Today, SD-WAN solutions can provide different networking services according to defined business policies, such as the VMware SD-WAN by VeloCloud®. These networking services can include direct internet, internet via a cloud gateway (e.g., VeloCloud® gateway), and internet via private link (e.g., MPLS) backhaul. Typically, the business policy and default policy direct traffic to the internet via a cloud gateway. However, while this approach may direct traffic to a specific cloud gateway based on proximity to the source location, this specific cloud gateway may not be the best gateway for certain publicly hosted applications, such as applications where the specific cloud gateway is unable to meet low latency requirements of the application.
Some embodiments of the invention provide a method of routing data message traffic between an edge router at a branch first location for an enterprise network and a SaaS (software as a service) application server provided by a third-party at a second location. The method is performed, in some embodiments, by the edge router at the branch first location. The method queries a (global server load balancing) GSLB-aware DNS (domain name system) server for a cloud gateway from multiple cloud gateways at multiple locations through which a particular destination network address for the SaaS application server can be reached. From the GSLB-aware DNS server, the method receives an identifier for a first cloud gateway that is farther from the branch first location than a second cloud gateway, but closer to the second location than the second cloud gateway. The method then uses an optimized SD-WAN connection to the first cloud gateway to forward data messages for the first cloud gateway to the SaaS application at the second location.
In some embodiments, each link between the edge router and a cloud gateway is associated with a respective latency score. For instance, a first link between the edge router and the first cloud gateway is associated with a first latency score, in some embodiments, and a second link between the edge router and the second cloud gateway. In some embodiments, after receiving the identifier for the first cloud gateway, the edge router sends requests to the first and second cloud gateways for latency scores associated with the respective links between the first and second cloud gateways and the SaaS application server. In response to the requests, the edge router of some embodiments receives a third latency score from the first cloud gateway associated with a third link between the first cloud gateway and the SaaS application server, and receives a fourth latency score from the second cloud gateway associated with a fourth link between the second cloud gateway and the SaaS application server.
The first latency score associated with the first link between the edge router and the first cloud gateway and the fourth latency score associated with the fourth link between the second cloud gateway and the SaaS application server are high latency scores, in some embodiments. Conversely, in some embodiments, the second latency score associated with the second link between the edge router and the second cloud gateway, and the third latency score associated with the third link between the first cloud gateway and the SaaS application server are low latency scores. In some embodiments, the SaaS application server is associated with a low latency requirement that specifies a maximum latency threshold for the last mile connectivity to the SaaS application (i.e., the unmanaged, unoptimized links from the cloud gateways to the SaaS application server). In some such embodiments, the first cloud gateway is identified as the optimal cloud gateway for reaching the SaaS application server based on a determination that the third latency score meets the low latency requirement (i.e., does not exceed the maximum latency threshold), while the fourth latency score does not meet the low latency requirement (i.e., does exceed the maximum latency threshold).
In some embodiments, the first and second cloud gateways identify the latency scores provided to the edge router by sending probe packets to the SaaS application server. The first and second cloud gateways derive latency measurements from the probe packets to generate the latency scores for the links between the first and second cloud gateways and the SaaS application server, according to some embodiments. The probe packets, in some embodiments, include layer 4 (L4) and layer 7 (L7) probe packets.
In addition to the first cloud gateway being farther from the first location than the second cloud gateway, the first cloud gateway of some embodiments is also associated with a longer (round-trip time) RTT than the second cloud gateway (i.e., due to the increased distance to each the first cloud gateway). In some embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of physical distance, while in other embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of signal distance. In still other embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of both physical distance and signal distance. The edge router of some embodiments determines that the first cloud gateway is farther than the second cloud gateway based on proximity information provided by a server (e.g., the DNS server or a management and control server), while in other embodiments, the edge router makes this determination by performing a proximity operation to determine the distance to each cloud gateway.
In some embodiments, the DNS server is a DNS first server that provides a particular destination network address for the SaaS application server to the edge router, while a second server provides the identifier for the first cloud gateway to the edge router. The second server, in some embodiments, is a management and control server for the enterprise network that identifies the most optimal cloud gateways for each edge router in the enterprise network to reach the SaaS application server, and provides identifiers for the most optimal cloud gateways to each edge router.
The second server, in some embodiments, is also responsible for directing each cloud gateway to compute latency scores (i.e., rather than the edge routers each directing the cloud gateways to compute latency scores), and periodically collects the latency scores to dynamically identify the most optimal cloud gateways for each edge router. In some embodiments, the second server causes the edge router to automatically switch from the first cloud gateway to another cloud gateway upon identifying the other gateway router as the most optimal cloud gateway based on updated latency scores for the first cloud gateway and the other cloud gateway. For instance, in some embodiments, the second cloud gateway is a default gateway assigned to the edge router for forwarding data messages to the SaaS application server until the edge router receives the identifier for the first cloud gateway when the second server determines that the first cloud gateway is the most optimal gateway for use by the edge router to reach the SaaS application server. The second server of some embodiments also provides the location information and latency scores associated with the first cloud gateway to the edge router when providing the identifier for the first cloud gateway.
The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, the Detailed Description, the Drawings, and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, the Detailed Description, and the Drawings.
The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.
In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.
Some embodiments of the invention provide a method of routing data message traffic between an edge router at a branch first location for an enterprise network and a SaaS (software as a service) application server provided by a third-party at a second location. The method is performed, in some embodiments, by the edge router at the branch first location. The method queries a (global server load balancing) GSLB-aware DNS (domain name system) server for a cloud gateway from multiple cloud gateways at multiple locations through which a particular destination network address for the SaaS application server can be reached. From the GSLB-aware DNS server, the method receives an identifier for a first cloud gateway that is farther from the first location than a second cloud gateway, but closer to the second location than the second cloud gateway. The method then uses an optimized SD-WAN connection to the first cloud gateway to forward data messages for the first cloud gateway to the SaaS application at the second location.
In some embodiments, each link between the edge router and a cloud gateway is associated with a respective latency score. For instance, a first link between the edge router and the first cloud gateway is associated with a first latency score, in some embodiments, and a second link between the edge router and the second cloud gateway. In some embodiments, after receiving the identifier for the first cloud gateway, the edge router sends requests to the first and second cloud gateways for latency scores associated with the respective links between the first and second cloud gateways and the SaaS application server. In response to the requests, the edge router of some embodiments receives a third latency score from the first cloud gateway associated with a third link between the first cloud gateway and the SaaS application server, and receives a fourth latency score from the second cloud gateway associated with a fourth link between the second cloud gateway and the SaaS application server.
The first latency score associated with the first link between the edge router and the first cloud gateway and the fourth latency score associated with the fourth link between the second cloud gateway and the SaaS application server are high latency scores, in some embodiments. Conversely, in some embodiments, the second latency score associated with the second link between the edge router and the second cloud gateway and the third latency score associated with the third link between the first cloud gateway and the SaaS application server are low latency scores. In some embodiments, the SaaS application server is associated with a low latency requirement that specifies a maximum latency threshold for the last mile connectivity to the SaaS application (i.e., the unmanaged, unoptimized links from the cloud gateways to the SaaS application server). In some such embodiments, the first cloud gateway is identified as the optimal cloud gateway for reaching the SaaS application server based on a determination that the third latency score meets the low latency requirement (i.e., does not exceed the maximum latency threshold), while the fourth latency score does not meet the low latency requirement (i.e., does exceed the maximum latency threshold).
In some embodiments, the first and second cloud gateways identify the latency scores provided to the edge router by sending probe packets to the SaaS application server. The first and second cloud gateways derive latency measurements from the probe packets to generate the latency scores for the links between the first and second cloud gateways and the SaaS application server, according to some embodiments. The probe packets, in some embodiments, include layer 4 (L4) and layer 7 (L7) probe packets.
In addition to the first cloud gateway being farther from the first location than the second cloud gateway, the first cloud gateway of some embodiments is also associated with a longer (round-trip time) RTT than the second cloud gateway (i.e., due to the increased distance to the first cloud gateway). In some embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of physical distance, while in other embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of signal distance. In still other embodiments, the first cloud gateway is farther from the edge router than the second cloud gateway in terms of both physical distance and signal distance. The edge router of some embodiments determines that the first cloud gateway is farther than the second cloud gateway based on proximity information provided by a server (e.g., the DNS server or a management and control server), while in other embodiments, the edge router makes this determination by performing a proximity operation to determine the distance to each cloud gateway.
In some embodiments, the DNS server is a DNS first server that provides a particular destination network address for the SaaS application server to the edge router, while a second server provides the identifier for the first cloud gateway to the edge router. The second server, in some embodiments, is a management and control server for the enterprise network that identifies the most optimal cloud gateways for each edge router in the enterprise network to reach the SaaS application server, and provides identifiers for the most optimal cloud gateways to each edge router.
The second server, in some embodiments, is also responsible for directing each cloud gateway to compute latency scores (i.e., rather than the edge routers each directing the cloud gateways to compute latency scores), and periodically collects the latency scores to dynamically identify the most optimal cloud gateways for each edge router. In some embodiments, the second server causes the edge router to automatically switch from the first cloud gateway to another cloud gateway upon identifying the other gateway router as the most optimal cloud gateway based on updated latency scores for the first cloud gateway and the other cloud gateway. For instance, in some embodiments, the second cloud gateway is a default gateway assigned to the edge router for forwarding data messages to the SaaS application server until the edge router receives the identifier for the first cloud gateway when the second server determines that the first cloud gateway is the most optimal gateway for use by the edge router to reach the SaaS application server. The second server of some embodiments also provides the location information and latency scores associated with the first cloud gateway to the edge router when providing the identifier for the first cloud gateway.
The connections between the LA branch office 110 and each of the cloud gateways 130-135 are between an edge router (e.g., VeloCloud® edge (VCE)) at the branch office and the cloud gateways (e.g., VeloCloud® gateways (VCGs)), according to some embodiments. The edge routers of some embodiments are edge machines (e.g., virtual machines (VMs), containers, programs executing on computers, etc.) and/or standalone appliances that operate at multi-computer locations of the particular entity (e.g., at an office or datacenter of the entity) to connect the computers at their respective locations to other nodes (e.g., gateways, hubs, etc.) in the virtual network. In some embodiments, the nodes are clusters of nodes at each of the branch sites. In other embodiments, the edge nodes are deployed to each of the branch sites as high-availability pairs such that one edge node in the pair is the active node and the other edge node in the pair is the standby node that can take over as the active edge node in case of failover.
An example of an entity for which such a virtual network can be established includes a business entity (e.g., a corporation), a non-profit entity (e.g., a hospital, a research organization, etc.), and an education entity (e.g., a university, a college, etc.), or any other type of entity. Examples of public cloud providers include Amazon Web Services® (AWS), Google Cloud Platform™ (GCP), Microsoft Azure®, etc., while examples of entities include a company (e.g., corporation, partnership, etc.), an organization (e.g., a school, a non-profit, a government entity, etc.), etc. In other embodiments, hub forwarding elements can also be deployed in private cloud datacenters of a virtual WAN provider that hosts these hubs to establish SD-WANs for different entities.
In this example, one cloud gateway 130 is located in California and the other cloud gateway 135 is located in Japan. The LA branch office 110 has two route options using the two cloud gateways for reaching the Japan datacenter 120. The first route includes connection 1A from the LA branch office 110 to the California cloud gateway 130 and connection 1B from the California cloud gateway 130 to the Japan datacenter 120. The second route includes connection 2A from the LA branch office 110 to the Japan cloud gateway 135 and connection 2B from the Japan cloud gateway 135 to the Japan datacenter 120. The respective connections 1A and 2A from the LA branch office 110 to the California and Japan cloud gateways 130 and 135 are managed by the SD-WAN and therefore can be optimized. In other words, when both forwarding elements (i.e., a forwarding element at the LA branch office 110 and either of the California and Japan cloud gateways 130 and 135) for one hop (i.e., source and destination forwarding elements) are managed by the SD-WAN, controllers for the SD-WAN can configure the two managed forwarding elements to perform their forwarding operations in a way that maximizes QoS (quality of service), or other metrics such as throughput, according to some embodiments.
