The present invention relates to self-service document depositing terminals, and is particularly directed to a document deskewing module with a moving track bottom for use in a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and methods of operating such a deskewing module.
In a typical bunch document depositing ATM, an ATM customer is allowed to deposit a bunch of documents of the same type such as currency notes or checks (without having to place any of the documents in a deposit envelope) in a publicly accessible, unattended environment. To deposit a bunch of documents, the ATM customer inserts a user identification card through a user card slot at the ATM, enters the amount of the bunch of documents being deposited, and inserts the bunch of documents to be deposited through a slot of a bunch document acceptor. A document transport mechanism receives the inserted bunch of documents and then separates and transports the documents one-by-one in a forward direction along a document transport path to a number of locations within the ATM to process the documents.
If a particular document is not accepted for deposit, the document transport mechanism transports the entire bunch of documents in a manner to return the bunch of documents to the ATM customer. If the entire bunch of documents is accepted for deposit, the amount of the bunch of documents is deposited into the ATM customer's account and the documents are transported one-by one to a number of storage bins within the ATM. If a bunch of documents is a bunch of checks, an endorser printer prints an endorsement onto each check as the check is being transported to and stored in a check storage bin. If a bunch of documents is a bunch of currency notes, then each currency note is transported to and stored in a currency storage bin. Documents in the different storage bins within the ATM are periodically picked up and physically transported via courier to a back office facility of a financial institution for further processing.
After the documents are separated from the bunch, they need to be deskewed before continuing down the document transport path. It is desirable to deskew the skewed document before it is processed at the different locations within the ATM to improve image-based recognition rates, to improve magnetic read rates, to print the proper print zones, and to reduce document jam rates.
Document deskewing modules for use in ATMs are known. However, these known document deskewing modules are designed to deskew only one type of document (e.g., either a currency note or a check, but not both). When a document deskewing module is designed to deskew only one type of document, the module is usually effective in deskewing a document of only that particular type. This is because different types of documents are of different sizes, different thicknesses, different paper grades, or the like, for examples.
Moreover, known document deskewing modules may have difficulty deskewing certain currency notes because of condition of these currency notes. For example, a “limp” currency note is usually difficult to transport along the document transport path as well as to deskew while being transported along the document transport path. This is because a leading front corner of the limp note may curl excessively when the corner makes contact with a track bottom of the document transport path as the currency note is being deskewed. When the corner of the note curls excessively, the corner may bunch up and cause a document jam condition. It would be desirable to provide a document deskewing module which is effective to deskew a relatively non-stiff document, such as a limp currency note, without having the document curl and bunch up as the document is being deskewed.
In accordance with one embodiment of the present invention, a document deskewing module is provided for a self-service bunch document depositing terminal. The document deskewing module comprises a set of sensors arranged to detect when a document transported in a first direction of document travel along a document transport path is deskewed, a first set of drive rollers in the form of hard drive rollers disposed along the document transport path, a first set of idler rollers moveable towards and away from the hard drive rollers, a second set of drive rollers in the form of soft drive rollers disposed along the document transport path, a second set of idler rollers moveable towards and away from the soft drive rollers, a track bottom disposed on one side of the document transport path and movable in the first direction of document travel, and a controller arranged to (i) control operation of the first and second sets of idler rollers in response to a number of signals from the set of sensors such that a deskewed document is moved in a second direction of document travel which is transverse to the first direction of document travel, and (ii) control operation of the movable track bottom such that a leading front corner of the deskewed document is moved in the first direction of document travel when the corner moves into contact with the track bottom as the document is moving in the second direction of document travel so as to reduce tendency of the corner of the document from curling and thereby to reduce tendency of the corner from bunching up and causing a document jam condition.
In the accompanying drawings:
The present invention is directed to a document deskewing module with a moving track bottom for use in a for a self-service bunch document depositing terminal, such as a bunch document depositing automated teller machine (ATM), and methods of operating such a deskewing module.
