to generate a UI through which a user (e.g., a physician) can interface with the breast cancer diagnostic system 600. For example, the UI module 622 can provide one or more graphic user interfaces (GUIs) configured to display the diagnosis and/or treatment plan for the subject.



FIG. 5 depicts a flowchart illustrating an exemplary process 700 for diagnosing invasive or invasive competent breast cancer. Referring to FIGS. 3 and 4, the process 700 can be performed by the breast cancer diagnostic system 600.


The breast cancer diagnostic system 600 (e.g., the input module 610) can receive a sample of a DCIS cancer cell proliferation from a subject (702). The breast cancer diagnostic system 600 (e.g., the isolation module 612) can isolate DCIS cancer cell proliferation DNA from the DCIS cancer cell proliferation sample (704). The breast cancer diagnostic system 600 (e.g., the conversion module 614) can treat the isolated DCIS cancer cell proliferation DNA with a bisulfite salt to generate reacted DCIS cancer cell proliferation DNA (706). Treating the isolated DCIS cancer cell proliferation DNA with the bisulfite salt can form a reacted DCIS cancer cell proliferation DNA by converting the cytosine present in the isolated DCIS cancer cell proliferation DNA to uracil. In embodiments, the breast cancer diagnostic system 600 can further process the reacted DCIS cancer cell proliferation DNA by desulphonating, cleansing, and/or amplifying the reacted DCIS cancer cell proliferation DNA.


The breast cancer diagnostic system 600 (e.g., the detection module 616) can detect methylation and/or unmethylation of the isolated DCIS cancer cell proliferation DNA by at least detecting a presence and/or absence of uracil in the reacted DCIS cancer cell proliferation DNA (708). In embodiments, the breast cancer diagnostic system 600 can be configured to detect a presence and/or absence of uracil at specific methylation sites (e.g., as set forth in Table 1). Moreover, the breast cancer diagnostic system 600 can be configured to detect a level of methylation and/or unmethylation at the methylation sites.


The breast cancer diagnostic system 600 (e.g., the diagnostics module 618) can generate a diagnosis for the subject based on the methylation and/or unmethylation of the isolated DCIS cancer cell proliferation DNA (710). For example, the breast cancer diagnostic system 600 can generate a diagnosis based on a level of methylation and/or unmethylation at a plurality of specific methylation sites. Each methylation site may be associated with a certain threshold unmethylation level (e.g., as set forth in Table 2). As such, the breast cancer diagnostic system 600 can determine that the DCIS cancer cell proliferation from the subject is invasive if the level of unmethylation at the plurality of methylation sites exceeds (e.g., as set forth in Table 2) or is below (e.g., as set forth in Table 3) the corresponding thresholds.


The breast cancer diagnostic system 600 (e.g., the treatment module 620) can formulate, based on the diagnosis, a treatment plan for the subject (712). For example, when the diagnosis indicates that a presence and/or risk of IDC in the subject, the breast cancer diagnostic system 600 can prescribe or suggest surgery, radiation therapy, chemotherapy, hormone therapy, and/or administration of an active agent. The breast cancer diagnostic system 600 (e.g., the UI module 622) can provide, via a UI (e.g., GUI at the device 630), the diagnosis and/or the treatment plan for the subject (714).



FIG. 6 depicts a flowchart illustrating an exemplary process 800 for diagnosing IDC. Referring to FIGS. 2 and 4, the process 700 can be performed by the breast cancer diagnostic system 600.


The breast cancer diagnostic system 600 (e.g., the input module 610) can receive a sample of a DCIS cancer cell proliferation from a subject (802). The breast cancer diagnostic system 600 (e.g., the isolation module 612) can isolate DCIS cancer cell proliferation DNA from the DCIS cancer cell proliferation sample (804). The breast cancer diagnostic system 600 (e.g., the conversion module 614) can treat the isolated DCIS cancer cell proliferation DNA with a bisulfite salt to generate reacted DCIS cancer cell proliferation DNA (806).