In some embodiments, for instance, multiple links of any type (e.g., DSL (digital subscriber line), cable modem, Ethernet, fiber, LTE/3G/4G/5G, MPLS (multiprotocol label switching), radio, satellite, Wi-Fi, etc.), location, or provider can be leveraged to optimize connections between branch offices and cloud gateways. Also, in some embodiments, managed links can be configured to provide a desirable attribute associated with certain metrics such as throughput, QoS, and packet drops. Additional methods of link optimization, in some embodiments, can include utilizing link scores (e.g., assigned based on QoS metrics collected from devices connected by the SD-WAN), alternate path selections, packet replication, forward error correction, etc. For example, some embodiments utilize dynamic multipath optimization (DMPO) to optimize links in the SD-WAN. DMPO, according to some embodiments, is a cloud-delivered architecture for on-premises and cloud applications that enables the use of multiple WAN transports simultaneously, thereby maximizing bandwidth and ensuring application performance.
Returning to the diagram 100, while the distance from the LA branch office 110 to the Japan cloud gateway 135 is longer than the distance from the LA branch office 110 to the California cloud gateway 130, the last mile connectivity from the Japan cloud gateway 135 to the Japan datacenter 120 is shorter than the last mile connectivity from the California cloud gateway 130 to the Japan datacenter 120. Unlike the connections 1A and 2A between the LA branch office 110 and the California and Japan cloud gateway 130 and 135, the last mile connectivity links 1B and 2B are not managed by the SD-WAN and do not benefit from the same optimizations as the links that are managed by the SD-WAN. As a result, the second route through the Japan cloud gateway 135 is the optimal route due to the distance covered by the unmanaged portion of the path, according to some embodiments. That is, while the first route through the California cloud gateway 130 may be associated with better overall metrics (e.g., shorter round-trip time), the combination of the potential for optimizing the link covering the greater distance (i.e., link 2A) and the shorter length of link 2B compared to link 1B that are associated with using the Japan cloud gateway 135 make the second route through the Japan cloud gateway 135 the optimal route (i.e., compared to the route through California cloud gateway 130).
From a set of cloud gateways through which the destination datacenter hosting the SaaS application can be reached, the process 200 identifies (at 220) the most optimal cloud gateway for forwarding data messages to the destination datacenter. In some embodiments, the edge router identifies the most optimal cloud gateway based on receiving an identifier for a particular cloud gateway from the DNS server from which the network address and location of the destination datacenter were received. In other embodiments, the edge router identifies the most optimal cloud gateway based on receiving an identifier for a particular cloud gateway from a management and control server. In still other embodiments, the edge router compares location and latency information associated with the set of cloud gateways to identify the most optimal cloud gateway for itself. For instance, the edge router of some embodiments determines whether a default (e.g., primary) cloud gateway assigned to the edge router and the gateway nearest to the DNS server match, and when these cloud gateways do not match, the edge router identifies the cloud gateway with the lowest latency to the SaaS application server.
In some embodiments, the edge router obtains latency data from the cloud gateways by directing the cloud gateways to perform probes to the SaaS application server and to compute latency scores based on those probes for providing to the edge router. The edge router of some embodiments also already has latency scores for connections from the edge router to the cloud gateways based on DMPO. As mentioned above, DMPO, according to some embodiments, is a cloud-delivered architecture for on-premises and cloud applications that enables the use of multiple WAN transports simultaneously, thereby maximizing bandwidth and ensuring application performance.
Returning to the process 200, the process 200 then uses (at 230) the identified cloud gateway to forward data messages to the SaaS application located at the destination datacenter. In the diagram 100, for instance, an edge router at the LA branch office 110 would use an optimized SD-WAN connection to either the California cloud gateway 130 or the Japan cloud gateway 135 based on which cloud gateway has been identified as the most optimal cloud gateway to reach the SaaS application server at the Japan datacenter 120. Following 230, the process 200 ends.
In some embodiments, the cloud gateway used by the edge router to forward data messages to a SaaS server is selected based on latency scores associated with the links between the edge router, cloud gateways, and destination datacenter.
As shown, the link 340 between the LA branch office 110 and the California cloud gateway 130 and the link 355 between the Japan cloud gateway 135 are indicated as being low latency links. Conversely, the link 345 between the California cloud gateway 130 and the Japan datacenter 120 and the link 350 between the LA branch office 110 and the Japan cloud gateway 135 are indicated as being high latency links. Thus, the first route from the LA office 110 to the Japan datacenter 120 through the California cloud gateway 130 includes a low latency first connection to the cloud gateway and a high latency second connection for the last mile connectivity from the cloud gateway 130 to the datacenter 120, while the second route from the LA office 110 to the Japan datacenter 120 through the Japan cloud gateway 135 includes a high latency first connection to the cloud gateway 135 and a low latency second connection for the last mile connectivity from the cloud gateway 135 to the Japan datacenter 120.
In some embodiments, the SaaS application at the Japan datacenter 120 has low latency requirements, and the Japan cloud gateway 135 is the more optimal cloud gateway compared to the California cloud gateway 130 based on the connection between the Japan cloud gateway 135 and the Japan datacenter 120 having low latency, while the connection between the California cloud gateway 130 and Japan datacenter 120 has high latency. In some embodiments, the connection between the Japan cloud gateway 135 and the Japan datacenter 120 has lower latency than the connection between the California cloud gateway 130 and the Japan datacenter 120 based on the shorter distance between the Japan cloud gateway 135 and Japan datacenter 120.
The diagram 400 will be further described below by reference to
In some embodiments, prior to requesting the cloud gateway, the edge router first requests a network address and location information for the SaaS application server. The DNS server 440 of some embodiments obtains location information for the SaaS application server at the resolved network address from the location-based context 445, and provides both the network address and location information to the edge router at the branch office 410 in response to the request.
The process 500 receives (at 520) an identifier for a cloud gateway from the DNS server. For instance, the branch office 410 receives (at the encircled 2) an identifier for the Japan cloud gateway 435. In some embodiments, prior to requesting and receiving the cloud identifier, the edge router is assigned a default cloud gateway for use in forwarding data messages to third-party SaaS application servers, and thus already has an identifier for at least one other cloud gateway. In other embodiments, the DNS server responds to the edge router's request by providing two or more identifiers to the edge router for the edge router to select from.
The process 500 sends (at 530) a request for a latency score associated with a connection between the cloud gateway and SaaS application server to the cloud gateway. The SaaS application server of some embodiments is associated with a low latency requirement, and thus the edge router of some such embodiments sends a request to the cloud gateway for a latency score to determine whether the latency score meets the low latency requirement. In the diagram 400, for instance, the LA branch office 410 (i.e., an edge router at the branch office) sends requests for latency scores (at the encircled 3) to the California and Japan cloud gateways 430-435.
In some embodiments, the cloud gateways compute latency scores by sending probe packets to the SaaS application server and collecting latency measurements using the probe packets. For example, the California and Japan cloud gateways 430-435 are each shown (at the encircled 4) performing probes for latency measurements between the cloud gateways 430-435 and the Japan datacenter 420 that hosts the SaaS application server. The probe packets, in some embodiments, include L4 and L7 probe packets.
The process 500 then receives (at 540) a latency score from the cloud gateway, such as the latency scores received (at the encircled 5) at the LA branch office 410 in the diagram 400, and determines (at 550) whether the latency score meets the low latency requirement associated with the SaaS application server. In some embodiments, the distance between a cloud gateway and the destination SaaS application server affects latency such that a cloud gateway that is farther from the SaaS application server has a higher latency than a cloud gateway that is closer to the SaaS application server. When the latency score from the cloud gateway does not meet the low latency requirement (e.g., is higher than a specified latency threshold), the process 500 returns to 510 to query the DNS server for a cloud gateway. In some embodiments, the edge router uses or continues to use a default cloud gateway to forward data messages to the SaaS application server while awaiting the next cloud gateway from the DNS server.
When the latency score does meet the low latency requirement (e.g., is lower than a specified latency threshold), the process 500 transitions to use (at 560) an optimized SD-WAN connection to the cloud gateway to forward data messages for the cloud gateway to send to the SaaS application server. Following 560, the process 500 ends.
In some embodiments, rather than obtaining a cloud gateway (i.e., identifier for a cloud gateway) from the DNS server, the edge router instead requests the cloud gateway from a controller for the enterprise network (e.g., a VeloCloud® Orchestrator (VCO)).
The controller 650, in some embodiments, manages business policies for the SD-WAN. The controller 650 is hosted by a cloud, in some embodiments, and on-premises in other embodiments. In some embodiments, new business policies may be created (e.g., network preferred DNS) that may trigger different actions, such as configuring or choosing a business policy for a tenant to be implemented by edge routers at the edges of the tenant networks. For example, an edge router of some embodiments may receive a policy specified for a SaaS application, and the edge router then configures a rule to match the business policy. The edge router of some such embodiments may send data messages to each cloud gateway assigned to the edge router to instruct the cloud gateways to perform L4 and/or L7 probes to the SaaS application to collect latency measurements. In other embodiments, the controller 650 directs the cloud gateways to perform these probes and provides the results to the edge router. As mentioned above, the edge router of some embodiments already has latency data from the edge router to each cloud gateway based on DMPO, and also either stores, or obtains, proximity location information for each cloud gateway.
As shown, rather than an edge router at the branch office 610 requesting latency scores from the cloud gateways 630-635, the controller 650 collects latency measurements from the California and Japan cloud gateways 630-635. In some embodiments, the controller 650 collects latency measurements periodically to ensure that each edge router is using the most optimal cloud gateway for forwarding data messages to destinations outside of the enterprise network, such as the third-party SaaS application server at the Japan datacenter 620. For instance, if a particular cloud gateway's updated latency score increases, the controller 650 of some embodiments may cause an edge router assigned to that cloud gateway to automatically switch to a different cloud gateway that is associated with a lower latency score.
In some embodiments, the controller 650 may assign a default cloud gateway to an edge router for reaching third-party sites within a first region, and assign a secondary cloud gateway to the edge router for reaching third-party sites within a second region. For example, the controller 650 of some embodiments may assign the California cloud gateway 630 as a default cloud gateway to an edge router at the LA branch office 610 for use in reaching third-party sites in California and surrounding states, and subsequently assign the Japan cloud gateway 635 as a secondary cloud gateway for use in reaching at least the Japan datacenter 620. The edge router of some such embodiments may automatically switch between the different cloud gateways based on the destination network addresses of data messages being forwarded.
In some embodiments, for example, after the edge router receives a destination network address and location information for a SaaS application, the edge router may use the received destination network address to query the controller for a cloud gateway to use to reach the SaaS application. In the diagram 600, the LA branch office 610, for example, receives a destination IP for the Japan SaaS application from the DNS server 640 (at the encircled 1), and then receives a cloud gateway identifier and location and latency data for the cloud gateway from the controller 650 (at the encircled 2).
The process 700 receives (at 720) an identifier for a cloud gateway from the controller. In some embodiments, the edge router is assigned a set of cloud gateways by the controller for use in forwarding data messages to entities outside of the enterprise network, and queries the controller for an identifier corresponding to a cloud gateway from the set that is most optimal for reaching the destination IP associated with the SaaS application. As also described above, the controller of some embodiments determines the most optimal cloud gateway for use by an edge router based on latency scores associated with connections between the cloud gateways and the destination.
For example, in the diagram 600, both available routes from the LA branch office 610 to the Japan datacenter 620 include a high latency connection and a low latency connection. However, the low latency connection for the route that uses the Japan cloud gateway 635 is the unmanaged last mile connection (i.e., unoptimized connection) to the Japan datacenter 620, whereas the low latency connection for the route that uses the California cloud gateway 630 is the managed connection (i.e., optimized connection) from the LA branch office 610 to the California cloud gateway 630. While the route through the California cloud gateway 630 may be identified as the best route (e.g., in a routing table of the edge router based on proximity to the LA branch office 610), the Japan cloud gateway 635 may be identified by the controller 650 as the most optimal cloud gateway based on the low latency associated with the unmanaged, unoptimized connection between the Japan cloud gateway 635 and Japan datacenter 620.
The process 700 uses (at 730) an optimized SD-WAN connection to the cloud gateway to forward data messages for the cloud gateway to send to the SaaS application server. The LA branch office 610, for instance, is illustrated (at the encircled 3) as forwarding data messages to the Japan datacenter 620 via the Japan cloud gateway 635. Following 730, the process 700 ends.
In the SD-WAN 800, the SD-WAN FEs include cloud gateway 805 (e.g., cloud gateway router) and SD-WAN FEs 830, 832, 834, 836. The cloud gateway (CGW) in some embodiments is an FE that is in a private or public datacenter 810. The CGW 805 in some embodiments has secure connection links (e.g., tunnels) with edge FEs (e.g., SD-WAN edge FEs 830, 832, 834, and 836) at the particular entity's multi-machine sites (e.g., SD-WAN edge sites 820, 822, and 824), such as multi-user compute sites (e.g., branch offices or other physical locations having multi user computers and other user-operated devices and serving as source computers and devices for requests to other machines at other sites), datacenters (e.g., locations housing servers), etc. These multi-machine sites are often at different physical locations (e.g., different buildings, different cities, different states, etc.).
