Document security system that permits external users to gain access to secured files

Information

  • Patent Grant
  • 8176334
  • Patent Number
    8,176,334
  • Date Filed
    Monday, September 30, 2002
    22 years ago
  • Date Issued
    Tuesday, May 8, 2012
    12 years ago
Abstract
An improved system and approaches for exchanging secured files (e.g., documents) between internal users of an organization and external users are disclosed. A file security system of the organization operates to protect the files of the organization and thus prevents or limits external users from accessing internal documents. Although the external users are unaffiliated with the organization (i.e., not employees or contractors), the external users often have working relationships with internal users. These working relationships (also referred to herein as partner relationships) often present the need for file (document) exchange. According to one aspect, external users having working relationships with internal users are able to be given limited user privileges within the file security system, such that restricted file (document) exchange is permitted between such internal and external users.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is related to U.S. patent application Ser. No. 10/075,194, filed Feb. 12, 2002, now U.S. Pat. No. 8,065,713 issued on Nov. 22, 2011 and entitled “SYSTEM AND METHOD FOR PROVIDING MULTI-LOCATION ACCESS MANAGEMENT TO SECURED ITEMS,” which is hereby incorporated by reference for all purposes.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to security systems for data and, more particularly, to security systems that protect data in an inter/intra enterprise environment.


2. Description of Related Art


The Internet is the fastest growing telecommunications medium in history. This growth and the easy access it affords have significantly enhanced the opportunity to use advanced information technology for both the public and private sectors. It provides unprecedented opportunities for interaction and data sharing among businesses and individuals. However, the advantages provided by the Internet come with a significantly greater element of risk to the confidentiality and integrity of information. The Internet is an open, public and international network of interconnected computers and electronic devices. Without proper security measures, an unauthorized person or machine may intercept any information traveling across the Internet, and may even get access to proprietary information stored in computers that interconnect to the Internet, but are otherwise generally inaccessible by the public.


As organizations become more dependent on networks for business transactions, data sharing, and everyday communications, their networks have to be increasingly accessible to customers, employees, suppliers, partners, contractors and telecommuters. Unfortunately, as the accessibility increases, so does the exposure of critical data that is stored on the network. Hackers can threaten all kinds of valuable corporate information resources including intellectual property (e.g., trade secrets, software code, and prerelease competitive data), sensitive employee information (e.g., payroll figures and HR records), and classified information (e.g., passwords, databases, customer records, product information, and financial data). Thus data security is becoming increasingly mission-critical.


There are many efforts in progress aimed at protecting proprietary information traveling across the Internet and controlling access to computers carrying the proprietary information. Every day hundreds of thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines or cellular phones. The perpetual increase of information transmitted electronically has led to an increased reliance on cryptography.


In protecting the proprietary information traveling across the Internet, one or more cryptographic techniques are often used to secure a private communication session between two communicating computers on the Internet. Cryptographic techniques provide a way to transmit information across an unsecure communication channel without disclosing the contents of the information to anyone eavesdropping on the communication channel. An encryption process is a cryptographic technique whereby one party can protect the contents of data in transit from access by an unauthorized third party, yet the intended party can read the data using a corresponding decryption process.


Many organizations have deployed firewalls, Virtual Private Networks (VPNs), and Intrusion Detection Systems (IDS) to provide protection. Unfortunately, these various security means have been proven insufficient to reliably protect proprietary information residing on their internal networks. For example, depending on passwords to access sensitive documents from within often causes security breaches when the password of a few characters long is leaked or detected.


Enterprise security solutions secure data within an enterprise premise (e.g., internal networks). Some enterprise security solutions prohibit external users (clients) to have any access to secure data. Unfortunately, such enterprise security solutions are not suitable for use in a collaborative environment in which both regular internal users (e.g., employees) and external users (e.g., consultants) need to access some secured data of the enterprise.


Thus, there is a need for improved approaches to enable file security systems to permit external users to access secured data without compromising the integrity of an enterprise security system.


SUMMARY OF THE INVENTION

The invention relates to an improved system and approaches for exchanging secured files (e.g., documents) between internal users of an organization and external users. A file security system of the organization operates to protect the files of the organization and thus prevents or limits external users from accessing internal documents. Although the external users are unaffiliated with the organization (i.e., not employees or contractors), the external users often have working relationships with internal users. These working relationships (also referred to herein as partner relationships) often present the need for file (document) exchange. According to one aspect of the invention, external users having working relationships with internal users are able to be given limited user privileges within the file security system, such that restricted file (document) exchange is permitted between such internal and external users.


The invention can be implemented in numerous ways, including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.


As a method for releasing a document from an internal user to an external user of a document security system, one embodiment of the invention includes at least the acts of: receiving a request from an internal user of an organization to release a secured document to an external user that is not affiliated with the organization; obtaining a public key associated with the external user; encrypting at least a portion of the secured document using the public key associated with the external user; imposing access control restrictions to limit access rights of the external user with respect to the secured document; and releasing the secured document to the external user.