As shown in FIG. 4, the breast cancer diagnostic system 600 (e.g., the conversion module 614) can amplify the reacted DCIS cancer cell proliferation DNA (808). For instance, the breast cancer diagnostic system 600 can amplify the reacted DCIS cancer cell proliferation DNA subsequent to treating the isolated DCIS cancer cell proliferation DNA with the bisulfite salt to generate amplicons of the reacted DCIS cancer cell proliferation DNA. The breast cancer diagnostic system 600 can detect methylation and/or unmethylation of the isolated DCIS cancer cell proliferation DNA by detecting a presence and/or absence of thymidine in the amplified reacted DCIS cancer cell proliferation DNA (810).


The breast cancer diagnostic system 600 (e.g., the diagnostics module 618) can generate a diagnosis for the subject based on the methylation and/or unmethylation of the isolated DCIS cancer cell proliferation DNA (812). Moreover, the breast cancer diagnostic system 600 (e.g., the treatment module 620) can formulate, based on the diagnosis, a treatment plan for the subject (814). The breast cancer diagnostic system 600 (e.g., the UI module 622) can provide, via a UI, the diagnosis and/or treatment plan for the subject.


It should be appreciated that the process 700 and/or 800 can include different and/or additional operations without departing from the scope of the present subject matter. Moreover, one or more operations of the process 700 and/or 800 can be omitted and/or repeated without departing from the scope of the present subject matter.


Implementations of the present subject matter can include, but are not limited to, methods consistent with the descriptions provided above as well as articles that comprise a tangibly embodied machine-readable medium operable to cause one or more machines (e.g., computers, etc.) to result in operations implementing one or more of the described features. Similarly, computer systems are also described that can include one or more processors and one or more memories coupled to the one or more processors. A memory, which can include a computer-readable storage medium, can include, encode, store, or the like one or more programs that cause one or more processors to perform one or more of the operations described herein. Computer implemented methods consistent with one or more implementations of the current subject matter can be implemented by one or more data processors residing in a single computing system or multiple computing systems. Such multiple computing systems can be connected and can exchange data and/or commands or other instructions or the like via one or more connections, including but not limited to a connection over a network (e.g. the Internet, a wireless wide area network, a local area network, a wide area network, a wired network, or the like), via a direct connection between one or more of the multiple computing systems, etc.


One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs, FPGAs, computer hardware, firmware, software, and/or combinations thereof. These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The programmable system or computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


These computer programs, which can also be referred to programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural language, an object-oriented programming language, a functional programming language, a logical programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.


To provide for interaction with a user, one or more aspects or features of the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) or a light emitting diode (LED) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including, but not limited to, acoustic, speech, or tactile input. Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi-point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital MRI image capture devices and associated interpretation software, and the like.


EXAMPLES

Examples are provided below to facilitate a more complete understanding of the invention. The following examples illustrate the exemplary modes of making and practicing the invention. However, the scope of the invention is not limited to specific embodiments disclosed in these Examples, which are for purposes of illustration only, since alternative methods can be utilized to obtain similar results.


Example 1. Development of an Epigenetic Biomarker Panel for DCIS Invasiveness

DNA methylation patterns were evaluated in 7 DCIS samples from patients without reported invasion (pure DCIS), and 3 DCIS samples from patients with IDC. In order to identify DNA methylation changes exclusive to cancer cells, malignant cells located within the involved ducts of DICS were isolated by laser capture microdissection (FIG. 1A). Genome-wide profiling of DNA methylation was performed. Reduced representation bisulfite sequencing (RRBS) was used to evaluate DNA methylation patterns at gene promoters in captured cells (FIG. 1C). Clustering analysis clearly separated DCIS samples into two epigenetic groups. The first DCIS epigenetic group was associated with almost no DNA methylation at promoters and obtained from patients lacking invasion (pure DCIS). At the same time, specimens from the second epigenetic group of DCIS were characterized by extensive accumulation of DNA methylation at promoters. This group contained all analyzed DCIS from patients with IDC and 3 pure DCIS, according to a clinical pathology report.


In general, DNA methylation patterns strikingly separate normal from cancer cells and reflect genome-wide alterations of chromatin. While normal cells are missing DNA methylation at promoters, cancer is characterized by aberrant accumulation of promoter DNA methylation, which is frequently associated with gene silencing. Therefore, the first DCIS epigenetic group has a DNA methylation pattern very similar to normal cells. At the same time, the second DCIS epigenetic group exhibited a clear accumulation of cancer-associated DNA methylation and was highly enriched in DCIS associated with invasion.