Four multi-machine sites 820-826 are illustrated in the SD-WAN 800, with three of them being branch sites 820-824, and one being a datacenter 826. Each branch site is shown to include a respective edge FE 830, 832, and 834 (e.g., edge routers) and respective resources 850, 852, and 854. The resources 850-854, in some embodiments, are machines located at the branch sites 820-824. The datacenter site 826 is shown to include a hub FE 836 (e.g., a hub router), and datacenter resources 856. The datacenter SD-WAN FE 836 is referred to as a hub FE because in some embodiments this FE can be used to connect to other edge FEs of the branch sites 820-824. The hub FE in some embodiments uses or has one or more service engines to perform services (e.g., middlebox services) on packets that it forwards from one branch site to another branch site. The hub FE also provides access to the datacenter resources 856.
Each edge FE (e.g., SD-WAN edge FEs 830-834) exchanges packets with one or more cloud gateways 805 through one or more connection links 815 (e.g., multiple connection links available at the edge FE). In some embodiments, these connection links include secure and unsecure connection links, while in other embodiments they only include secure connection links. As shown by edge FE 834 and gateway 805, multiple secure connection links (e.g., multiple secure tunnels that are established over multiple physical links) can be established between one edge FE and a gateway.
When multiple such links are defined between an edge FE and a gateway, each secure connection link in some embodiments is associated with a different physical network link between the edge FE and an external network. For instance, to access external networks, an edge FE in some embodiments has one or more commercial broadband Internet links (e.g., a cable modem, a fiber optic link) to access the Internet, an MPLS (multiprotocol label switching) link to access external networks through an MPLS provider's network, a wireless cellular link (e.g., a 5G LTE network), etc. In some embodiments, the different physical links between the edge FE 834 and the cloud gateway 805 are the same type of links (e.g., are different MPLS links).
In some embodiments, one edge FE 830-834 can also have multiple direct links 815 (e.g., secure connection links established through multiple physical links) to another edge FE 830-834, and/or to a datacenter hub FE 836. Again, the different links in some embodiments can use different types of physical links or the same type of physical links. Also, in some embodiments, a first edge FE of a first branch site can connect to a second edge FE of a second branch site (1) directly through one or more links 815, (2) through a cloud gateway or datacenter hub to which the first edge FE connects through two or more links 815, or (3) through another edge FE of another branch site that can augment its role to that of a hub FE. Hence, in some embodiments, a first edge FE (e.g., 834) of a first branch site (e.g., 824) can use multiple SD-WAN links 815 to reach a second edge FE (e.g., 830) of a second branch site (e.g., 820), or a hub FE 836 of a datacenter site 826.
The cloud gateway 805 in some embodiments is used to connect two SD-WAN FEs 830-836 through at least two secure connection links 815 between the gateway 805 and the two FEs at the two SD-WAN sites (e.g., branch sites 820-824 or datacenter site 826). In some embodiments, the cloud gateway 805 also provides network data from one multi-machine site to another multi-machine site (e.g., provides the accessible subnets of one site to another site). Like the cloud gateway 805, the hub FE 836 of the datacenter 826 in some embodiments can be used to connect two SD-WAN FEs 830-834 of two branch sites through at least two secure connection links 815 between the hub 836 and the two FEs at the two branch sites 820-824.
In some embodiments, each secure connection link between two SD-WAN FEs (i.e., CGW 805 and edge FEs 830-836) is formed as a VPN tunnel between the two FEs. In this example, the collection of the SD-WAN FEs (e.g., FEs 830-836 and gateways 805) and the secure connections 815 between the FEs forms the SD-WAN 800 for the particular entity that spans at least the public or private cloud datacenter 810 to connect the branch and datacenter sites 820-826.
In some embodiments, secure connection links are defined between gateways in different public cloud datacenters to allow paths through the virtual network to traverse from one public cloud datacenter to another, while no such links are defined in other embodiments. Also, in some embodiments, the gateway 805 is a multi-tenant gateway that is used to define other virtual networks for other entities (e.g., other companies, organizations, etc.). Some such embodiments use tenant identifiers to create tunnels between a gateway and edge FE of a particular entity, and then use tunnel identifiers of the created tunnels to allow the gateway to differentiate packet flows that it receives from edge FEs of one entity from packet flows that it receives along other tunnels of other entities. In other embodiments, gateways are single-tenant and are specifically deployed to be used by just one entity.
The SD-WAN 800 includes a cluster of controllers 840 that serve as a central point for managing (e.g., defining and modifying) configuration data that is provided to the edge FEs and/or gateways to configure some or all of the operations. In some embodiments, this controller cluster 840 is in one or more public cloud datacenters, while in other embodiments it is in one or more private datacenters. In some embodiments, the controller cluster 840 has a set of manager servers that define and modify the configuration data, and a set of controller servers that distribute the configuration data to the edge FEs, hubs and/or gateways. In some embodiments, the controller cluster 840 directs edge FEs and hubs to use certain gateways (i.e., assigns a gateway to the edge FEs and hubs). In some embodiments, some or all of the controller cluster's functionality is performed by a cloud gateway (e.g., cloud gateway 805). The controller cluster 840 also provides next hop forwarding rules and load balancing criteria in some embodiments.
Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer-readable storage medium (also referred to as computer-readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer-readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer-readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.
In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.
The bus 905 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 900. For instance, the bus 905 communicatively connects the processing unit(s) 910 with the read-only memory 930, the system memory 925, and the permanent storage device 935.
From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) 910 may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 930 stores static data and instructions that are needed by the processing unit(s) 910 and other modules of the computer system 900. The permanent storage device 935, on the other hand, is a read-and-write memory device. This device 935 is a non-volatile memory unit that stores instructions and data even when the computer system 900 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 935.
Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 935, the system memory 925 is a read-and-write memory device. However, unlike storage device 935, the system memory 925 is a volatile read-and-write memory, such as random access memory. The system memory 925 stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 925, the permanent storage device 935, and/or the read-only memory 930. From these various memory units, the processing unit(s) 910 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 905 also connects to the input and output devices 940 and 945. The input devices 940 enable the user to communicate information and select commands to the computer system 900. The input devices 940 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 945 display images generated by the computer system 900. The output devices 945 include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as touchscreens that function as both input and output devices 940 and 945.
Finally, as shown in
Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application-specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.
As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms “display” or “displaying” mean displaying on an electronic device. As used in this specification, the terms “computer-readable medium,” “computer-readable media,” and “machine-readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. In addition, a number of the figures (including
Number | Date | Country | Kind |
---|---|---|---|
202241040923 | Jul 2022 | IN | national |
202241040926 | Jul 2022 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
5652751 | Sharony | Jul 1997 | A |
5909553 | Campbell et al. | Jun 1999 | A |
6154465 | Pickett | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6201810 | Masuda et al. | Mar 2001 | B1 |
6363378 | Conklin et al. | Mar 2002 | B1 |
6445682 | Weitz | Sep 2002 | B1 |
6744775 | Beshai et al. | Jun 2004 | B1 |
6976087 | Westfall et al. | Dec 2005 | B1 |
7003481 | Banka et al. | Feb 2006 | B2 |
7280476 | Anderson | Oct 2007 | B2 |
7313629 | Nucci et al. | Dec 2007 | B1 |
7320017 | Kurapati et al. | Jan 2008 | B1 |
7373660 | Guichard et al. | May 2008 | B1 |
7581022 | Griffin et al. | Aug 2009 | B1 |
7680925 | Sathyanarayana et al. | Mar 2010 | B2 |
7681236 | Tamura et al. | Mar 2010 | B2 |
7751409 | Carolan | Jul 2010 | B1 |
7962458 | Holenstein et al. | Jun 2011 | B2 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8094659 | Arad | Jan 2012 | B1 |
8111692 | Ray | Feb 2012 | B2 |
8141156 | Mao et al. | Mar 2012 | B1 |
8224971 | Miller et al. | Jul 2012 | B1 |
8228928 | Parandekar et al. | Jul 2012 | B2 |
8243589 | Trost et al. | Aug 2012 | B1 |