Referring to
The fascia 12 provides a user interface for allowing an ATM customer to execute a transaction. The fascia 12 includes an encrypting keyboard 34 for allowing an ATM customer to enter transaction details. A display 36 is provided for presenting screens to an ATM customer. A fingerprint reader 38 is provided for reading a fingerprint of an ATM customer to identify the ATM customer. The user interface features described above are all provided on an NCR PERSONAS (trademark) 6676 ATM, available from NCR Financial Solutions Group Limited, Discovery Centre, 3 Fulton Road, Dundee, DD2 4SW, Scotland.
Referring to
The SDM 60 of
The transport module 80 includes a document transport mechanism which receives a document from the inlet adjacent to the infeed module 70, and transports the document along a first document track portion 61 which is the main track portion. The transport module 80 further includes a document diverter 82 which is operable to divert a document along a second document track portion 62 to the pocket module 90, and a third document track portion 63 which leads to the ERBM 99 and then back to the infeed module 70. The third document track 63 allows a bunch of documents which has accumulated in the ERBM 99 to be transported back to the infeed module 70. The structure and operation of diverter 82 shown in
The transport module 80 further includes a magnetic ink character recognition (MICR) head 83 for reading magnetic details on a code line of a check. The transport module 80 also includes an imager 84 including a front imaging camera 85 and a rear imaging camera 86 for capturing an image of each side of a check (front and rear). An endorser printer 88 is provided for printing endorsements onto checks. An image data memory 94 is provided for storing images of checks. A controller 95 is provided for controlling the operation of the elements within the SDM 60.
The pocket module 90 includes a check storage bin 91 (
The SDM 60 processes a bunch of documents of different types (such as currency notes, checks, or a combination thereof). When a bunch of documents is being processed, each document of the bunch is separated at the infeed module 70 before it is individually processed. Each processed document is then re-assembled at the ERBM 99 to bunch the documents back together. Bunch processing of different types of documents is sometimes referred to as “multiple-document processing”. Since individual documents are being bunched back together, an escrow module (such as the ERBM 99 shown in
Referring to
As shown in
A first set of track sensors 206a, 206b, 206c detects progress of the document as the document is being transported from an upstream end of the first document track portion 61 to a downstream end of the first document track portion. A second set of track sensors 208a, 208b, 208c, 208d detects when the document has been deskewed in a manner to be described hereinbelow.
A first set of drive rollers 210a, 210b, 210c (
A second set of drive rollers 310a, 310b (
As shown in
Similarly, the U-shaped depression 322b is associated with the soft drive roller 310b and is disposed between a pair of tire surfaces 324b of the soft drive roller 310b. The corresponding soft drive idler 312b (
Cooperation between the soft drive roller 310a and the soft drive idler 312a and cooperation between the soft drive roller 310b and the soft drive idler 312b are the same. For simplicity, only cooperation between the soft drive roller 310a and the soft drive idler 312a will be described hereinbelow.
When a document is transported along the first document track portion 61 and moves between the soft drive roller 310a and the soft drive idler 312a, the soft drive idler deflects the document into the U-shaped depression 322a. The amount of drive force from the tire surfaces 324a acting on the document depends upon the amount of deflection force from the document. The amount of deflection force from the document depends upon the extent to which the soft drive idler 312a is running inside of the U-shaped depression 322a (as determined by position of the adjustment screw 318a).
The amount of deflection force from the document also depends upon the relative stiffness (or relative limpness) of the particular document. For example, a relative stiffer document provides a greater amount of deflection force and, therefore, provides a greater amount of drive force (from the tire surfaces 324a) which acts on the document. Similarly, a relative limper document provides a lesser amount of deflection force and, therefore, provides a lesser amount of drive force (from the tire surfaces 324a) which acts on the document. The angle of the tire surfaces 324a relative to the direction of travel (as indicated by arrow A) of document causes the document to abut against the track bottom.