Not to be bound by scientific theory, it was hypothesized that there are two different epigenetic programs driving DCIS progression, and patients with the “invasion incompetent” signature are unlikely to develop invasion while patients with pure DCIS from the second epigenetic group having “invasion competent” signature will have a very high chance to develop invasion. This hypothesis on the predictive power of epigenetic profiling is supported by the fact that on independent blinded pathology review of the “pure DCIS” cases, DCIS sample number 6 (DCIS_6) was reclassified as invasive (by a pathologist) that confirms the “invasion competent” signature identified by DNA methylation analysis. Thus, based on the DNA methylation pattern, the potential for invasiveness of DCIS can be predicted.


140 cytosines with DNA methylation patterns that strictly distinguish these two DCIS groups (“invasion incompetent” and “invasion competent”) were identified (FIG. 1D). These epigenetic signatures can be used in diagnostic and prognostic DCIS tests for invasiveness that guide clinical management and potentially de-escalate therapy for DCIS with no potential for invasion.


DNA Methylation Profiling

By using LDM 7000 (Leica Microsystems), cancer cells were isolated from breast tissues by using laser capture procedure. Genomic DNA was purified by using a standard phenol/chloroform extraction approach followed by ethanol precipitation. Further genomic DNA underwent RRBS procedure. RRBS DNA amplicons were paired-end sequenced by using HighSeq (Illumina). For each sample, at least 15 million aligned reads were obtained. Specific methylation signatures for “invasion incompetent” and “invasion competent” cells were determined based on cytosines which are characterized by at least 5 sequencing reads in each sample.


OTHER EMBODIMENTS

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. Genbank and NCBI submissions indicated by accession number cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.