8259566 | Chen et al. | Sep 2012 | B2 |
8274891 | Averi et al. | Sep 2012 | B2 |
8301749 | Finklestein et al. | Oct 2012 | B1 |
8385227 | Downey | Feb 2013 | B1 |
8516129 | Skene | Aug 2013 | B1 |
8566452 | Goodwin, III et al. | Oct 2013 | B1 |
8588066 | Goel et al. | Nov 2013 | B2 |
8630291 | Shaffer et al. | Jan 2014 | B2 |
8661295 | Khanna et al. | Feb 2014 | B1 |
8724456 | Hong et al. | May 2014 | B1 |
8724503 | Johnsson et al. | May 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8797874 | Yu et al. | Aug 2014 | B2 |
8799504 | Capone et al. | Aug 2014 | B2 |
8804745 | Sinn | Aug 2014 | B1 |
8806482 | Nagargadde et al. | Aug 2014 | B1 |
8855071 | Sankaran et al. | Oct 2014 | B1 |
8856339 | Mestery et al. | Oct 2014 | B2 |
8964548 | Keralapura et al. | Feb 2015 | B1 |
8989199 | Sella et al. | Mar 2015 | B1 |
9009217 | Nagargadde et al. | Apr 2015 | B1 |
9015299 | Shah | Apr 2015 | B1 |
9055000 | Ghosh et al. | Jun 2015 | B1 |
9060025 | Xu | Jun 2015 | B2 |
9071607 | Twitchell, Jr. | Jun 2015 | B2 |
9075771 | Gawali et al. | Jul 2015 | B1 |
9100329 | Jiang et al. | Aug 2015 | B1 |
9135037 | Petrescu-Prahova et al. | Sep 2015 | B1 |
9137334 | Zhou | Sep 2015 | B2 |
9154327 | Marino et al. | Oct 2015 | B1 |
9203764 | Shirazipour et al. | Dec 2015 | B2 |
9225591 | Beheshti-Zavareh et al. | Dec 2015 | B2 |
9306949 | Richard et al. | Apr 2016 | B1 |
9323561 | Ayala et al. | Apr 2016 | B2 |
9336040 | Dong et al. | May 2016 | B2 |
9354983 | Yenamandra et al. | May 2016 | B1 |
9356943 | Lopilato et al. | May 2016 | B1 |
9379981 | Zhou et al. | Jun 2016 | B1 |
9413724 | Xu | Aug 2016 | B2 |
9419878 | Hsiao et al. | Aug 2016 | B2 |
9432245 | Sorenson, III et al. | Aug 2016 | B1 |
9438566 | Zhang et al. | Sep 2016 | B2 |
9450817 | Bahadur et al. | Sep 2016 | B1 |
9450852 | Chen et al. | Sep 2016 | B1 |
9462010 | Stevenson | Oct 2016 | B1 |
9467478 | Khan et al. | Oct 2016 | B1 |
9485163 | Fries et al. | Nov 2016 | B1 |
9521067 | Michael et al. | Dec 2016 | B2 |
9525564 | Lee | Dec 2016 | B2 |
9542219 | Bryant et al. | Jan 2017 | B1 |
9559951 | Sajassi et al. | Jan 2017 | B1 |
9563423 | Pittman | Feb 2017 | B1 |
9602389 | Maveli et al. | Mar 2017 | B1 |
9608917 | Anderson et al. | Mar 2017 | B1 |
9608962 | Chang | Mar 2017 | B1 |
9614748 | Battersby et al. | Apr 2017 | B1 |
9621460 | Mehta et al. | Apr 2017 | B2 |
9641551 | Kariyanahalli | May 2017 | B1 |
9648547 | Hart et al. | May 2017 | B1 |
9665432 | Kruse et al. | May 2017 | B2 |
9686127 | Ramachandran et al. | Jun 2017 | B2 |
9692714 | Nair et al. | Jun 2017 | B1 |
9715401 | Devine et al. | Jul 2017 | B2 |
9717021 | Hughes et al. | Jul 2017 | B2 |
9722815 | Mukundan et al. | Aug 2017 | B2 |
9747249 | Cherian et al. | Aug 2017 | B2 |
9755965 | Yadav et al. | Sep 2017 | B1 |
9787559 | Schroeder | Oct 2017 | B1 |
9807004 | Koley et al. | Oct 2017 | B2 |
9819540 | Bahadur et al. | Nov 2017 | B1 |
9819565 | Djukic et al. | Nov 2017 | B2 |
9825822 | Holland | Nov 2017 | B1 |
9825911 | Brandwine | Nov 2017 | B1 |
9825992 | Xu | Nov 2017 | B2 |
9832128 | Ashner et al. | Nov 2017 | B1 |
9832205 | Santhi et al. | Nov 2017 | B2 |
9875355 | Williams | Jan 2018 | B1 |
9906401 | Rao | Feb 2018 | B1 |
9923826 | Murgia | Mar 2018 | B2 |
9930011 | Clemons, Jr. et al. | Mar 2018 | B1 |
9935829 | Miller et al. | Apr 2018 | B1 |
9942787 | Tillotson | Apr 2018 | B1 |
9996370 | Khafizov et al. | Jun 2018 | B1 |
10038601 | Becker et al. | Jul 2018 | B1 |
10057183 | Salle et al. | Aug 2018 | B2 |
10057294 | Xu | Aug 2018 | B2 |
10116593 | Sinn et al. | Oct 2018 | B1 |
10135789 | Mayya et al. | Nov 2018 | B2 |
10142226 | Wu et al. | Nov 2018 | B1 |
10178032 | Freitas | Jan 2019 | B1 |
10178037 | Appleby et al. | Jan 2019 | B2 |
10187289 | Chen et al. | Jan 2019 | B1 |
10200264 | Menon et al. | Feb 2019 | B2 |
10229017 | Zou et al. | Mar 2019 | B1 |
10237123 | Dubey et al. | Mar 2019 | B2 |
10250498 | Bales et al. | Apr 2019 | B1 |
10263832 | Ghosh | Apr 2019 | B1 |
10320664 | Nainar et al. | Jun 2019 | B2 |
10320691 | Matthews et al. | Jun 2019 | B1 |
10326830 | Singh | Jun 2019 | B1 |
10348767 | Lee et al. | Jul 2019 | B1 |
10355989 | Panchal et al. | Jul 2019 | B1 |
10425382 | Mayya et al. | Sep 2019 | B2 |
10454708 | Mibu | Oct 2019 | B2 |
10454714 | Mayya et al. | Oct 2019 | B2 |
10461993 | Turabi et al. | Oct 2019 | B2 |
10498652 | Mayya et al. | Dec 2019 | B2 |
10511546 | Singarayan et al. | Dec 2019 | B2 |
10523539 | Mayya et al. | Dec 2019 | B2 |
10550093 | Ojima et al. | Feb 2020 | B2 |
10554538 | Spohn et al. | Feb 2020 | B2 |
10560431 | Chen et al. | Feb 2020 | B1 |
10565464 | Han et al. | Feb 2020 | B2 |
10567519 | Mukhopadhyaya et al. | Feb 2020 | B1 |
10574482 | Oré et al. | Feb 2020 | B2 |
10574528 | Mayya et al. | Feb 2020 | B2 |
10594516 | Cidon et al. | Mar 2020 | B2 |
10594591 | Houjyo et al. | Mar 2020 | B2 |
10594659 | El-Moussa et al. | Mar 2020 | B2 |
10608844 | Cidon et al. | Mar 2020 | B2 |
10630505 | Rubenstein et al. | Apr 2020 | B2 |
10637889 | Ermagan et al. | Apr 2020 | B2 |
10666460 | Cidon et al. | May 2020 | B2 |
10666497 | Tahhan et al. | May 2020 | B2 |
10686625 | Cidon et al. | Jun 2020 | B2 |
10693739 | Naseri et al. | Jun 2020 | B1 |
10708144 | Mohan et al. | Jul 2020 | B2 |
10715427 | Raj et al. | Jul 2020 | B2 |
10749711 | Mukundan et al. | Aug 2020 | B2 |
10778466 | Cidon et al. | Sep 2020 | B2 |
10778528 | Mayya et al. | Sep 2020 | B2 |
10778557 | Ganichev et al. | Sep 2020 | B2 |
10805114 | Cidon et al. | Oct 2020 | B2 |
10805272 | Mayya et al. | Oct 2020 | B2 |
10819564 | Turabi et al. | Oct 2020 | B2 |
10826775 | Moreno et al. | Nov 2020 | B1 |
10841131 | Cidon et al. | Nov 2020 | B2 |
10911374 | Kumar et al. | Feb 2021 | B1 |
10938693 | Mayya et al. | Mar 2021 | B2 |
10951529 | Duan et al. | Mar 2021 | B2 |
10958479 | Cidon et al. | Mar 2021 | B2 |
10959098 | Cidon et al. | Mar 2021 | B2 |
10992558 | Silva et al. | Apr 2021 | B1 |
10992568 | Michael et al. | Apr 2021 | B2 |
10999100 | Cidon et al. | May 2021 | B2 |
10999137 | Cidon et al. | May 2021 | B2 |
10999165 | Cidon et al. | May 2021 | B2 |
10999197 | Hooda et al. | May 2021 | B2 |
11005684 | Cidon | May 2021 | B2 |
11018995 | Cidon et al. | May 2021 | B2 |
11044190 | Ramaswamy et al. | Jun 2021 | B2 |
11050588 | Mayya et al. | Jun 2021 | B2 |
11050644 | Hegde et al. | Jun 2021 | B2 |
11071005 | Shen et al. | Jul 2021 | B2 |
11089111 | Markuze et al. | Aug 2021 | B2 |
11095612 | Oswal et al. | Aug 2021 | B1 |
11102032 | Cidon et al. | Aug 2021 | B2 |
11108595 | Knutsen et al. | Aug 2021 | B2 |
11108851 | Kurmala et al. | Aug 2021 | B1 |
11115347 | Gupta et al. | Sep 2021 | B2 |
11115426 | Pazhyannur et al. | Sep 2021 | B1 |
11115480 | Markuze et al. | Sep 2021 | B2 |
11121962 | Michael et al. | Sep 2021 | B2 |
11121985 | Cidon et al. | Sep 2021 | B2 |
11128492 | Sethi et al. | Sep 2021 | B2 |
11146632 | Rubenstein | Oct 2021 | B2 |
11153230 | Cidon et al. | Oct 2021 | B2 |
11171885 | Cidon et al. | Nov 2021 | B2 |
11212140 | Mukundan et al. | Dec 2021 | B2 |
11212238 | Cidon et al. | Dec 2021 | B2 |
11223514 | Mayya et al. | Jan 2022 | B2 |
11245641 | Ramaswamy et al. | Feb 2022 | B2 |
11252079 | Michael et al. | Feb 2022 | B2 |
11252105 | Cidon et al. | Feb 2022 | B2 |
11252106 | Cidon et al. | Feb 2022 | B2 |
11258728 | Cidon et al. | Feb 2022 | B2 |
11310170 | Cidon et al. | Apr 2022 | B2 |
11323307 | Mayya et al. | May 2022 | B2 |
11349722 | Mayya et al. | May 2022 | B2 |
11363124 | Markuze et al. | Jun 2022 | B2 |
11374904 | Mayya et al. | Jun 2022 | B2 |
11375005 | Rolando et al. | Jun 2022 | B1 |
11381474 | Kumar et al. | Jul 2022 | B1 |
11381499 | Ramaswamy et al. | Jul 2022 | B1 |
11388086 | Ramaswamy et al. | Jul 2022 | B1 |
11394640 | Ramaswamy et al. | Jul 2022 | B2 |
11418997 | Devadoss et al. | Aug 2022 | B2 |
11438789 | Devadoss et al. | Sep 2022 | B2 |
11444865 | Ramaswamy et al. | Sep 2022 | B2 |
11444872 | Mayya et al. | Sep 2022 | B2 |
11477127 | Ramaswamy et al. | Oct 2022 | B2 |
11489720 | Kempanna et al. | Nov 2022 | B1 |
11489783 | Ramaswamy et al. | Nov 2022 | B2 |
11509571 | Ramaswamy et al. | Nov 2022 | B1 |
11516049 | Cidon et al. | Nov 2022 | B2 |
11522780 | Wallace et al. | Dec 2022 | B1 |
11526434 | Brooker et al. | Dec 2022 | B1 |
11533248 | Mayya et al. | Dec 2022 | B2 |
11552874 | Pragada et al. | Jan 2023 | B1 |
11575591 | Ramaswamy et al. | Feb 2023 | B2 |
11575600 | Markuze et al. | Feb 2023 | B2 |
11582144 | Ramaswamy et al. | Feb 2023 | B2 |
11582298 | Hood et al. | Feb 2023 | B2 |
11601356 | Gandhi et al. | Mar 2023 | B2 |
11606225 | Cidon et al. | Mar 2023 | B2 |
11606286 | Michael et al. | Mar 2023 | B2 |
11606314 | Cidon et al. | Mar 2023 | B2 |
11606712 | Devadoss et al. | Mar 2023 | B2 |
11611507 | Ramaswamy et al. | Mar 2023 | B2 |
11637768 | Ramaswamy et al. | Apr 2023 | B2 |
11677720 | Mayya et al. | Jun 2023 | B2 |
11689959 | Devadoss et al. | Jun 2023 | B2 |
11700196 | Michael et al. | Jul 2023 | B2 |
11706126 | Silva et al. | Jul 2023 | B2 |
11706127 | Michael et al. | Jul 2023 | B2 |
11709710 | Markuze et al. | Jul 2023 | B2 |
11716286 | Ramaswamy et al. | Aug 2023 | B2 |
11722925 | Devadoss et al. | Aug 2023 | B2 |
11729065 | Ramaswamy et al. | Aug 2023 | B2 |
20020049687 | Helsper et al. | Apr 2002 | A1 |
20020075542 | Kumar et al. | Jun 2002 | A1 |
20020085488 | Kobayashi | Jul 2002 | A1 |
20020087716 | Mustafa | Jul 2002 | A1 |
20020152306 | Tuck | Oct 2002 | A1 |
20020186682 | Kawano et al. | Dec 2002 | A1 |
20020198840 | Banka et al. | Dec 2002 | A1 |
20030050061 | Wu et al. | Mar 2003 | A1 |
20030061269 | Hathaway et al. | Mar 2003 | A1 |
20030088697 | Matsuhira | May 2003 | A1 |
20030112766 | Riedel et al. | Jun 2003 | A1 |
20030112808 | Solomon | Jun 2003 | A1 |
20030126468 | Markham | Jul 2003 | A1 |
20030161313 | Jinmei et al. | Aug 2003 | A1 |
20030189919 | Gupta et al. | Oct 2003 | A1 |
20030202506 | Perkins et al. | Oct 2003 | A1 |
20030219030 | Gubbi | Nov 2003 | A1 |
20040059831 | Chu et al. | Mar 2004 | A1 |
20040068668 | Lor et al. | Apr 2004 | A1 |
20040165601 | Liu et al. | Aug 2004 | A1 |
