This application claims priority of Chinese Application No. 201110125761.6, filed on May 10, 2011.
1. Field of the Invention
This invention relates to a printing apparatus, and more particularly to a document-feeding roller mechanism and a printing apparatus having the same and being capable of adjusting the document clamping force.
2. Description of the Related Art
In a conventional printing apparatus, a document is clamped and conveyed by a feeding roller assembly to move through a printing module, and is ejected from the printing apparatus by a document-ejecting roller assembly disposed downstream of the printing module. During feeding of the document, the feeding roller assembly provides a clamping force to the document for pushing and moving the document toward the printing module.
While the document is passing through the printing module, since leading and trailing ends of the document are clamped by the feeding roller assembly and the document-ejecting roller assembly, respectively, the document is subjected to a pulling force. When the trailing end of the document is removed from the feeding roller assembly, the pulling force applied to the document disappears due to release of the clamping force of the feeding roller assembly, thereby resulting in a change in the document tension. Such a sudden tension change affects adversely the printing quality.
Moreover, since the clamping force of the feeding roller assembly to the document is fixed, in case of power failure occurring during a printing process, it is difficult to remove a document jammed in the feeding roller assembly from the conventional printing apparatus.
The object of this invention is to provide a document-feeding roller mechanism and a printing apparatus having the same, which can reduce adverse affection of the document clamping force of rollers on the printing quality.
According to an aspect of this invention, there is provided a document-feeding roller mechanism adapted for conveying a document through a printing module, the document having a trailing end, the document-feeding roller mechanism comprising:
a frame body;
a feeding roller assembly including
a clamping-force adjusting module including
According to another aspect of this invention, there is provided a printing apparatus comprising:
a housing;
a printing module disposed in the housing and adapted to permit a document to move therethrough along a direction;
a document-feeding roller mechanism disposed in the housing and adapted for moving the document through the printing module in the direction, the document-feeding roller mechanism including
The effect of this invention is that, through cooperation between the cam unit and the resilient pressing unit of the clamping-force adjusting module, the document clamping force of the feeding roller assembly can be reduced just before the document is removed from the first and second roller units, so as to diminish a change in a pulling force applied to the document while the document is being printed, thereby improving the printing quality.
These and other features and advantages of this invention will become apparent in the following detailed description of a preferred embodiment of this invention, with reference to the accompanying drawings, in which:
Referring to
The housing 1 has a document-ejecting port 11. A document 101 is conveyed by the document-feeding roller mechanism 3 to move through the printing module 2 in a direction 102, and is subsequently ejected from the housing 1 through the document-ejecting port 11 by the document-ejecting roller assembly 5.
With further reference to
With further reference to
In this embodiment, the movable member 44 is elongated, and the frame body 31 further includes two side plates 314 extending from the second side surface 313 of the upright plate 311 and spaced apart from each other. Each of the side plates 314 is formed with a guide slot 315. The guide slots 315 in the side plates 314 are aligned with each other. Two ends of the movable member 44 extend respectively and movably into the guide slots 315, so as to guide movement of the movable member 44 toward and away from the upright plate 311.
The cam unit 42 includes a shaft 420 and a plurality of cams 421 disposed on the shaft 420. Two ends of the shaft 420 extend respectively and rotatably through the side plates 314. Each of the cams 421 has a rotating center 522 coaxial with the axis of the shaft 420, a first camming surface portion 423, and a second camming surface portion 424 nearer to the rotating center 422 than the first camming surface portion 423.
With reference to
In an alternative embodiment, the movable member 44 is omitted, and the first resilient arms 433 of the torsion springs 431 abut directly against the cam unit 42. In another alternative embodiment, only one torsion spring 431 and only one cam 421 are provided.
The sensor 34 is disposed on a bottom surface of one of the roller frames 321 between the frame body 31 and the first roller unit 322. In this embodiment, the sensor 34 is a light shielding sensor.
With further reference to
In this embodiment, the cam unit 42 is controlled such that, when the document 101 is fed toward the printing module 2 by the feeding roller assembly 32, and when a trailing end 101a of the document 101 has not yet moves through the sensor 34, the cam 422 is disposed at the first angular position, so that the first and second roller units 322, 323 provide a large document clamping force to feed the document 101 toward the printing module 2; and when the trailing end 101a of the document 101 moves past the sensor 34 (i.e., when the document 101 moves to a position adjacent to and disposed upstream of the first and second roller units 322, 323), and when the sensor 34 no longer detects the document 101, the sensor 34 emits a sensing signal to the power source 331. Upon receiving the sensing signal, the power source 331 activates the shaft 420 to rotate the cam 421 from the first angular position to the second angular position. Hence, the document clamping force of the first and second roller units 322, 323 are reduced in stages. In other words, a pulling force applied cooperatively by the feeding roller assembly 32 and the document-ejecting roller assembly 5 to the document 101 is released progressively.
When the cam 341 rotates to the second angular position, a pressure applied from the movable member 44 to the torsion springs 431 is reduced. At this time, although the first roller unit 322 still abuts against the second roller unit 323, the document clamping force is reduced significantly. Hence, when the trailing end 101a of the document 101 separates from the first and second roller units 322, 323, a sudden change in the document tension caused due to a sudden reduction in the document pulling force can be avoided, so that adverse affection on the printing quality can be diminished.
With particular reference to
In this embodiment, the rotating member 451 is controlled such that, when the cam 421 is disposed at the first angular position, the rotating member 451 is not moved into the notch 453 in the cam-position sensor 452, and when the cam 421 rotates to the second angular position, and when the trailing end 101a of the document 101 separates from the first and second roller units 322, 323, the rotating member 451 is moved into the notch 453 in the cam-position sensor 452, as shown in
In this embodiment, the rotating member 451 is designed such that, after reaching a position in the notch 453 in the cam-position sensor 452, where the light can be shielded, it continues to rotate an angle of about 10° to 15°. In this manner, it is ensured that the light can be shielded even when the printing apparatus is subjected to a vibration.
Since the power source 331 of the document-feeding roller mechanism 3 is disposed for driving the clamping-force adjusting module 4, during program initialization, it can be designed to drive rotation of the cam 421 from the first angular position to the second angular position when the document 101 is jammed without operation of the sensor 34. In this manner, since the document clamping force of the feeding roller assembly 32 is reduced, the jammed document 101 can be removed with ease.
Alternatively, the torsion springs 431 may be replaced with tension springs or compression springs that are disposed between the cam unit 42 and the roller frames 321.
In view of the above, through cooperation between the cam unit 42 and the resilient pressing unit 43 of the clamping-force adjusting module 4, the document clamping force of the feeding roller assembly 32 can be adjusted according to the feeding state of the document 101 such that, just before the document 101 is moved into the feeding roller assembly 32, the pulling force applied by the feeding roller assembly 32 and the document-ejecting roller assembly 5 to the document 101 can be released gradually, thereby preventing a sudden change in the document tension occurring when the document 101 separates from the feeding roller assembly 32, so as to improving the printing quality. Thus, the object of this invention is achieved.
Furthermore, after the trailing end 101a of the document 101 moves past the sensor 34, and before it separates from the feeding roller assembly 32, since it is subjected to a smaller clamping force, if the document 101 is jammed due to power failure, it can be removed easily from the feeding roller assembly 32.
With this invention thus explained, it is apparent that numerous modifications and variations can be made without departing from the scope and spirit of this invention. It is therefore intended that this invention be limited only as indicated by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201110125761.6 | May 2011 | CN | national |