While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A method of detecting methylation or unmethylation of a ductal carcinoma in situ (DCIS) cell proliferation deoxyribonucleic acid (DNA) molecule of a human subject, the method comprising: (i) contacting an isolated DCIS cancer cell proliferation DNA molecule from a breast tissue sample of said subject with a bisulfate salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule; and(ii) detecting the presence or absence of uracil in said reacted DCIS cancer cell proliferation DNA molecule at a methylation site, wherein said methylation site is at Chromosome 1 (Chr1) position 4714314, Chromosome 3 (Chr3) position 121903470, Chromosome 4 (Chr4) position 44449864, Chromosome 7 (Chr7) position 157477232, Chromosome 12 (Chr12) position 95941925, Chr12 position 129338355, Chromosome 19 (Chr19) 30017283, or Chromosome 20 (Chr20) position 23016002 with respect to human genome assembly hg19,thereby detecting methylation or unmethylation of said DCIS cancer cell proliferation DNA molecule of said subject.
  • 2. (canceled)
  • 3. The method of claim 1, further comprising detecting the presence or absence of uracil in a plurality of reacted DCIS cancer cell proliferation DNA molecules at a plurality of methylation sites selected from Chr1 position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chr3 position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chr 4 position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chr7 position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr 12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 (Chr17) position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chr19 position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chr20 position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, or Chromosome 22 position 43807517 with respect to human genome assembly hg19.
  • 4. (canceled)
  • 5. (canceled)
  • 6. The method of claim 3, wherein said plurality of methylation sites comprises at least about 2, 5, or 10 methylation sites with respect to human genome assembly hg19.
  • 7. The method of claim 3, wherein the uracil level of at least one methylation site of said plurality of methylation sites is above a threshold selected from 76.09 for chr1 position 11413742, 78.57 for chr1 240934954, 74.49 for chr10 position 123778639, 79.31 for chr10 position 123778640, 74.47 for chr11 position 1215978, or 83.33 for chr12 position 128750309 with respect to human genome assembly hg19.
  • 8. The method of claim 3, wherein the uracil level of at least one methylation site of said plurality of methylation sites is below a threshold selected from 74.32 for chr1 position 4714314, 63.81 for chr1 position 39957798, 85.11 for chr1 46951513, 73.08 for chr1 position 47904912, 71.20 for chr1 position 62660691, 46.94 for chr1 position 63785800, 42.86 for chr1 position 67600465, 48.28 for chr1 position 91183172, 64.29 for chr1 position 166853786, 88.89 for chr1 position 179545096, 89.29 for chr1 position 207669851, 82.61 for chr1 position 237205704, 78.57 for chr1 position 237205705, 60.00 for chr1 position 240161215, 75.00 for chr10 position 8076277, 76.30 for chr10 position 50818610, 50.43 for chr10 position 77157527, 67.35 for chr10 position 124902829, 80.00 for chr10 position 124909545, 76.74 for chr10 position 130085373, 34.43 for chr10 position 134598235, 79.31 for chr10 position 134599080, 65.85 for chr11 position 9025912, 51.72 for chr11 position 15963013, 80.95 for chr11 position 66187593, 51.52 for chr11 position 71318977, 57.89 for chr11 position 101453451, 60.00 for chr12 position 49726711, 69.81 for chr12 position 50297756, 82.98 for chr12 position 50297763, 81.13 for chr12 position 50297768, 75.47 for chr12 position 50297774, 77.36 for chr12 position 50297776, 54.17 for chr12 position 50444766, 52.00 for chr12 position 75601447, 36.84 for chr12 position 95941925, 57.14 for chr12 position 129338355, 60.71 for chr12 position 129338471, 65.85 for chr13 position 28502190, 79.84 for chr13 position 79181509, 70.70 for chr13 position 92051154, 73.91 for chr13 position 95363553, 78.95 for chr13 position 95363592, 72.36 for chr14 position 29236052, 62.60 for chr14 position 29236065, 92.45 for chr14 position 101543886, 69.84 for chr15 position 29407958, 73.68 for chr15 position 45403826, 62.30 for chr15 position 76630094, 39.68 for chr15 position 89951787, 71.43 for chr17 position 35294171, 56.52 for chr17 position 64831307, 43.48 for chr17 position 74136562, 62.79 for chr17 position 74865566, 67.01 for chr18 position 19745047, 64.10 for chr18 position 19745054, 80.00 for chr18 