20040224771 | Chen et al. | Nov 2004 | A1 |
20050078690 | DeLangis | Apr 2005 | A1 |
20050149604 | Navada | Jul 2005 | A1 |
20050154790 | Nagata et al. | Jul 2005 | A1 |
20050172161 | Cruz et al. | Aug 2005 | A1 |
20050195754 | Nosella | Sep 2005 | A1 |
20050210479 | Andjelic | Sep 2005 | A1 |
20050265255 | Kodialam et al. | Dec 2005 | A1 |
20060002291 | Alicherry et al. | Jan 2006 | A1 |
20060034335 | Karaoguz et al. | Feb 2006 | A1 |
20060114838 | Mandavilli et al. | Jun 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060182035 | Vasseur | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060193252 | Naseh et al. | Aug 2006 | A1 |
20060195605 | Sundarrajan et al. | Aug 2006 | A1 |
20060245414 | Susai et al. | Nov 2006 | A1 |
20070050594 | Augsburg et al. | Mar 2007 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070064702 | Bates et al. | Mar 2007 | A1 |
20070083727 | Johnston et al. | Apr 2007 | A1 |
20070091794 | Filsfils et al. | Apr 2007 | A1 |
20070103548 | Carter | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070121486 | Guichard et al. | May 2007 | A1 |
20070130325 | Lesser | Jun 2007 | A1 |
20070162619 | Aloni et al. | Jul 2007 | A1 |
20070162639 | Chu et al. | Jul 2007 | A1 |
20070177511 | Das et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070237081 | Kodialam et al. | Oct 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070268882 | Breslau et al. | Nov 2007 | A1 |
20080002670 | Bugenhagen et al. | Jan 2008 | A1 |
20080049621 | McGuire et al. | Feb 2008 | A1 |
20080055241 | Goldenberg et al. | Mar 2008 | A1 |
20080080509 | Khanna et al. | Apr 2008 | A1 |
20080095187 | Jung et al. | Apr 2008 | A1 |
20080117930 | Chakareski et al. | May 2008 | A1 |
20080144532 | Chamarajanagar et al. | Jun 2008 | A1 |
20080168086 | Miller et al. | Jul 2008 | A1 |
20080175150 | Bolt et al. | Jul 2008 | A1 |
20080181116 | Kavanaugh et al. | Jul 2008 | A1 |
20080219276 | Shah | Sep 2008 | A1 |
20080240121 | Xiong et al. | Oct 2008 | A1 |
20080263218 | Beerends et al. | Oct 2008 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090028092 | Rothschild | Jan 2009 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090141642 | Sun | Jun 2009 | A1 |
20090154463 | Hines et al. | Jun 2009 | A1 |
20090182874 | Morford et al. | Jul 2009 | A1 |
20090247204 | Sennett et al. | Oct 2009 | A1 |
20090268605 | Campbell et al. | Oct 2009 | A1 |
20090274045 | Meier et al. | Nov 2009 | A1 |
20090276657 | Wetmore et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100008361 | Guichard et al. | Jan 2010 | A1 |
20100017802 | Lojewski | Jan 2010 | A1 |
20100046532 | Okita | Feb 2010 | A1 |
20100061379 | Parandekar et al. | Mar 2010 | A1 |
20100080129 | Strahan et al. | Apr 2010 | A1 |
20100088440 | Banks et al. | Apr 2010 | A1 |
20100091782 | Hiscock | Apr 2010 | A1 |
20100091823 | Retana et al. | Apr 2010 | A1 |
20100107162 | Edwards et al. | Apr 2010 | A1 |
20100118727 | Draves et al. | May 2010 | A1 |
20100118886 | Saavedra | May 2010 | A1 |
20100128600 | Srinivasmurthy et al. | May 2010 | A1 |
20100165985 | Sharma et al. | Jul 2010 | A1 |
20100191884 | Holenstein et al. | Jul 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100226246 | Proulx | Sep 2010 | A1 |
20100290422 | Haigh et al. | Nov 2010 | A1 |
20100309841 | Conte | Dec 2010 | A1 |
20100309912 | Mehta et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100332657 | Elyashev et al. | Dec 2010 | A1 |
20110001604 | Ludlow et al. | Jan 2011 | A1 |
20110007752 | Silva et al. | Jan 2011 | A1 |
20110032939 | Nozaki et al. | Feb 2011 | A1 |
20110035187 | DeJori et al. | Feb 2011 | A1 |
20110040814 | Higgins | Feb 2011 | A1 |
20110075674 | Li et al. | Mar 2011 | A1 |
20110078783 | Duan et al. | Mar 2011 | A1 |
20110107139 | Middlecamp et al. | May 2011 | A1 |
20110110370 | Moreno et al. | May 2011 | A1 |
20110141877 | Xu et al. | Jun 2011 | A1 |
20110142041 | Mai | Jun 2011 | A1 |
20110153909 | Dong | Jun 2011 | A1 |
20110235509 | Szymanski | Sep 2011 | A1 |
20110255397 | Kadakia et al. | Oct 2011 | A1 |
20110302663 | Prodan et al. | Dec 2011 | A1 |
20120008630 | Ould-Brahim | Jan 2012 | A1 |
20120027013 | Napierala | Feb 2012 | A1 |
20120039309 | Evans et al. | Feb 2012 | A1 |
20120099601 | Haddad et al. | Apr 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120140935 | Kruglick | Jun 2012 | A1 |
20120157068 | Eichen et al. | Jun 2012 | A1 |
20120173694 | Yan et al. | Jul 2012 | A1 |
20120173919 | Patel et al. | Jul 2012 | A1 |
20120182940 | Taleb et al. | Jul 2012 | A1 |
20120221955 | Raleigh et al. | Aug 2012 | A1 |
20120227093 | Shatzkamer et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120250682 | Vincent et al. | Oct 2012 | A1 |
20120250686 | Vincent et al. | Oct 2012 | A1 |
20120266026 | Chikkalingaiah et al. | Oct 2012 | A1 |
20120281706 | Agarwal et al. | Nov 2012 | A1 |
20120287818 | Corti et al. | Nov 2012 | A1 |
20120300615 | Kempf et al. | Nov 2012 | A1 |
20120307659 | Yamada | Dec 2012 | A1 |
20120317270 | Vrbaski et al. | Dec 2012 | A1 |
20120317291 | Wolfe | Dec 2012 | A1 |
20130007505 | Spear | Jan 2013 | A1 |
20130019005 | Hui et al. | Jan 2013 | A1 |
20130021968 | Reznik et al. | Jan 2013 | A1 |
20130044764 | Casado et al. | Feb 2013 | A1 |
20130051237 | Ong | Feb 2013 | A1 |
20130051399 | Zhang et al. | Feb 2013 | A1 |
20130054763 | Merwe et al. | Feb 2013 | A1 |
20130086267 | Gelenbe et al. | Apr 2013 | A1 |
20130097304 | Asthana et al. | Apr 2013 | A1 |
20130103729 | Cooney et al. | Apr 2013 | A1 |
20130103834 | Dzerve et al. | Apr 2013 | A1 |
20130117530 | Kim et al. | May 2013 | A1 |
20130124718 | Griffith et al. | May 2013 | A1 |
20130124911 | Griffith et al. | May 2013 | A1 |
20130124912 | Griffith et al. | May 2013 | A1 |
20130128889 | Mathur et al. | May 2013 | A1 |
20130142201 | Kim et al. | Jun 2013 | A1 |
20130170354 | Takashima et al. | Jul 2013 | A1 |
20130173768 | Kundu et al. | Jul 2013 | A1 |
20130173788 | Song | Jul 2013 | A1 |
20130182712 | Aguayo et al. | Jul 2013 | A1 |
20130185446 | Zeng et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191688 | Agarwal et al. | Jul 2013 | A1 |
20130223226 | Narayanan et al. | Aug 2013 | A1 |
20130223454 | Dunbar et al. | Aug 2013 | A1 |
20130235870 | Tripathi et al. | Sep 2013 | A1 |
20130238782 | Zhao et al. | Sep 2013 | A1 |
20130242718 | Zhang | Sep 2013 | A1 |
20130254599 | Katkar et al. | Sep 2013 | A1 |
20130258839 | Wang et al. | Oct 2013 | A1 |
20130258847 | Zhang et al. | Oct 2013 | A1 |
20130266015 | Qu et al. | Oct 2013 | A1 |
20130266019 | Qu et al. | Oct 2013 | A1 |
20130283364 | Chang et al. | Oct 2013 | A1 |
20130286846 | Atlas et al. | Oct 2013 | A1 |
20130297611 | Moritz et al. | Nov 2013 | A1 |
20130297770 | Zhang | Nov 2013 | A1 |
20130301469 | Suga | Nov 2013 | A1 |
20130301642 | Radhakrishnan et al. | Nov 2013 | A1 |
20130308444 | Sem-Jacobsen et al. | Nov 2013 | A1 |
20130315242 | Wang et al. | Nov 2013 | A1 |
20130315243 | Huang et al. | Nov 2013 | A1 |
20130329548 | Nakil et al. | Dec 2013 | A1 |
20130329601 | Yin et al. | Dec 2013 | A1 |
20130329734 | Chesla et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20140016464 | Shirazipour et al. | Jan 2014 | A1 |
20140019604 | Twitchell, Jr. | Jan 2014 | A1 |
20140019750 | Dodgson et al. | Jan 2014 | A1 |
20140040975 | Raleigh et al. | Feb 2014 | A1 |
20140064283 | Balus et al. | Mar 2014 | A1 |
20140071832 | Johnsson et al. | Mar 2014 | A1 |
20140092907 | Sridhar et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140112171 | Pasdar | Apr 2014 | A1 |
20140115584 | Mudigonda et al. | Apr 2014 | A1 |
20140122559 | Branson et al. | May 2014 | A1 |
20140123135 | Huang et al. | May 2014 | A1 |
20140126418 | Brendel et al. | May 2014 | A1 |
20140156818 | Hunt | Jun 2014 | A1 |
20140156823 | Liu et al. | Jun 2014 | A1 |
20140157363 | Banerjee | Jun 2014 | A1 |
20140160935 | Zecharia et al. | Jun 2014 | A1 |
20140164560 | Ko et al. | Jun 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140164718 | Schaik et al. | Jun 2014 | A1 |
20140173113 | Vemuri et al. | Jun 2014 | A1 |
20140173331 | Martin et al. | Jun 2014 | A1 |
20140181824 | Saund et al. | Jun 2014 | A1 |
20140189074 | Parker | Jul 2014 | A1 |
20140208317 | Nakagawa | Jul 2014 | A1 |
20140219135 | Li et al. | Aug 2014 | A1 |
20140223507 | Xu | Aug 2014 | A1 |
20140229210 | Sharifian et al. | Aug 2014 | A1 |
20140244851 | Lee | Aug 2014 | A1 |
20140258535 | Zhang | Sep 2014 | A1 |
20140269690 | Tu | Sep 2014 | A1 |
20140279862 | Dietz et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140310282 | Sprague et al. | Oct 2014 | A1 |
20140317440 | Biermayr et al. | Oct 2014 | A1 |
20140321277 | Lynn, Jr. et al. | Oct 2014 | A1 |
20140337500 | Lee | Nov 2014 | A1 |
20140337674 | Ivancic et al. | Nov 2014 | A1 |
20140341109 | Cartmell et al. | Nov 2014 | A1 |
20140355441 | Jain | Dec 2014 | A1 |
20140365834 | Stone et al. | Dec 2014 | A1 |
20140372582 | Ghanwani et al. | Dec 2014 | A1 |
20150003240 | Drwiega et al. | Jan 2015 | A1 |
20150016249 | Mukundan et al. | Jan 2015 | A1 |
20150029864 | Raileanu et al. | Jan 2015 | A1 |
20150039744 | Niazi et al. | Feb 2015 | A1 |
20150046572 | Cheng et al. | Feb 2015 | A1 |
20150052247 | Threefoot et al. | Feb 2015 | A1 |
20150052517 | Raghu et al. | Feb 2015 | A1 |
20150056960 | Egner et al. | Feb 2015 | A1 |
20150058917 | Xu | Feb 2015 | A1 |
20150088942 | Shah | Mar 2015 | A1 |
20150089628 | Lang | Mar 2015 | A1 |
20150092603 | Aguayo et al. | Apr 2015 | A1 |
20150096011 | Watt | Apr 2015 | A1 |
20150100958 | Banavalikar et al. | Apr 2015 | A1 |
20150106809 | Reddy et al. | Apr 2015 | A1 |
20150124603 | Ketheesan et al. | May 2015 | A1 |
20150134777 | Onoue | May 2015 | A1 |
20150139238 | Pourzandi et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150163152 | Li | Jun 2015 | A1 |
20150169340 | Haddad et al. | Jun 2015 | A1 |
20150172121 | Farkas et al. | Jun 2015 | A1 |
20150172169 | DeCusatis et al. | Jun 2015 | A1 |
20150188823 | Williams et al. | Jul 2015 | A1 |
20150189009 | Bemmel | Jul 2015 | A1 |
20150195178 | Bhattacharya et al. | Jul 2015 | A1 |