It should be apparent that the cooperation between the soft drive roller 310a and the soft drive idler 312a provides a variable drive force which acts on the document being transported along the first document track portion 61. The variable drive force provided is such that relatively thicker or stiffer documents are driven harder, and relatively thinner or limper documents are driven more lightly. This variable drive force is advantageous because (i) a relatively thicker or stiffer document (such as one that has been folded, curled or crumpled) requires more drive force to overcome the friction of travelling down the first document track portion 61, and (ii) a relatively thinner or limper document is less likely to deform as the document is more lightly pushed against the track bottom.
A first actuatable solenoid 230 (
When the first solenoid 230 is de-actuated, the armature link 232 releases the first set of lifter arms 314a, 314b, 314c. At the same time, the second solenoid 234 is de-actuated and the second set of lifter arms 316a, 316b are lifted. These two actions cause the hard drive idlers 212a, 212b, 212c to engage the hard drive rollers 210a, 210b, 210c, and at the same time, the soft drive idlers 312a, 312b to move away from or “disengage” the soft drive rollers 310a, 310b. Accordingly, only one function of either hard drive rollers 210a, 210b, 210c or the soft drive rollers 310a, 310b is normally provided at any one time.
When a document first comes out the infeed module 70, the document encounters the soft drive rollers 310a, 310b and the soft drive idlers 312a, 312b (i.e., the function of the soft drive rollers 310a, 310b is provided). The soft drive rollers 310a, 310b and the soft drive idlers 312a, 312b push the document against the track bottom until at least two of the deskew sensors 208a, 208b, 208c, 208d are blocked. When at least two of the deskew sensors 208a, 208b, 208c, 208d are blocked, the second solenoid 234 is de-actuated to “disengage” the soft drive rollers 310a, 310b and the solenoid 230 is de-actuated to engage the hard drive rollers 210a, 210b 210c. It should be noted that the soft drive rollers 310a, 310b need to be disengaged at this point. Otherwise, a relative thin or limp document will begin to curl and jam if it travels any significant distance with the angled soft drive rollers 310a, 310b engaged. The document is now deskewed and is transported to other parts of the SDM 60 under control of the hard drive rollers 210a, 210b, 210c.
By using a document deskewing module as described hereinabove, it is conceivable that the hard drive rollers 210a, 210b, 210c be momentarily engaged if the document is detected to hesitate while under control of the soft drive rollers 310a, 310b. This momentary engagement of the hard drive rollers 210a, 210b, 210c would act as a small “nudge” or “kick” to the document in an attempt to correct what is causing the document to hesitate.
Referring to
As best shown in
Referring to
Referring to
Also, as shown in
When contact occurs between the corner portion 282 of the document 280 and the moving outer circumferential surface 255 of the belt 256, the corner portion tends to curl and fold over such as shown in
As the document 280 continues to move downstream in the forward direction of document travel from the position shown in
It should be apparent that the belt 256 provides a moving track bottom which tends to reduce likelihood of the corner portion 282 of the document 280 from bunching up and causing a document jam condition. This is because the moving outer circumferential surface 255 of the belt 256 carries the corner portion 282 of the document 280 in the forward direction of document travel until the long edge portion 284 of the document moves into contact with the moving outer circumferential surface. Since the long edge portion 284 is stiffer than the corner portion 282, the document 280 is able to continue movement in the forward direction of document travel with minimal deformation along the long edge portion.
Although the above description describes the PERSONAS (trademark) 6676 NCR ATM embodying the present invention, it is conceivable that other models of ATMs, other types of ATMs, or other types of self-service bunch document depositing terminals may embody the present invention. Self-service bunch document depositing terminals are generally public-access devices that are designed to allow a user to conduct a bunch document deposit transaction in an unassisted manner and/or in an unattended environment. Self-service bunch document depositing terminals typically include some form of tamper resistance so that they are inherently resilient.
The particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention. From the above description, those skilled in the art to which the present invention relates will perceive improvements, changes and modifications. Numerous substitutions and modifications can be undertaken without departing from the true spirit and scope of the invention. Such improvements, changes and modifications within the skill of the art to which the present invention relates are intended to be covered by the appended claims.