position 19747206, 68.29 for chr18 position 44774403, 66.20 for chr18 position 55103840, 50.00 for chr18 position 55106910, 66.67 for chr18 position 70534832, 33.33 for chr18 position 77547934, 38.89 for chr19 position 30016170, 60.00 for chr19 position 30017283, 54.24 for chr19 position 30717013, 66.67 for chr19 position 30719659, 12.20 for chr2 position 20870821, 34.25 for chr2 position 45156764, 34.69 for chr2 position 74743346, 28.21 for chr2 position 80549703, 63.64 for chr2 position 105471544, 64.44 for chr2 position 115919663, 79.31 for chr2 position 115920004, 47.06 for chr2 position 118982006, 63.16 for chr2 position 177001540, 55.43 for chr20 position 1294019, 62.96 for chr20 position 3073503, 62.44 for chr20 position 10198305, 80.70 for chr20 position 23015989, 65.59 for chr20 position 23016002, 55.56 for chr20 position 26189258, 36.00 for chr20 position 48626669, 72.13 for chr20 position 53092916, 58.82 for chr20 position 59827619, 76.47 for chr20 position 59828325, 37.32 for chr21 position 9825842, 50.00 for chr21 position 9826150, 53.36 for chr21 position 9826934, 40.68 for chr22 position 43807517, 57.54 for chr3 position 14852857, 71.96 for chr3 position 121903470, 68.63 for chr3 position 170303393, 67.65 for chr3 position 170303422, 81.82 for chr3 position 170303423, 56.52 for chr3 position 170303424, 69.77 for chr3 position 170303425, 78.38 for chr4 position 44449864, 72.00 for chr4 position 54976099, 55.10 for chr4 position 56023880, 65.00 for chr5 position 71014951, 80.82 for chr5 position 72677229, 55.26 for chr5 position 87981177, 71.83 for chr5 position 140743998, 56.25 for chr5 position 178421786, 57.25 for chr6 position 41337153, 68.18 for chr6 position 85484102, 55.56 for chr6 position 157557787, 75.51 for chr6 position 160769248, 70.45 for chr7 position 1282082, 31.03 for chr7 position 32467637, 63.89 for chr7 position 71801896, 63.89 for chr7 position 71801905, 55.17 for chr7 position 100946148, 43.66 for chr7 position 100946151, 75.00 for chr7 position 121957003, 84.83 for chr7 position 150038502, 26.45 for chr7 position 157477232, 71.43 for chr7 position 157477399, 92.59 for chr7 position 157477401, 70.91 for chr8 position 9764011, 85.51 for chr8 position 11566080, 65.22 for chr8 position 11566102, 65.22 for chr8 position 11566125, 53.85 for chr8 position 56015232, 95.00 for chr8 position 65281933, 44.93 for chr8 position 145105472, 85.19 for chr9 position 126780185, 66.96 for chr9 position 127239956, or 84.62 for chr9 position 140772369 with respect to human genome assembly hg19.
  • 9. The method of claim 1, wherein said DCIS cancer cell proliferation comprises cancer cells isolated from a sample obtained by biopsy, by laser capture microdissection, or by surgical resection of DCIS tissue from said subject.
  • 10. (canceled)
  • 11. The method of claim 1, wherein said subject has undergone lumpectomy, mastectomy, radiation therapy, and/or administration of an active agent.
  • 12. The method of claim 11, wherein said active agent comprises trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.
  • 13. (canceled)
  • 14. (canceled)
  • 15. The method of claim 1, wherein said subject (a) is a woman; (b) is about 30 to about 75 years old; (c) has at least one mutant breast cancer 1 (BRCA1), breast cancer 2 (BRCA2), Partner and localizer of BRCA2 (PALB2), phosphatase and tensin homolog (PTEN), or p53 allele; (d) has a parent, sibling, or child who has been diagnosed with breast cancer; (e) has had atypical ductal hyperplasia or lobular carcinoma in situ; (f) has had previous radiation treatment to the chest or a breast before the age of 30; (g) has received a combination hormone therapy with estrogen and progestin for at least five years; and/or (h) has or has had breast cancer.
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
  • 20. (canceled)
  • 21. (canceled)
  • 22. (canceled)
  • 23. (canceled)
  • 24. (canceled)
  • 25. (canceled)
  • 26. (canceled)
  • 27. (canceled)
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
  • 31. (canceled)
  • 32. A deoxyribonucleic acid at least 5 to 100 nucleotides in length comprising a uracil-containing sequence that is identical to a sequence of at least a 5 contiguous nucleotides within a sequence chosen from SEQ ID NO:1 to SEQ ID NO:242.
  • 33. The deoxyribonucleic acid of claim 32, comprising a uracil-containing sequence that is identical to a sequence of at least 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, or 190-200 contiguous nucleotides within said sequence chosen from SEQ ID NO:1 to SEQ ID NO:242.