20150201036 | Nishiki et al. | Jul 2015 | A1 |
20150222543 | Song | Aug 2015 | A1 |
20150222638 | Morley | Aug 2015 | A1 |
20150236945 | Michael et al. | Aug 2015 | A1 |
20150236962 | Veres et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150249644 | Xu | Sep 2015 | A1 |
20150257081 | Ramanujan et al. | Sep 2015 | A1 |
20150264055 | Budhani et al. | Sep 2015 | A1 |
20150271056 | Chunduri et al. | Sep 2015 | A1 |
20150271104 | Chikkamath et al. | Sep 2015 | A1 |
20150271303 | Neginhal et al. | Sep 2015 | A1 |
20150281004 | Kakadia et al. | Oct 2015 | A1 |
20150312142 | Barabash et al. | Oct 2015 | A1 |
20150312760 | O'Toole | Oct 2015 | A1 |
20150317169 | Sinha et al. | Nov 2015 | A1 |
20150326426 | Luo et al. | Nov 2015 | A1 |
20150334025 | Rader | Nov 2015 | A1 |
20150334696 | Gu et al. | Nov 2015 | A1 |
20150341271 | Gomez | Nov 2015 | A1 |
20150349978 | Wu et al. | Dec 2015 | A1 |
20150350907 | Timariu et al. | Dec 2015 | A1 |
20150358232 | Chen et al. | Dec 2015 | A1 |
20150358236 | Roach et al. | Dec 2015 | A1 |
20150363221 | Terayama et al. | Dec 2015 | A1 |
20150363733 | Brown | Dec 2015 | A1 |
20150365323 | Duminuco et al. | Dec 2015 | A1 |
20150372943 | Hasan et al. | Dec 2015 | A1 |
20150372982 | Herle et al. | Dec 2015 | A1 |
20150381407 | Wang et al. | Dec 2015 | A1 |
20150381462 | Choi et al. | Dec 2015 | A1 |
20150381493 | Bansal et al. | Dec 2015 | A1 |
20160019317 | Pawar et al. | Jan 2016 | A1 |
20160020844 | Hart et al. | Jan 2016 | A1 |
20160021597 | Hart et al. | Jan 2016 | A1 |
20160035183 | Buchholz et al. | Feb 2016 | A1 |
20160036924 | Koppolu et al. | Feb 2016 | A1 |
20160036938 | Aviles et al. | Feb 2016 | A1 |
20160037434 | Gopal et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160072684 | Manuguri et al. | Mar 2016 | A1 |
20160080268 | Anand et al. | Mar 2016 | A1 |
20160080502 | Yadav et al. | Mar 2016 | A1 |
20160105353 | Cociglio | Apr 2016 | A1 |
20160105392 | Thakkar et al. | Apr 2016 | A1 |
20160105471 | Nunes et al. | Apr 2016 | A1 |
20160105488 | Thakkar et al. | Apr 2016 | A1 |
20160117185 | Fang et al. | Apr 2016 | A1 |
20160134461 | Sampath et al. | May 2016 | A1 |
20160134527 | Kwak et al. | May 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160134591 | Liao et al. | May 2016 | A1 |
20160142373 | Ossipov | May 2016 | A1 |
20160147607 | Dornemann et al. | May 2016 | A1 |
20160150055 | Choi | May 2016 | A1 |
20160164832 | Bellagamba et al. | Jun 2016 | A1 |
20160164914 | Madhav et al. | Jun 2016 | A1 |
20160173338 | Wolting | Jun 2016 | A1 |
20160191363 | Haraszti et al. | Jun 2016 | A1 |
20160191374 | Singh et al. | Jun 2016 | A1 |
20160192403 | Gupta et al. | Jun 2016 | A1 |
20160197834 | Luft | Jul 2016 | A1 |
20160197835 | Luft | Jul 2016 | A1 |
20160198003 | Luft | Jul 2016 | A1 |
20160205071 | Cooper et al. | Jul 2016 | A1 |
20160210209 | Verkaik et al. | Jul 2016 | A1 |
20160212773 | Kanderholm et al. | Jul 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160218951 | Vasseur et al. | Jul 2016 | A1 |
20160234099 | Jiao | Aug 2016 | A1 |
20160234161 | Banerjee et al. | Aug 2016 | A1 |
20160255169 | Kovvuri et al. | Sep 2016 | A1 |
20160255542 | Hughes et al. | Sep 2016 | A1 |
20160261493 | Li | Sep 2016 | A1 |
20160261495 | Xia et al. | Sep 2016 | A1 |
20160261506 | Hegde et al. | Sep 2016 | A1 |
20160261639 | Xu | Sep 2016 | A1 |
20160269298 | Li et al. | Sep 2016 | A1 |
20160269926 | Sundaram | Sep 2016 | A1 |
20160285736 | Gu | Sep 2016 | A1 |
20160299775 | Madapurath et al. | Oct 2016 | A1 |
20160301471 | Kunz et al. | Oct 2016 | A1 |
20160308762 | Teng et al. | Oct 2016 | A1 |
20160315912 | Mayya et al. | Oct 2016 | A1 |
20160323377 | Einkauf et al. | Nov 2016 | A1 |
20160328159 | Coddington et al. | Nov 2016 | A1 |
20160330111 | Manghirmalani et al. | Nov 2016 | A1 |
20160337202 | Ben-Itzhak et al. | Nov 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160353268 | Senarath et al. | Dec 2016 | A1 |
20160359738 | Sullenberger et al. | Dec 2016 | A1 |
20160366187 | Kamble | Dec 2016 | A1 |
20160371153 | Dornemann | Dec 2016 | A1 |
20160378527 | Zamir | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170005986 | Bansal et al. | Jan 2017 | A1 |
20170006499 | Hampel et al. | Jan 2017 | A1 |
20170012870 | Blair et al. | Jan 2017 | A1 |
20170019428 | Cohn | Jan 2017 | A1 |
20170024260 | Chandrasekaran et al. | Jan 2017 | A1 |
20170026273 | Yao et al. | Jan 2017 | A1 |
20170026283 | Williams et al. | Jan 2017 | A1 |
20170026355 | Mathaiyan et al. | Jan 2017 | A1 |
20170034046 | Cai et al. | Feb 2017 | A1 |
20170034052 | Chanda et al. | Feb 2017 | A1 |
20170034129 | Sawant et al. | Feb 2017 | A1 |
20170048296 | Ramalho et al. | Feb 2017 | A1 |
20170053258 | Carney et al. | Feb 2017 | A1 |
20170055131 | Kong et al. | Feb 2017 | A1 |
20170063674 | Maskalik et al. | Mar 2017 | A1 |
20170063782 | Jain et al. | Mar 2017 | A1 |
20170063783 | Yong et al. | Mar 2017 | A1 |
20170063794 | Jain et al. | Mar 2017 | A1 |
20170064005 | Lee | Mar 2017 | A1 |
20170075710 | Prasad et al. | Mar 2017 | A1 |
20170093625 | Pera et al. | Mar 2017 | A1 |
20170097841 | Chang et al. | Apr 2017 | A1 |
20170104653 | Badea et al. | Apr 2017 | A1 |
20170104755 | Arregoces et al. | Apr 2017 | A1 |
20170109212 | Gaurav et al. | Apr 2017 | A1 |
20170118067 | Vedula | Apr 2017 | A1 |
20170118173 | Arramreddy et al. | Apr 2017 | A1 |
20170123939 | Maheshwari et al. | May 2017 | A1 |
20170126475 | Mahkonen et al. | May 2017 | A1 |
20170126516 | Tiagi et al. | May 2017 | A1 |
20170126564 | Mayya et al. | May 2017 | A1 |
20170134186 | Mukundan et al. | May 2017 | A1 |
20170134520 | Abbasi et al. | May 2017 | A1 |
20170139789 | Fries et al. | May 2017 | A1 |
20170142000 | Cai et al. | May 2017 | A1 |
20170149637 | Banikazemi et al. | May 2017 | A1 |
20170155557 | Desai et al. | Jun 2017 | A1 |
20170155566 | Martinsen et al. | Jun 2017 | A1 |
20170155590 | Dillon et al. | Jun 2017 | A1 |
20170163473 | Sadana et al. | Jun 2017 | A1 |
20170171024 | Anerousis et al. | Jun 2017 | A1 |
20170171310 | Gardner | Jun 2017 | A1 |
20170180220 | Leckey et al. | Jun 2017 | A1 |
20170181210 | Nadella et al. | Jun 2017 | A1 |
20170195161 | Ruel et al. | Jul 2017 | A1 |
20170195169 | Mills et al. | Jul 2017 | A1 |
20170201568 | Hussam et al. | Jul 2017 | A1 |
20170201585 | Doraiswamy et al. | Jul 2017 | A1 |
20170207976 | Rovner et al. | Jul 2017 | A1 |
20170214545 | Cheng et al. | Jul 2017 | A1 |
20170214701 | Hasan | Jul 2017 | A1 |
20170223117 | Messerli et al. | Aug 2017 | A1 |
20170236060 | Ignatyev | Aug 2017 | A1 |
20170237710 | Mayya et al. | Aug 2017 | A1 |
20170242784 | Heorhiadi et al. | Aug 2017 | A1 |
20170257260 | Govindan et al. | Sep 2017 | A1 |
20170257309 | Appanna | Sep 2017 | A1 |
20170264496 | Ao et al. | Sep 2017 | A1 |
20170279717 | Bethers et al. | Sep 2017 | A1 |
20170279741 | Elias et al. | Sep 2017 | A1 |
20170279803 | Desai et al. | Sep 2017 | A1 |
20170280474 | Vesterinen et al. | Sep 2017 | A1 |
20170288987 | Pasupathy et al. | Oct 2017 | A1 |
20170289002 | Ganguli et al. | Oct 2017 | A1 |
20170289027 | Ratnasingham | Oct 2017 | A1 |
20170295264 | Touitou et al. | Oct 2017 | A1 |
20170302501 | Shi et al. | Oct 2017 | A1 |
20170302565 | Ghobadi et al. | Oct 2017 | A1 |
20170310641 | Jiang et al. | Oct 2017 | A1 |
20170310691 | Vasseur et al. | Oct 2017 | A1 |
20170317945 | Guo et al. | Nov 2017 | A1 |
20170317954 | Masurekar et al. | Nov 2017 | A1 |
20170317969 | Masurekar et al. | Nov 2017 | A1 |
20170317974 | Masurekar et al. | Nov 2017 | A1 |
20170324628 | Dhanabalan | Nov 2017 | A1 |
20170337086 | Zhu et al. | Nov 2017 | A1 |
20170339022 | Hegde et al. | Nov 2017 | A1 |
20170339054 | Yadav et al. | Nov 2017 | A1 |
20170339070 | Chang et al. | Nov 2017 | A1 |
20170346722 | Smith et al. | Nov 2017 | A1 |
20170364419 | Lo | Dec 2017 | A1 |
20170366445 | Nemirovsky et al. | Dec 2017 | A1 |
20170366467 | Martin et al. | Dec 2017 | A1 |
20170373950 | Szilagyi et al. | Dec 2017 | A1 |
20170374174 | Evens et al. | Dec 2017 | A1 |
20180006995 | Bickhart et al. | Jan 2018 | A1 |
20180007005 | Chanda et al. | Jan 2018 | A1 |
20180007123 | Cheng et al. | Jan 2018 | A1 |
20180013636 | Seetharamaiah et al. | Jan 2018 | A1 |
20180014051 | Phillips et al. | Jan 2018 | A1 |
20180020035 | Boggia et al. | Jan 2018 | A1 |
20180034668 | Mayya et al. | Feb 2018 | A1 |
20180041425 | Zhang | Feb 2018 | A1 |
20180062875 | Tumuluru | Mar 2018 | A1 |
20180062914 | Boutros et al. | Mar 2018 | A1 |
20180062917 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063036 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063193 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063233 | Park | Mar 2018 | A1 |
20180063743 | Tumuluru et al. | Mar 2018 | A1 |
20180069924 | Tumuluru et al. | Mar 2018 | A1 |
20180074909 | Bishop et al. | Mar 2018 | A1 |
20180077081 | Lauer et al. | Mar 2018 | A1 |
20180077202 | Xu | Mar 2018 | A1 |
20180084081 | Kuchibhotla et al. | Mar 2018 | A1 |
20180091370 | Arai | Mar 2018 | A1 |
20180097725 | Wood et al. | Apr 2018 | A1 |
20180114569 | Strachan et al. | Apr 2018 | A1 |
20180123910 | Fitzgibbon | May 2018 | A1 |
20180123946 | Ramachandran et al. | May 2018 | A1 |
20180131608 | Jiang et al. | May 2018 | A1 |
20180131615 | Zhang | May 2018 | A1 |
20180131720 | Hobson et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180159796 | Wang et al. | Jun 2018 | A1 |
20180159856 | Gujarathi | Jun 2018 | A1 |
20180167378 | Kostyukov et al. | Jun 2018 | A1 |
20180176073 | Dubey et al. | Jun 2018 | A1 |
20180176082 | Katz et al. | Jun 2018 | A1 |
20180176130 | Banerjee et al. | Jun 2018 | A1 |
20180176252 | Nimmagadda et al. | Jun 2018 | A1 |
20180181423 | Gunda et al. | Jun 2018 | A1 |
20180205746 | Boutnaru et al. | Jul 2018 | A1 |
20180213472 | Ishii et al. | Jul 2018 | A1 |
20180219765 | Michael et al. | Aug 2018 | A1 |
20180219766 | Michael et al. | Aug 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180248790 | Tan et al. | Aug 2018 | A1 |
20180260125 | Botes et al. | Sep 2018 | A1 |
20180261085 | Liu et al. | Sep 2018 | A1 |
20180262468 | Kumar et al. | Sep 2018 | A1 |
