When a user is reading a document on a device equipped with an electronic screen, there are various options available for navigating and viewing the document. As to navigation, software on the device may present a scroll bar alongside the document. The scroll bar may have a track with a “thumb” in the track, and arrows at either end of the track. To move up and down the document, the user can either click up or down arrows, or can drag the thumb in the track, or can click on some point within the track.
As to viewing, the user may have various zoom options. The document may have a native resolution, and the user may be able to view the document at this native resolution (100% zoom), or may set the zoom level up or down. Some applications or software environments allow the user to set the zoom level based on certain physical parameters of the window. For example, there might be an option to set the zoom level such that the width of a page of the document fills the width of the window. Or, there might be an option to set the zoom level such that the document appears as large as it can, while still fitting inside of one window.
Navigation and viewing features may be combined in a way that allows a user to navigate through a document while glancing at specific parts of the document as part of a single flow of actions.
A document that is being shown to a user may have a navigation bar with a thumb. Before the user clicks on the thumb, the user may be viewing a specific part of the document at a first zoom level. When the user uses a pointing device to click and hold down the thumb, the zoom level may be set to a second zoom level. The second zoom level is such that the entire page fits in the viewing area. While the user holds down the thumb, a flyout from the navigation bar may be shown; the flyout may show, for example, a thumbnail of the page and/or the page number. While the user holds down the thumb, the user may move the thumb up or down to change the page that appears in the window. While the user holds and moves the thumb, whatever page appears in the window appears at the second zoom level. If a flyout appears, the flyout may change to show a thumbnail and/or the number of the appropriate page, while the user is moving the thumb. When the user releases the thumb (either after having moved it, or without having moved it), the page that is currently shown in the window switches to the first zoom level. Also, if a flyout is present, releasing the thumb may cause the flyout to disappear.
If the user clicks on a non-thumb part of the navigation bar, various actions may be taken. For example, if the bar is calibrated to the number of pages in the document (e.g., if the page corresponding to one-quarter of the way down the navigation bar is the page that is approximately one quarter of the way from the first page to the last page), then clicking on a non-thumb part of the navigation bar may cause the page corresponding to that position to be shown in the window at the second zoom level, and/or may cause a flyout for that page to be shown.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Devices, and the software used on devices, provide mechanisms for reading a document. Two basic operations that a user can perform in order to view a document are navigation (moving to different positions in the document) and changing the zoom level. When users are reading documents, they may want to see the document in different ways to achieve different purposes. For example, when a user wants to read the document closely, the user may want to view the document at a high zoom level so that the words are easy to read. On the other hand, the user may want to look at large portions of the document at once in order to find a particular element in the document, such as a particular picture, chart, or section heading. This latter way of looking at the document may be referred to as “glancing”, and it is typically done at a low zoom level. Since the purpose of glancing is to find a part of the document quickly, rather than to examine the document in detail, the user may be willing to accept a loss of visual detail in order to see more of the document at once.
Users may want to switch quickly between detailed viewing and glancing. For example, a user might want to find a picture in a document, then read the section associated with that picture, then find another section of the document, then read that other section, etc. However, many user interfaces do not allow the user to switch easily between glancing and detailed reading, while also being able to move around the document, as part of a single flow of actions.
The subject matter herein allows a user to combine detailed reading with glancing in a seamless way. A document of any type (e.g., a word processing document, a drawing, a document in Portable Document Format (PDF), etc.) may be shown to a user in a window that has a navigation bar. The navigation bar has a track, and also has a thumb that can be moved within the track. The user can move up and down the document by using a pointing device (such as a mouse, track pad, touch screen, etc.) to click and hold the thumb, while dragging the thumb in the track. Prior to the user clicking the thumb, the document may be shown at a first zoom level. This zoom level may be the native zoom level associated with the document, or may be a zoom level that has been pre-selected by the user (or by some other entity). When the user clicks and holds the thumb, the document changes to a second zoom level. The second zoom level may be a “full-page” zoom level that is chosen so that an entire page of the document fits within the window. In one example, the “full-page” zoom level provides more detail than a thumbnail, which provides sufficient fidelity to allow the user to read the content, or otherwise to discern a page's detail, even when the document is being shown at the second zoom level. The user may then release the thumb, thereby causing the zoom level to return to the first zoom level. Or, the user may drag the thumb along the track, thereby moving from page to page in the document. As the user moves through the pages, each page may be shown in the window at the second zoom level, thereby allowing a full-page view. When the user releases the thumb, the page that is currently being shown in the window may switch to the first zoom level, which may be, for example, a zoom level that allows for comfortable detailed reading.