  • 34. The deoxyribonucleic acid of claim 32, wherein said sequence comprises a methylation site set forth in Table 1 selected from Chr1 position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chr3 position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chr 4 position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chr7 position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr 12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 (Chr17) position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chr19 position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chr20 position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, or Chromosome 22 position 43807517 with respect to human genome assembly hg19.
  • 35. The deoxyribonucleic acid of claim 34, wherein a plurality of said methylation sites set forth in Table 1 contain a uracil or a cytosine.
  • 36. A deoxyribonucleic acid chosen from SEQ ID NO:243 to SEQ ID NO:356, wherein said nucleic acid is hybridized to a complementary DNA sequence comprising uridine or cytosine.
  • 37. The deoxyribonucleic acid of claim 36, further comprising an enzyme in a complex with said hybridized complementary DNA sequence.
  • 38. The deoxyribonucleic acid of claim 37, wherein said enzyme is Taq polymerase.
  • 39. A kit comprising a plurality of nucleic acids each independently comprising SEQ ID NO: 242 to SEQ ID NO:356, wherein each nucleic acid of said plurality is unique.
  • 40. The kit according to claim 39, further comprising: an enzyme, a reagent for deamination of cytosine, a buffer, a vial, a control DNA, a device for collecting a breast tissue sample, device for purification cancer cells from breast tissues, a reagent for isolating DNA, a reagent for labeling DNA, or any combination thereof.
  • 41. The kit according to claim 40, wherein the enzyme comprises a thermostable DNA polymerase enzyme and/or a restriction enzyme.
  • 42. A system for detecting methylation or unmethylation of a ductal carcinoma in situ (DCIS) cell mass deoxyribonucleic acid (DNA) molecule of a human subject, the system comprising: at least one processor; andat least one memory including program code which when executed by the at least one processor provides operations comprising:contacting an isolated DCIS cancer cell proliferation DNA molecule from a breast tissue sample of said subject with a bisulfite salt thereby forming a reacted DCIS cancer cell proliferation DNA molecule;detecting the presence or absence of uracil in said reacted DCIS cancer cell proliferation DNA molecule at a methylation site set forth in Table 1, wherein said methylation site is at Chromosome 1 (Chr1) position 4714314, Chromosome 3 (Chr3) position 121903470, Chromosome 4 (Chr4) position 44449864, Chromosome 7 (Chr7) position 157477232, Chromosome 12 (Chr12) position 95941925, Chr12 position 129338355, Chromosome 19 (Chr19) 30017283, or Chromosome 20 (Chr20) position 23016002 with respect to human genome assembly hg19, thereby detecting methylation or unmethylation of said DCIS cancer cell proliferation DNA molecule of said subject;generating a diagnosis for said subject based at least in part on the presence or absence of uracil in said reacted DCIS cancer cell proliferation DNA molecule at the methylation site; andproviding, via a user interface, the diagnosis or prognosis for said subject.
  • 43. (canceled)
  • 44. The system of claim 42, wherein the system is further configured to detect the presence or absence of uracil in a plurality of reacted DCIS cancer cell proliferation DNA molecules at a plurality of methylation sites selected from Chr1 position 4714314, Chr1 position 11413742, Chr1 position 39957798, Chr1 position 46951513, Chr1 position 47904912, Chr1 position 62660691, Chr1 position 63785800, Chr1 position 67600465, Chr1 position 91183172, Chr1 position 166853786, Chr1 position 179545096, Chr1 position 207669851, Chr1 position 237205704, Chr1 position 237205705, Chr1 position 240161215, Chr1 position 240934954, Chromosome 2 (Chr2) position 20870821, Chr2 position 45156764, Chr2 position 74743346, Chr2 position 80549703, Chr2 position 95989474, Chr2 position 105471544, Chr2 position 115919663, Chr2 position 115920004, Chr2 position 118982006, Chr2 position 177001540, Chr3 position 14852857, Chr3 position 121903470, Chr3 position 170303393, Chr3 position 170303422, Chr3 position 170303423, Chr3 position 170303424, Chr3 position 170303425, Chr 4 position 44449864, Chr4 position 54976099, Chr4 position 56023880, Chromosome 5 (Chr5) positon 71014951, Chr5 position 72677229, Chr5 position 87981177, Chr5 position 140743998, Chr5 position 178421786, Chromosome 6 (Chr6) position 41337153, Chr6 position 