20180270104 | Zheng et al. | Sep 2018 | A1 |
20180278541 | Wu et al. | Sep 2018 | A1 |
20180287907 | Kulshreshtha et al. | Oct 2018 | A1 |
20180295101 | Gehrmann | Oct 2018 | A1 |
20180295529 | Jen et al. | Oct 2018 | A1 |
20180302286 | Mayya et al. | Oct 2018 | A1 |
20180302321 | Manthiramoorthy et al. | Oct 2018 | A1 |
20180307851 | Lewis | Oct 2018 | A1 |
20180316606 | Sung et al. | Nov 2018 | A1 |
20180351855 | Sood et al. | Dec 2018 | A1 |
20180351862 | Jeganathan et al. | Dec 2018 | A1 |
20180351863 | Vairavakkalai et al. | Dec 2018 | A1 |
20180351882 | Jeganathan et al. | Dec 2018 | A1 |
20180359323 | Madden | Dec 2018 | A1 |
20180367445 | Bajaj | Dec 2018 | A1 |
20180373558 | Chang et al. | Dec 2018 | A1 |
20180375744 | Mayya et al. | Dec 2018 | A1 |
20180375824 | Mayya et al. | Dec 2018 | A1 |
20180375967 | Pithawala et al. | Dec 2018 | A1 |
20190013883 | Vargas et al. | Jan 2019 | A1 |
20190014038 | Ritchie | Jan 2019 | A1 |
20190020588 | Twitchell, Jr. | Jan 2019 | A1 |
20190020627 | Yuan | Jan 2019 | A1 |
20190021085 | Mochizuki et al. | Jan 2019 | A1 |
20190028378 | Houjyo et al. | Jan 2019 | A1 |
20190028552 | Johnson et al. | Jan 2019 | A1 |
20190036808 | Shenoy et al. | Jan 2019 | A1 |
20190036810 | Michael et al. | Jan 2019 | A1 |
20190036813 | Shenoy et al. | Jan 2019 | A1 |
20190046056 | Khachaturian et al. | Feb 2019 | A1 |
20190058657 | Chunduri et al. | Feb 2019 | A1 |
20190058709 | Kempf et al. | Feb 2019 | A1 |
20190068470 | Mirsky | Feb 2019 | A1 |
20190068493 | Ram et al. | Feb 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190075083 | Mayya et al. | Mar 2019 | A1 |
20190081894 | Yousaf et al. | Mar 2019 | A1 |
20190103990 | Cidon et al. | Apr 2019 | A1 |
20190103991 | Cidon et al. | Apr 2019 | A1 |
20190103992 | Cidon et al. | Apr 2019 | A1 |
20190103993 | Cidon et al. | Apr 2019 | A1 |
20190104035 | Cidon et al. | Apr 2019 | A1 |
20190104049 | Cidon et al. | Apr 2019 | A1 |
20190104050 | Cidon et al. | Apr 2019 | A1 |
20190104051 | Cidon et al. | Apr 2019 | A1 |
20190104052 | Cidon et al. | Apr 2019 | A1 |
20190104053 | Cidon et al. | Apr 2019 | A1 |
20190104063 | Cidon et al. | Apr 2019 | A1 |
20190104064 | Cidon et al. | Apr 2019 | A1 |
20190104109 | Cidon et al. | Apr 2019 | A1 |
20190104111 | Cidon et al. | Apr 2019 | A1 |
20190104413 | Cidon et al. | Apr 2019 | A1 |
20190109769 | Jain et al. | Apr 2019 | A1 |
20190132221 | Boutros et al. | May 2019 | A1 |
20190132234 | Dong et al. | May 2019 | A1 |
20190132322 | Song et al. | May 2019 | A1 |
20190140889 | Mayya et al. | May 2019 | A1 |
20190140890 | Mayya et al. | May 2019 | A1 |
20190149525 | Gunda et al. | May 2019 | A1 |
20190158371 | Dillon et al. | May 2019 | A1 |
20190158605 | Markuze | May 2019 | A1 |
20190199539 | Deng et al. | Jun 2019 | A1 |
20190220703 | Prakash et al. | Jul 2019 | A1 |
20190222499 | Chen et al. | Jul 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190238446 | Barzik et al. | Aug 2019 | A1 |
20190238449 | Michael et al. | Aug 2019 | A1 |
20190238450 | Michael et al. | Aug 2019 | A1 |
20190238483 | Marichetty et al. | Aug 2019 | A1 |
20190238497 | Tourrilhes et al. | Aug 2019 | A1 |
20190268421 | Markuze et al. | Aug 2019 | A1 |
20190268973 | Bull et al. | Aug 2019 | A1 |
20190278631 | Bernat et al. | Sep 2019 | A1 |
20190280962 | Michael et al. | Sep 2019 | A1 |
20190280963 | Michael et al. | Sep 2019 | A1 |
20190280964 | Michael et al. | Sep 2019 | A1 |
20190288875 | Shen et al. | Sep 2019 | A1 |
20190306197 | Degioanni | Oct 2019 | A1 |
20190306282 | Masputra et al. | Oct 2019 | A1 |
20190313278 | Liu | Oct 2019 | A1 |
20190313907 | Khachaturian et al. | Oct 2019 | A1 |
20190319847 | Nahar et al. | Oct 2019 | A1 |
20190319881 | Maskara et al. | Oct 2019 | A1 |
20190327109 | Guichard et al. | Oct 2019 | A1 |
20190334786 | Dutta et al. | Oct 2019 | A1 |
20190334813 | Raj et al. | Oct 2019 | A1 |
20190334820 | Zhao | Oct 2019 | A1 |
20190342201 | Singh | Nov 2019 | A1 |
20190342219 | Liu et al. | Nov 2019 | A1 |
20190356736 | Narayanaswamy et al. | Nov 2019 | A1 |
20190364099 | Thakkar et al. | Nov 2019 | A1 |
20190364456 | Yu | Nov 2019 | A1 |
20190372888 | Michael et al. | Dec 2019 | A1 |
20190372889 | Michael et al. | Dec 2019 | A1 |
20190372890 | Michael et al. | Dec 2019 | A1 |
20190394081 | Tahhan et al. | Dec 2019 | A1 |
20200014609 | Hockett et al. | Jan 2020 | A1 |
20200014615 | Michael et al. | Jan 2020 | A1 |
20200014616 | Michael et al. | Jan 2020 | A1 |
20200014661 | Mayya et al. | Jan 2020 | A1 |
20200014663 | Chen et al. | Jan 2020 | A1 |
20200021514 | Michael et al. | Jan 2020 | A1 |
20200021515 | Michael et al. | Jan 2020 | A1 |
20200036624 | Michael et al. | Jan 2020 | A1 |
20200044943 | Bor-Yaliniz et al. | Feb 2020 | A1 |
20200044969 | Hao et al. | Feb 2020 | A1 |
20200059420 | Abraham | Feb 2020 | A1 |
20200059457 | Raza et al. | Feb 2020 | A1 |
20200059459 | Abraham et al. | Feb 2020 | A1 |
20200067831 | Spraggins et al. | Feb 2020 | A1 |
20200092207 | Sipra et al. | Mar 2020 | A1 |
20200097327 | Beyer et al. | Mar 2020 | A1 |
20200099625 | Yigit et al. | Mar 2020 | A1 |
20200099659 | Cometto et al. | Mar 2020 | A1 |
20200106696 | Michael et al. | Apr 2020 | A1 |
20200106706 | Mayya et al. | Apr 2020 | A1 |
20200119952 | Mayya et al. | Apr 2020 | A1 |
20200127905 | Mayya et al. | Apr 2020 | A1 |
20200127911 | Gilson et al. | Apr 2020 | A1 |
20200153701 | Mohan et al. | May 2020 | A1 |
20200153736 | Liebherr et al. | May 2020 | A1 |
20200159661 | Keymolen et al. | May 2020 | A1 |
20200162407 | Tillotson | May 2020 | A1 |
20200169473 | Rimar et al. | May 2020 | A1 |
20200177503 | Hooda et al. | Jun 2020 | A1 |
20200177550 | Valluri et al. | Jun 2020 | A1 |
20200177629 | Hooda et al. | Jun 2020 | A1 |
20200186471 | Shen et al. | Jun 2020 | A1 |
20200195557 | Duan et al. | Jun 2020 | A1 |
20200204460 | Schneider et al. | Jun 2020 | A1 |
20200213212 | Dillon et al. | Jul 2020 | A1 |
20200213224 | Cheng et al. | Jul 2020 | A1 |
20200218558 | Sreenath et al. | Jul 2020 | A1 |
20200235990 | Janakiraman et al. | Jul 2020 | A1 |
20200235999 | Mayya et al. | Jul 2020 | A1 |
20200236046 | Jain et al. | Jul 2020 | A1 |
20200241927 | Yang et al. | Jul 2020 | A1 |
20200244721 | S et al. | Jul 2020 | A1 |
20200252234 | Ramamoorthi et al. | Aug 2020 | A1 |
20200259700 | Bhalla et al. | Aug 2020 | A1 |
20200267184 | Vera-Schockner | Aug 2020 | A1 |
20200267203 | Jindal et al. | Aug 2020 | A1 |
20200280587 | Janakiraman et al. | Sep 2020 | A1 |
20200287819 | Theogaraj et al. | Sep 2020 | A1 |
20200287976 | Theogaraj et al. | Sep 2020 | A1 |
20200296011 | Jain et al. | Sep 2020 | A1 |
20200296026 | Michael et al. | Sep 2020 | A1 |
20200301764 | Thoresen et al. | Sep 2020 | A1 |
20200314006 | Mackie et al. | Oct 2020 | A1 |
20200314614 | Moustafa et al. | Oct 2020 | A1 |
20200322230 | Natal et al. | Oct 2020 | A1 |
20200322287 | Connor et al. | Oct 2020 | A1 |
20200336336 | Sethi et al. | Oct 2020 | A1 |
20200344089 | Motwani et al. | Oct 2020 | A1 |
20200344143 | Faseela et al. | Oct 2020 | A1 |
20200344163 | Gupta et al. | Oct 2020 | A1 |
20200351188 | Arora et al. | Nov 2020 | A1 |
20200358878 | Bansal et al. | Nov 2020 | A1 |
20200366530 | Mukundan et al. | Nov 2020 | A1 |
20200366562 | Mayya et al. | Nov 2020 | A1 |
20200382345 | Zhao et al. | Dec 2020 | A1 |
20200382387 | Pasupathy et al. | Dec 2020 | A1 |
20200403821 | Dev et al. | Dec 2020 | A1 |
20200412483 | Tan et al. | Dec 2020 | A1 |
20200412576 | Kondapavuluru et al. | Dec 2020 | A1 |
20200413283 | Shen et al. | Dec 2020 | A1 |
20210006482 | Hwang et al. | Jan 2021 | A1 |
20210006490 | Michael et al. | Jan 2021 | A1 |
20210021538 | Meck et al. | Jan 2021 | A1 |
20210029019 | Kottapalli | Jan 2021 | A1 |
20210029088 | Mayya et al. | Jan 2021 | A1 |
20210036888 | Makkalla et al. | Feb 2021 | A1 |
20210036987 | Mishra et al. | Feb 2021 | A1 |
20210037159 | Shimokawa | Feb 2021 | A1 |
20210049191 | Masson et al. | Feb 2021 | A1 |
20210067372 | Cidon et al. | Mar 2021 | A1 |
20210067373 | Cidon et al. | Mar 2021 | A1 |
20210067374 | Cidon et al. | Mar 2021 | A1 |
20210067375 | Cidon et al. | Mar 2021 | A1 |
20210067407 | Cidon et al. | Mar 2021 | A1 |
20210067427 | Cidon et al. | Mar 2021 | A1 |
20210067442 | Sundararajan et al. | Mar 2021 | A1 |
20210067461 | Cidon et al. | Mar 2021 | A1 |
20210067464 | Cidon et al. | Mar 2021 | A1 |
20210067467 | Cidon et al. | Mar 2021 | A1 |
20210067468 | Cidon et al. | Mar 2021 | A1 |
20210073001 | Rogers et al. | Mar 2021 | A1 |
20210092062 | Dhanabalan et al. | Mar 2021 | A1 |
20210099360 | Parsons et al. | Apr 2021 | A1 |
20210105199 | H et al. | Apr 2021 | A1 |
20210111998 | Saavedra | Apr 2021 | A1 |
20210112034 | Sundararajan et al. | Apr 2021 | A1 |
20210126830 | R. et al. | Apr 2021 | A1 |
20210126853 | Ramaswamy et al. | Apr 2021 | A1 |
20210126854 | Guo et al. | Apr 2021 | A1 |
20210126860 | Ramaswamy et al. | Apr 2021 | A1 |
20210144091 | H et al. | May 2021 | A1 |
20210160169 | Shen et al. | May 2021 | A1 |
20210160813 | Gupta et al. | May 2021 | A1 |
20210176255 | Hill et al. | Jun 2021 | A1 |
20210184952 | Mayya et al. | Jun 2021 | A1 |
20210184966 | Ramaswamy et al. | Jun 2021 | A1 |
20210184983 | Ramaswamy et al. | Jun 2021 | A1 |
20210194814 | Roux et al. | Jun 2021 | A1 |
20210226880 | Ramamoorthy et al. | Jul 2021 | A1 |
20210234728 | Cidon et al. | Jul 2021 | A1 |
20210234775 | Devadoss et al. | Jul 2021 | A1 |
20210234786 | Devadoss et al. | Jul 2021 | A1 |
20210234804 | Devadoss et al. | Jul 2021 | A1 |
20210234805 | Devadoss et al. | Jul 2021 | A1 |
20210235312 | Devadoss et al. | Jul 2021 | A1 |
20210235313 | Devadoss et al. | Jul 2021 | A1 |
20210266262 | Subramanian et al. | Aug 2021 | A1 |
20210279069 | Salgaonkar et al. | Sep 2021 | A1 |
20210314289 | Chandrashekhar et al. | Oct 2021 | A1 |
20210314385 | Pande et al. | Oct 2021 | A1 |
20210328835 | Mayya et al. | Oct 2021 | A1 |
20210336880 | Gupta et al. | Oct 2021 | A1 |
20210377109 | Shrivastava et al. | Dec 2021 | A1 |
20210377156 | Michael et al. | Dec 2021 | A1 |