In addition to being able glance at pages at a full-page zoom level by clicking the thumb, the user may also be able to glance at pages by clicking elsewhere on the navigation bar's track. For example, if the navigation bar is calibrated to the number of pages in the document (e.g., if the page corresponding to one-quarter of the way down the navigation bar is the page that is approximately one quarter of the way from the first page to the last page), then clicking and holding the non-thumb part of the navigation bar's track at a particular position may cause the page corresponding to that position in the document (e.g., page 25 out of a 100 page document) to be shown in the window at the second zoom level, and a flyout may also be shown that represents that page. Releasing the click may resume viewing at the original zoom level, either at the place in the document where the user had been viewing before the click, or at the place in the document indicated by where, on the navigation bar, the user clicked.
It is noted that some systems may provide a way for users to switch to a full-page zoom level while navigating. E.g., a device may switch to a full-page zoom level when the user clicks the thumb, and may then allow the user to flip through pages the full-page zoom level. However, such devices may not switch back to the native or previous zoom level when the user releases the thumb, so the actions of the user do not constitute a seamless transition between glancing and detailed reading. Moreover, it is noted that a system that switches to full-page zoom when the user holds the thumb, and then switches back to the native or previous zoom level when the user releases the thumb, is not an obvious change from a system that switches to full-page zoom level when the user hold the thumb but that does not switch back to the previous zoom level when the user releases the thumb. In the former case, the user is able to switch back and forth between detailed reading and glancing with a simple set of motions that flow together. On the other hand, in the latter case, the change from one zoom level to another is durable, and does not constitute a way of changing back and forth between glancing and detailed reading.
Turning now to the drawings,
In this example, the application shown in window 102 is a “Viewer Application,” which allows the user to see some type of document, such as a PDF document, a word processing document, etc. An example document 114 is shown within window 102. The example document 114 is shown as a text document containing the “Lorem ipsum . . . ” placeholder text, although document 114 could be any type of document—e.g., a spreadsheet, a slide deck, a set of images, etc.
Window 102 has a navigation bar 104, which may include various features such as up arrow 106 and down arrow 108 (which the user can click to move up and down the document), thumb 110, and track 112 in which thumb 110 moves. Navigation bar 104 may be provided by the application itself, or may be provided by the operating system under which the application operates. In the example of
While the user is clicking and holding thumb 110, a flyout 120 may be shown. In the example of
Thus,
While the user is clicking and holding the thumb, the user may drag the thumb up and down track 112, thereby changing the current page while also remaining in glancing mode.
In
After the user has repositioned the document to a particular place by dragging the thumb, the user may release the thumb, thereby returning the document to the zoom level at which the document had been shown prior to the user's clicking and holding the thumb.
In
It is noted that
At 402, the document is being shown at a first zoom level. The view in which the document is shown may include a navigation bar, including arrows, a thumb, and a track, as shown in
At 408, a flyout from the navigation bar may be shown. It is noted that some implementations of the subject matter herein might not show a flyout, but the subject matter herein includes those implementations that show a flyout as well as those that do not. In one example, the flyout may be shown adjacent to the navigation bar. In a more specific example, the flyout may be shown adjacent to the thumb, and may move alongside the navigation bar as the user drags the thumb from one place to another. The flyout could contain any appropriate type of information. One example piece of information that the flyout could contain is a thumbnail 124 of the current page. Another type of information that the flyout could contain is the page number 122 of the current page.
At 410, the user may drag the thumb while holding the thumb with the pointing device. E.g., on a mouse, the user may hold the left button on the mouse while moving the thumb in the track. When the user drags the thumb, this action repositions the current page to a different point in the document. As the user repositions the document with the thumb, the page shown in the window may change based on the current position (at 412), and the flyout may change as well (at 414). The change of page may appear as an animation—e.g., if the page is changing from page 1 to page 10, then the page shown in the window (as well as the corresponding flyout) may successively show one or more intermediate pages between page 1 and 10, rather than jumping from page 1 to page 10. It is noted that the user might not move the thumb at all, in which case the current position of the document (and the corresponding page view and flyout) would not change.
At 416, the user releases the thumb, either after having dragged the thumb to a new position, or after having not moved the thumb thereby leaving the thumb in its original position. Upon release of the thumb, whatever page is the current page resumes to being shown at the first zoom level (at 418)—i.e., the page may resume to the zoom level at which the document was being viewed at 402 before the user clicked the thumb. This zoom level might be the native zoom level for the document (block 420), or might be the prior level to which the zoom had been set by the user (or by some other entity) before the user clicked the thumb (block 422).
At 508, the user may release the button that he or she is holding on the pointing device. In response to the user's releasing the button, the flyout may disappear from the screen, and the zoom level may resume to the level to which it was set before the user clicked the button. The page that is shown after the user releases the button may be different in different implementations. In one example implementation, the act of clicking on a non-thumb area of the navigation bar might not reposition the current page, in which case the page that is shown after the user releases the button is whatever page was the current page before the user clicked on a non-thumb area of the navigation bar (at 510). Or, in another example implementation, clicking on a non-thumb area of the navigation bar may reposition the page (either by repositioning to the page at the corresponding location of the navigation bar, or by moving the current page toward that position for as long as the user continues to hold the button on the pointing device), in which case the page that will be viewed after the user releases the button is whatever page is current as a result of the repositioning (at 512).