85484102, Chr6 position 157557787, Chr6 position 160769248, Chr7 position 1282082, Chr7 position 32467637, Chr7 position 71801896, Chr7 position 71801905, Chr7 position 100946148, Chr7 position 100946151, Chr7 position 121957003, Chr7 position 150038502, Chr7 position 157477232, Chr7 position 157477399, Chr7 position 157477401, Chromosome 8 (Chr8) position 9764011, Chr8 position 11566080, Chr8 position 11566102, Chr8 position 11566125, Chr8 position 56015232, Chr8 position 65281933, Chr8 position 145105472, Chromosome 9 (Chr9) position 126780185, Chr9 position 127239956, Chr9 position 140772369, Chromosome 10 (Chr10) position 8076277, Chr10 position 50818610, Chr10 position 77157527, Chr10 position 123778639, Chr10 position 123778640, Chr10 position 124902829, Chr10 position 124909545, Chr10 position 130085373, Chr10 position 134598235, Chr10 position 134599080, Chromosome 11 (Chr11) position 1215978, Chr11 position 9025912, Chr11 position 15963013, Chr11 position 66187593, Chr11 position 71318977, Chr11 position 101453451, Chr12 position 49726711, Chr12 position 50297756, Chr12 position 50297763, Chr12 position 50297768, Chr12 position 50297774, Chr12 position 50297776, Chr12 position 50444766, Chr12 position 75601447, Chr12 position 95941925, Chr12 position 128750309, Chr 12 position 129338355, Chr12 position 129338471, Chromosome 13 (Chr13) position 28502190, Chr13 position 79181509, Chr13 position 92051154, Chr13 position 95363553, Chr13 position 95363592, Chromosome 14 (Chr14) position 29236052, Chr14 position 29236065, Chr14 position 101543886, Chromosome 15 (Chr15) position 29407958, Chr15 position 45403826, Chr15 position 76630094, Chr15 position 89951787, Chromosome 16 position 1255253, Chromosome 17 (Chr17) position 3211643, Chr17 position 30244229, Chr17 position 35294171, Chr17 position 64831307, Chr17 position 74136562, Chr17 position 74865566, Chromosome 18 (Chr18) position 19745047, Chr18 position 19745054, Chr18 position 19747206, Chr18 position 44774403, Chr18 position 55103840, Chr18 position 55106910, Chr18 position 70534832, Chr18 position 72880039, Chr18 position 77547934, Chr19 position 30016170, Chr19 position 30017283, Chr19 position 30717013, Chr19 position 30719659, Chr20 position 1294019, Chr20 position 3073503, Chr20 position 10198305, Chr20 position 23015989, Chr20 position 23016002, Chr20 position 26189258, Chr20 position 48626669, Chr20 position 53092916, Chr20 position 59827619, Chr20 position 59828325, Chromosome 21 (Chr21) position 9825842, Chr21 position 9826150, Chr21 position 9826934, or Chromosome 22 position 43807517 with respect to human genome assembly hg19.
  • 45. (canceled)
  • 46. (canceled)
  • 47. (canceled)
  • 48. (canceled)
  • 49. (canceled)
  • 50. (canceled)
  • 51. (canceled)
  • 52. (canceled)
  • 53. (canceled)
  • 54. (canceled)
  • 55. (canceled)
  • 56. (canceled)
  • 57. The method of claim 3, further comprising: (i) detecting a level of uracil of said plurality of methylation sites that is equal to or greater than the level of methylation sites selected from 76.09 for chr1 position 11413742, 78.57 for chr1 240934954, 74.49 for chr10 position 123778639, 79.31 for chr10 position 123778640, 74.47 for chr11 position 1215978, or 83.33 for chr12 position 128750309 with respect to human genome assembly hg19; and(ii) administering to said subject a treatment to treat or prevent IDC or directing said subject to obtain treatment to treat or prevent IDC, wherein the treatment comprises (a) lumpectomy, mastectomy, radiation therapy, chemotherapy, or hormone therapy; or (b) administering an active agent comprising trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.
  • 58. The method of claim 3, further comprising: (i) detecting a level of uracil of said plurality of methylation sites that is equal to or less than the level of methylation sites selected from 74.32 for chr1 position 4714314, 63.81 for chr1 position 39957798, 85.11 for chr1 46951513, 73.08 for chr1 position 47904912, 71.20 for chr1 position 62660691, 46.94 for chr1 position 63785800, 42.86 for chr1 position 67600465, 48.28 for chr1 position 91183172, 64.29 for chr1 position 166853786, 88.89 for chr1 position 179545096, 89.29 for chr1 position 207669851, 82.61 for chr1 position 237205704, 78.57 for chr1 position 237205705, 60.00 for chr1 position 240161215, 75.00 for chr10 position 8076277, 76.30 for chr10 position 50818610, 50.43 for chr10 position 77157527, 67.35 for chr10 position 124902829, 80.00 for chr10 position 124909545, 76.74 for chr10 position 130085373, 34.43 for chr10 position 134598235, 79.31 for chr10 position 134599080, 65.85 for chr11 position 