20210392060 | Silva et al. | Dec 2021 | A1 |
20210392070 | Tootaghaj et al. | Dec 2021 | A1 |
20210399920 | Sundararajan et al. | Dec 2021 | A1 |
20210399978 | Michael et al. | Dec 2021 | A9 |
20210400113 | Markuze et al. | Dec 2021 | A1 |
20210400512 | Agarwal et al. | Dec 2021 | A1 |
20210409277 | Jeuk et al. | Dec 2021 | A1 |
20220006726 | Michael et al. | Jan 2022 | A1 |
20220006751 | Ramaswamy et al. | Jan 2022 | A1 |
20220006756 | Ramaswamy et al. | Jan 2022 | A1 |
20220029902 | Shemer et al. | Jan 2022 | A1 |
20220035673 | Markuze et al. | Feb 2022 | A1 |
20220038370 | Vasseur et al. | Feb 2022 | A1 |
20220038557 | Markuze et al. | Feb 2022 | A1 |
20220045927 | Liu et al. | Feb 2022 | A1 |
20220052928 | Sundararajan et al. | Feb 2022 | A1 |
20220061059 | Dunsmore et al. | Feb 2022 | A1 |
20220086035 | Devaraj et al. | Mar 2022 | A1 |
20220094644 | Cidon et al. | Mar 2022 | A1 |
20220123961 | Mukundan et al. | Apr 2022 | A1 |
20220131740 | Mayya et al. | Apr 2022 | A1 |
20220131807 | Srinivas et al. | Apr 2022 | A1 |
20220131898 | Hooda et al. | Apr 2022 | A1 |
20220141184 | Oswal et al. | May 2022 | A1 |
20220158923 | Ramaswamy et al. | May 2022 | A1 |
20220158924 | Ramaswamy et al. | May 2022 | A1 |
20220158926 | Wennerstrom et al. | May 2022 | A1 |
20220166713 | Markuze et al. | May 2022 | A1 |
20220191719 | Roy | Jun 2022 | A1 |
20220198229 | López et al. | Jun 2022 | A1 |
20220210035 | Hendrickson et al. | Jun 2022 | A1 |
20220210041 | Gandhi et al. | Jun 2022 | A1 |
20220210042 | Gandhi et al. | Jun 2022 | A1 |
20220210122 | Levin et al. | Jun 2022 | A1 |
20220217015 | Vuggrala et al. | Jul 2022 | A1 |
20220231949 | Ramaswamy et al. | Jul 2022 | A1 |
20220231950 | Ramaswamy et al. | Jul 2022 | A1 |
20220232411 | Vijayakumar et al. | Jul 2022 | A1 |
20220239596 | Kumar et al. | Jul 2022 | A1 |
20220294701 | Mayya et al. | Sep 2022 | A1 |
20220335027 | Seshadri et al. | Oct 2022 | A1 |
20220337553 | Mayya et al. | Oct 2022 | A1 |
20220353152 | Ramaswamy | Nov 2022 | A1 |
20220353171 | Ramaswamy et al. | Nov 2022 | A1 |
20220353175 | Ramaswamy et al. | Nov 2022 | A1 |
20220353182 | Ramaswamy et al. | Nov 2022 | A1 |
20220353190 | Ramaswamy et al. | Nov 2022 | A1 |
20220360500 | Ramaswamy et al. | Nov 2022 | A1 |
20220407773 | Kempanna et al. | Dec 2022 | A1 |
20220407774 | Kempanna et al. | Dec 2022 | A1 |
20220407790 | Kempanna et al. | Dec 2022 | A1 |
20220407820 | Kempanna et al. | Dec 2022 | A1 |
20220407915 | Kempanna et al. | Dec 2022 | A1 |
20230006929 | Mayya et al. | Jan 2023 | A1 |
20230025586 | Rolando et al. | Jan 2023 | A1 |
20230026330 | Rolando et al. | Jan 2023 | A1 |
20230026865 | Rolando et al. | Jan 2023 | A1 |
20230028872 | Ramaswamy | Jan 2023 | A1 |
20230039869 | Ramaswamy et al. | Feb 2023 | A1 |
20230041916 | Zhang et al. | Feb 2023 | A1 |
20230054961 | Ramaswamy et al. | Feb 2023 | A1 |
20230105680 | Simlai et al. | Apr 2023 | A1 |
20230121871 | Mayya et al. | Apr 2023 | A1 |
20230179445 | Cidon et al. | Jun 2023 | A1 |
20230179502 | Ramaswamy et al. | Jun 2023 | A1 |
20230179521 | Markuze et al. | Jun 2023 | A1 |
20230179543 | Cidon et al. | Jun 2023 | A1 |
20230216768 | Zohar et al. | Jul 2023 | A1 |
20230216801 | Markuze et al. | Jul 2023 | A1 |
20230216804 | Zohar et al. | Jul 2023 | A1 |
20230221874 | Markuze et al. | Jul 2023 | A1 |
20230224356 | Markuze et al. | Jul 2023 | A1 |
20230224759 | Ramaswamy | Jul 2023 | A1 |
20230231845 | Manoharan et al. | Jul 2023 | A1 |
20230239234 | Zohar et al. | Jul 2023 | A1 |
20230261974 | Ramaswamy et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
1926809 | Mar 2007 | CN |
102577270 | Jul 2012 | CN |
102811165 | Dec 2012 | CN |
104956329 | Sep 2015 | CN |
106230650 | Dec 2016 | CN |
106656847 | May 2017 | CN |
106998284 | Aug 2017 | CN |
110447209 | Nov 2019 | CN |
111198764 | May 2020 | CN |
1912381 | Apr 2008 | EP |
2538637 | Dec 2012 | EP |
2763362 | Aug 2014 | EP |
3041178 | Jul 2016 | EP |
3297211 | Mar 2018 | EP |
3509256 | Jul 2019 | EP |
3346650 | Nov 2019 | EP |
2002368792 | Dec 2002 | JP |
2010233126 | Oct 2010 | JP |
2014200010 | Oct 2014 | JP |
2017059991 | Mar 2017 | JP |
2017524290 | Aug 2017 | JP |
20170058201 | May 2017 | KR |
2574350 | Feb 2016 | RU |
03073701 | Sep 2003 | WO |
2005071861 | Aug 2005 | WO |
2007016834 | Feb 2007 | WO |
2012167184 | Dec 2012 | WO |
2015092565 | Jun 2015 | WO |
2016061546 | Apr 2016 | WO |
2016123314 | Aug 2016 | WO |
2017083975 | May 2017 | WO |
2019070611 | Apr 2019 | WO |
2019094522 | May 2019 | WO |
2020012491 | Jan 2020 | WO |
2020018704 | Jan 2020 | WO |
2020091777 | May 2020 | WO |
2020101922 | May 2020 | WO |
2020112345 | Jun 2020 | WO |
2021040934 | Mar 2021 | WO |
2021118717 | Jun 2021 | WO |
2021150465 | Jul 2021 | WO |
2021211906 | Oct 2021 | WO |
2022005607 | Jan 2022 | WO |
2022082680 | Apr 2022 | WO |
2022154850 | Jul 2022 | WO |
2022159156 | Jul 2022 | WO |
2022231668 | Nov 2022 | WO |
2022235303 | Nov 2022 | WO |
2022265681 | Dec 2022 | WO |
2023009159 | Feb 2023 | WO |
Entry |
---|
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA. |
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE. |
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA. |
Zakurdaev, Gieorgi, et al., “Dynamic On-Demand Virtual Extensible LAN Tunnels via Software-Defined Wide Area Networks,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, Jan. 26-29, 2022, 6 pages, IEEE, Las Vegas, NV, USA. |
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036. |
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain. |
Author Unknown, “VeloCloud Administration Guide: VMware SD-WAN by VeloCloud 3.3,” Month Unknown 2019, 366 pages, VMware, Inc., Palo Alto, CA, USA. |
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Cisco, Barcelona, Spain, retrieved from https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf. |
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/. |
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482. |
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages, vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287. |
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE. |
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA. |
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel. |
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK. |
Funabiki, Nobuo, et al., “A Frame Aggregation Extension of Routing Algorithm for Wireless Mesh Networks,” 2014 Second International Symposium on Computing and Networking, Dec. 10-12, 2014, 5 pages, IEEE, Shizuoka, Japan. |
Guo, Xiangyi, et al., (U.S. Appl. No. 62/925,193), filed Oct. 23, 2019, 26 pages. |
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland. |
Jivorasetkul, Supalerk, et al., “End-to-End Header Compression over Software-Defined Networks: a Low Latency Network Architecture,” 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Sep. 19-21, 2012, 2 pages, IEEE, Bucharest, Romania. |
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF. |
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia. |
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE. |
Long, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China. |
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE. |
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China. |
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA. |
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada. |
Non-Published Commonly Owned U.S. Appl. No. 17/833,555, filed Jun. 6, 2022, 34 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/833,566, filed Jun. 6, 2022, 35 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/976,717, filed Oct. 28, 2022, 37 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/100,369, filed Jan. 23, 2023, 55 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/100,381, filed Jan. 23, 2023, 55 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/100,397, filed Jan. 23, 2023, 55 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/126,989, filed Mar. 27, 2023, 83 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/126,990, filed Mar. 27, 2023, 84 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/126,991, filed Mar. 27, 2023, 84 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/126,992, filed Mar. 27, 2023, 84 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/197,090, filed May 14, 2023, 36 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/208,352, filed Jun. 12, 2023, 69 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/208,356, filed Jun. 12, 2023, 69 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/208,358, filed Jun. 12, 2023, 69 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/211,568, filed Jun. 19, 2023, 37 pages, VMware, Inc. |
Non-Published Commonly Owned Related U.S. Appl. No. 18/211,576 with similar specification, filed Jun. 19, 2023, 37 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/222,864, filed Jul. 17, 2023, 350 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/222,868, filed Jul. 17, 2023, 22 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/224,466, filed Jul. 20, 2023, 56 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/235,879, filed Aug. 20, 2023, 173 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group. |
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India. |
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons. |
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt. |
Taleb, Tarik, “D4.1 Mobile Network Cloud Component Design,” Mobile Cloud Networking, Nov. 8, 2013, 210 pages, MobileCloud Networking Consortium, retrieved from http://www.mobile-cloud-networking.eu/site/index.php?process=download&id=127&code=89d30565cd2ce087d3f8e95f9ad683066510a61f. |
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada. |
Valtulina, Luca, “Seamless Distributed Mobility Management (DMM) Solution in Cloud Based LTE Systems,” Master Thesis, Nov. 2013, 168 pages, University of Twente, retrieved from http://essay.utwente.nl/64411/1/Luca_Valtulina_MSc_Report_final.pdf. |
Number | Date | Country | |
---|---|---|---|
20240022499 A1 | Jan 2024 | US |