Computer 600 includes one or more processors 602 and one or more data remembrance components 604. Processor(s) 602 are typically microprocessors, such as those found in a personal desktop or laptop computer, a server, a handheld computer, or another kind of computing device. Data remembrance component(s) 604 are components that are capable of storing data for either the short or long term. Examples of data remembrance component(s) 604 include hard disks, removable disks (including optical and magnetic disks), volatile and non-volatile random-access memory (RAM), read-only memory (ROM), flash memory, magnetic tape, etc. Data remembrance component(s) are examples of computer-readable (or machine-readable) storage media. Computer 600 may comprise, or be associated with, display 612, which may be a cathode ray tube (CRT) monitor, a liquid crystal display (LCD) monitor, or any other type of monitor. Computer 600 may also comprise, or be associated with, a pointing device 614, such as a mouse, track ball, track pad, touch screen, etc. The pointing device may providing the ability to move a cursor or arrow around a screen, and may also have one or more buttons (e.g., left and right buttons on a typical device) which can be separately clicked and to which different meanings are ascribed.
Software may be stored in the data remembrance component(s) 604, and may execute on the one or more processor(s) 602. An example of such software is glancing and navigation software 606, which may implement some or all of the functionality described above in connection with
The subject matter described herein can be implemented as software that is stored in one or more of the data remembrance component(s) 604 and that executes on one or more of the processor(s) 602. As another example, the subject matter can be implemented as instructions that are stored on one or more computer-readable (or machine-readable) storage media. Tangible media, such as an optical disks or magnetic disks, are examples of storage media. The instructions may exist on non-transitory media. Instructions can be stored on computer-readable memories; it will be understood that such memories are physical objects (e.g., semi-conductor memories, disks that exist on tangible platters, tapes), and are not merely wires that carry ephemeral or propagating signals. (However, it will also be understood that those media that are characterized as “storage media” are not mere carriers of ephemeral or propagating signals, but rather are media where data is durably stored.) Such instructions, when executed by a computer or other machine, may cause the computer or other machine to perform one or more acts of a method. The instructions to perform the acts could be stored on one medium, or could be spread out across plural media, so that the instructions might appear collectively on the one or more computer-readable storage media, regardless of whether all of the instructions happen to be on the same medium. It is noted that there is a distinction between media on which signals are “stored” (which may be referred to as “storage media”), and—in contradistinction—media that transmit propagating signals. DVDs, flash memory, magnetic disks, etc., are examples of storage media. On the other hand, wires or fibers on which signals exist ephemerally are examples of transitory signal media.
Additionally, any acts described herein (whether or not shown in a diagram) may be performed by a processor (e.g., one or more of processors 602) as part of a method. Thus, if the acts A, B, and C are described herein, then a method may be performed that comprises the acts of A, B, and C. Moreover, if the acts of A, B, and C are described herein, then a method may be performed that comprises using a processor to perform the acts of A, B, and C.
In one example environment, computer 600 may be communicatively connected to one or more other devices through network 608. Computer 610, which may be similar in structure to computer 600, is an example of a device that can be connected to computer 600, although other types of devices may also be so connected.
It is noted that the claims herein may describe various items as being “distinct.” Two say that two things are distinct is to say that they are not the same instance of a given thing (although the two distinct instances might be identical to each other). For example, two pages may be described as being distinct, which is to say that they are not the same page. E.g., in a 3-page document, page 1 is distinct from page 2 in the sense that they are two separate pages. (Normally these two pages would contain different content, but they would be distinct even if page 1 happened to contain a copy of the same content as page 2.) Similarly, locations may be described as distinct if they are not the same location—e.g., a first location and a second location on a navigation bar are “distinct” if they refer to non-identical spatial locations. Moreover, two zoom levels may be described as distinct if they are not the same zoom level—e.g., 100% is a distinct zoom level from 200%. Additionally, it is noted that in some cases the subject matter herein refers to items by the labels “first”, “second”, “third”, etc. It will be understood that, in a claim that defines a “first page” and a “second page”, the claim would cover situations where the first page and the second page are the same page, and would also cover situations where they are distinct pages, unless the claim specifies otherwise (e.g., by referring to the first page and the second page as being “distinct”, or as being “the same”). In some cases, an independent claim might cover both situations by virtue of its silence as to whether the pages are “distinct” or “the same”, but a dependent claim might limit the first and second pages to being “distinct”, in which case the pages would be limited to being distinct for the purpose of the dependent claim, but not for the independent claim.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.