9025912, 51.72 for chr11 position 15963013, 80.95 for chr11 position 66187593, 51.52 for chr11 position 71318977, 57.89 for chr11 position 101453451, 60.00 for chr12 position 49726711, 69.81 for chr12 position 50297756, 82.98 for chr12 position 50297763, 81.13 for chr12 position 50297768, 75.47 for chr12 position 50297774, 77.36 for chr12 position 50297776, 54.17 for chr12 position 50444766, 52.00 for chr12 position 75601447, 36.84 for chr12 position 95941925, 57.14 for chr12 position 129338355, 60.71 for chr12 position 129338471, 65.85 for chr13 position 28502190, 79.84 for chr13 position 79181509, 70.70 for chr13 position 92051154, 73.91 for chr13 position 95363553, 78.95 for chr13 position 95363592, 72.36 for chr14 position 29236052, 62.60 for chr14 position 29236065, 92.45 for chr14 position 101543886, 69.84 for chr15 position 29407958, 73.68 for chr15 position 45403826, 62.30 for chr15 position 76630094, 39.68 for chr15 position 89951787, 71.43 for chr17 position 35294171, 56.52 for chr17 position 64831307, 43.48 for chr17 position 74136562, 62.79 for chr17 position 74865566, 67.01 for chr18 position 19745047, 64.10 for chr18 position 19745054, 80.00 for chr18 position 19747206, 68.29 for chr18 position 44774403, 66.20 for chr18 position 55103840, 50.00 for chr18 position 55106910, 66.67 for chr18 position 70534832, 33.33 for chr18 position 77547934, 38.89 for chr19 position 30016170, 60.00 for chr19 position 30017283, 54.24 for chr19 position 30717013, 66.67 for chr19 position 30719659, 12.20 for chr2 position 20870821, 34.25 for chr2 position 45156764, 34.69 for chr2 position 74743346, 28.21 for chr2 position 80549703, 63.64 for chr2 position 105471544, 64.44 for chr2 position 115919663, 79.31 for chr2 position 115920004, 47.06 for chr2 position 118982006, 63.16 for chr2 position 177001540, 55.43 for chr20 position 1294019, 62.96 for chr20 position 3073503, 62.44 for chr20 position 10198305, 80.70 for chr20 position 23015989, 65.59 for chr20 position 23016002, 55.56 for chr20 position 26189258, 36.00 for chr20 position 48626669, 72.13 for chr20 position 53092916, 58.82 for chr20 position 59827619, 76.47 for chr20 position 59828325, 37.32 for chr21 position 9825842, 50.00 for chr21 position 9826150, 53.36 for chr21 position 9826934, 40.68 for chr22 position 43807517, 57.54 for chr3 position 14852857, 71.96 for chr3 position 121903470, 68.63 for chr3 position 170303393, 67.65 for chr3 position 170303422, 81.82 for chr3 position 170303423, 56.52 for chr3 position 170303424, 69.77 for chr3 position 170303425, 78.38 for chr4 position 44449864, 72.00 for chr4 position 54976099, 55.10 for chr4 position 56023880, 65.00 for chr5 position 71014951, 80.82 for chr5 position 72677229, 55.26 for chr5 position 87981177, 71.83 for chr5 position 140743998, 56.25 for chr5 position 178421786, 57.25 for chr6 position 41337153, 68.18 for chr6 position 85484102, 55.56 for chr6 position 157557787, 75.51 for chr6 position 160769248, 70.45 for chr7 position 1282082, 31.03 for chr7 position 32467637, 63.89 for chr7 position 71801896, 63.89 for chr7 position 71801905, 55.17 for chr7 position 100946148, 43.66 for chr7 position 100946151, 75.00 for chr7 position 121957003, 84.83 for chr7 position 150038502, 26.45 for chr7 position 157477232, 71.43 for chr7 position 157477399, 92.59 for chr7 position 157477401, 70.91 for chr8 position 9764011, 85.51 for chr8 position 11566080, 65.22 for chr8 position 11566102, 65.22 for chr8 position 11566125, 53.85 for chr8 position 56015232, 95.00 for chr8 position 65281933, 44.93 for chr8 position 145105472, 85.19 for chr9 position 126780185, 66.96 for chr9 position 127239956, or 84.62 for chr9 position 140772369 with respect to human genome assembly hg19; and(ii) administering to said subject a treatment to treat or prevent DC or directing said subject to obtain treatment to treat or prevent DC, wherein the treatment comprises (a) lumpectomy, mastectomy, radiation therapy, chemotherapy, or hormone therapy; or (b) administering an active agent comprising trastuzumab, trastuzumab emtansine, lapatinib, pertuzumab, bevacizumab, tamoxifen, exemestane, anastrozole, letrozole, doxorubicin, epirubicin, cyclophosphamide, docetaxel, paclitaxel, nab paclitaxel, eribulin, everolimus, palbociclib, capecitabine, ixabepilone, methotrexate, or fluorouracil.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/611,910, filed Dec. 29, 2017, which is hereby incorporated by reference in its entirety for all purposes.

Provisional Applications (1)
Number Date Country
62611910 Dec 2017 US
Continuations (1)
Number Date Country
Parent 16235968 Dec 2018 US
Child 17561434 US