This invention relates generally to electro-photographic printers that use toner to transfer an image to a medium.
In conventional electrophotographic printing, toner is transferred from a developer roll to a photoconductive surface and eventually to a medium. In order to obtain a good transfer of the image, it is desirable that the toner on a developer roll be applied very evenly. Even application of toner may be facilitated by using a doctor blade that controls the thickness of the toner on the developer roll. As the developer roll rotates, the doctor blade doctors the toner applied thereto and provides a relatively uniform toner coating.
Since the application of the uniform toner coating may be critical to the performance of the printer, there is a continuing need for better doctor blade designs.
Referring to
As the developer roll 14 rotates in the direction indicated by A, the uneven toner layer on the surface of the developer roll contacts the end 24 of the doctor blade 22 and is doctored off or squeezed into the nip between the end 24 and the roll 14, providing a uniform thickness toner layer on the output, clockwise, or downstream side of the doctor blade 22.
The doctor blade 22 may be supported in a spring biased configuration against the surface of the developer roll 14 through the application of a counterclockwise moment applied by a mounting bracket 27.
The mounting bracket 27 is coupled to the end 24 through a cantilever spring portion 25. The portion 25 provides a cantilever spring force biasing the end 24 against the developer roll 14.
Referring to
Referring back to
Thus, it can be seen that the tip 32 of the blade 22 may be generally aligned with the axis of the developer roll 14. Moreover, the tip 32 does not contact the developer roll 14. Therefore, the orientation between the tip 32 and the developer roll 14 is less critical to operation of the doctor blade. Since the alignment between the end and the axis of the developer roll 14 may be difficult to control, in some embodiments, this critical parameter has been eliminated.
The doctor blade 22 may not require that the blade cantilever length be tightly controlled. Since this dimension is contained entirely within the doctor blade itself, it may not cause an assembly tolerance issue in some embodiments.
Moreover, the pressure of the blade 22 against the developer roll 14 is uniform along the length of the blade to avoid print defects. A flat doctor blade without the end 24 is not very stiff. Checkmark doctor blade designs tend to be 50 to 150 times stiffer than a flat blade. The blade shown in
The first bend 28 allows the blade to operate in a position that is essentially tangent to the developer roll 14, unlike a checkmark blade that operates at an acute angle to the developer roll 14. The tangential orientation of the blade 22 reduces the blade stiffness in the radial direction for a given beam length, thickness, and modulus of elasticity. Uniform contact pressure between the doctor blade and the developer roll is critical to print quality. This can be achieved by minimizing the cross-sectional area moment of inertia of the doctor blade which, in turn, reduces the longitudinal stiffness of the blade. This allows the blade to conform to the surface of the developer roller and minimizes sensitivity to longitudinal part straightness. This feature results in a more robust design.
Referring to
The device 60 includes laser print heads 62, 64, 66, and 68, a black toner cartridge 70, a magenta toner cartridge 72, a cyan toner cartridge 74, a yellow toner cartridge 76, photoconductive drums 78, 80, 82, and 84, an intermediate transfer belt 86, and a controller 87. In one embodiment, the controller may be a combination of application specific integrated circuits, microprocessors, and firmware suited to the tasks of printing documents.
Each of the laser print heads 62, 64, 66, and 68 projects a respective laser beam 88, 90, 92, and 94 off a respective one of the polygonal mirrors 96, 98, 100, and 102. As each of the polygonal mirrors 96, 98, 100, and 102 rotates, it scans a respective one of the reflected beams 88, 90, 92, and 94 in a scan direction, perpendicular to the plane of
Each of the photoconductive drums 78, 80, 82, and 84 may be negatively charged, for example, to approximately −1000 volts, and is subsequently discharged to a lower level, such as approximately −300 volts, in the areas of the peripheral surface that are impinged by a respective one of the laser beams 88, 90, 92, and 94.
During each scan of a laser beam across the photoconductive drum, each photoconductive drum 78, 80, 82, and 84 is continuously rotated, for example, in a clockwise direction, in a process direction indicated by the arrow 104. The scanning of the laser beams 88, 90, 92, and 94 across the peripheral surface of the photoconductive drums is cyclically repeated, thereby discharging the areas of the peripheral surfaces on which the laser beams impinge.
The toner in each of the toner cartridges 70, 72, 74, and 76 is negatively charged and is transported upon the surface of a developer roll 14 and biased, for example, to approximately −600 volts. Thus, when the toner for the cartridges 70, 72, 74, and 76 is brought into contact with the respective one of the photoconductive drums 78, 80, 82, and 84, the toner is attracted to and adheres to the portions of the peripheral surfaces of the drums that have been discharged to the lower voltage, say −300 volts, by the laser beams.
A doctor blade 22 may be associated with each toner cartridge 70, 72, 74, and 76. Particularly, a doctor blade 22 may be associated with each developer roll 14 which, in turn, is associated with a toner adder roll 16 and a photoconductor drum 78, 80, 82, or 84.
As the belt 86 rotates in the direction indicated by the arrow 106, the toner from each of the drums 78, 80, 82, and 84 is transferred to the outside surface of the belt 86. As a print medium, such as paper, travels along the path 108, the toner is transferred to the surface of the print medium at nip 112.
References throughout this specification to “one embodiment” or “an embodiment” mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation encompassed within the present invention. Thus, appearances of the phrase “one embodiment” or “in an embodiment” are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be instituted in other suitable forms other than the particular embodiment illustrated and all such forms may be encompassed within the claims of the present application.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
4920916 | Mizuno et al. | May 1990 | A |
5185632 | Yoshida et al. | Feb 1993 | A |
5587551 | Ikegawa et al. | Dec 1996 | A |
6021299 | Hansburg et al. | Feb 2000 | A |
6064463 | Yamada et al. | May 2000 | A |
6603944 | Tatsumi | Aug 2003 | B2 |
7082280 | Kim | Jul 2006 | B2 |
7236729 | Askren et al. | Jun 2007 | B2 |
20040091290 | Yamada et al. | May 2004 | A1 |
20070189814 | Gayne et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
08185045 | Jul 1996 | JP |
09062096 | Mar 1997 | JP |
09138566 | May 1997 | JP |
2001109259 | Apr 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20070264056 A1 | Nov 2007 | US |