As a method for releasing a document from an external user to an internal user of a document security system, one embodiment of the invention includes at least the acts of: identifying a document to be released from the external user to the internal user; receiving a public key associated with the internal user from the document security system over a data network; authenticating that the received public key originated from the document security system over the data network; encrypting, using the received public key, at least a portion of the document to be transmitted from the external user to the internal user; and subsequently releasing the document to the internal user.


As a method for distributing keys from a file security system to external users, one embodiment of the invention includes at least the acts of: receiving, from an external user, a request for a public key of an internal user; determining whether the external user is permitted to receive the public key associated with the internal user; retrieving the public key associated with the internal user; preparing a response to the request, the response including at least the public key associated with the internal user when the determining determines that the external user is permitted to receive the public key; and transmitting the response to the external user.


As a computer readable medium including at least computer program code for releasing a file between an internal user and an external user of a file security system, one embodiment of the invention includes at least: computer program code for identifying a secured file to be released to a selected user, the selected user being one of the internal user and the external user; computer program code for obtaining a public key associated with the selected user; computer program code for encrypting at least a portion of the secured file using the public key associated with the selected user; and computer program code for releasing the secured file to the selected user.


As a system for restricting access to files, one embodiment of the invention includes at least: a server having an access manager that restricts access to files of an organization and maintains at least encryption keys for a plurality of internal users and a plurality of external users; and an external access server that permits file exchange between the internal users and the external users via the server in limited circumstances. The external access server is coupled between the server and a data network, and the external users couple to the data network to interact with the external access server.


Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 is a block diagram of a document security system according to one embodiment of the invention.



FIG. 2 is a flow diagram of relationship setup processing according to one embodiment of the invention.



FIG. 3 is a flow diagram of document delivery processing according to one embodiment of the invention.



FIG. 4 is a flow diagram of document access processing according to one embodiment of the invention.



FIG. 5 is a flow diagram of access control processing according to one embodiment of the invention.



FIG. 6 is a flow diagram of client-side document delivery processing according to one embodiment of the invention.



FIG. 7 is a flow diagram of server-side document delivery processing according to one embodiment of the invention.



FIG. 8 shows a basic security system in which the invention may be practiced in accordance with one embodiment thereof.



FIG. 9 shows an exemplary data structure of a secured file that may be used in one embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The invention relates to an improved system and approaches for exchanging secured files (e.g., documents) between internal users of an organization and external users. A file security system of the organization operates to protect the files of the organization and thus prevents or limits external users from accessing internal documents. Although the external users are unaffiliated with the organization (i.e., not employees or contractors), the external users often have working relationships with internal users. These working relationships (also referred to herein as partner relationships) often present the need for file (document) exchange. According to one aspect of the invention, external users having working relationships with internal users are able to be given limited user privileges within the file security system, such that restricted file (document) exchange is permitted between such internal and external users. The invention is suitable for use in an enterprise file security system.


A file security system (or document security system) serves to limit access to files (documents) to authorized users. Often, an organization, such as a company, would use a file security system to limit access to its files (documents). For example, users of a group might be able to access files (documents) pertaining to the group, whereas other users not within the group would not be able to access such files (documents). Such access, when permitted, would allow a user of the group to retrieve a copy of the file (document) via a data network.


As used herein, a user may mean a human user, a software agent, a group of users, a member of a group of users, a device and/or application. Besides a human user who needs to access a secured document, a software application or agent sometimes needs to access secured files in order to proceed. Accordingly, unless specifically stated, the “user” as used herein does not necessarily pertain to a human being.


Secured files are files that require one or more keys, passwords, access privileges, etc. to gain access to their content. According to one aspect of the invention, the security is provided through encryption and access rules. The files, for example, can pertain to documents, multimedia files, data, executable code, images and text. In general, a secured file can only be accessed by authenticated users with appropriate access rights or privileges. In one embodiment, each secured file is provided with a header portion and a data portion, where the header portion contains or points to security information. The security information is used to determine whether access to associated data portions of secured files is permitted.


In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.


Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.


Embodiments of the present invention are discussed herein with reference to FIGS. 1-9. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.



FIG. 1 is a block diagram of a document security system 100 according to one embodiment of the invention. The document security system 100 is responsible for providing protection of electronic data in an organization and includes a central server 102 that controls the overall operation of the document security system 100. The central server 102 imposes restrictions on the access to secured documents that are stored centrally or locally.


The central server 102 is assisted by a key store 104. Among other things, the key store 104 can store key pairs (public and private keys). In one embodiment, the key store 104 can be implemented in a database that stores key pairs (among other things). The central server 102 is also assisted by local servers 106 and 108 that can provide distributed access control. Various internal users to an organization that are utilizing the document security system 100 interact with the central server 102 and/or one of the local servers 106 and 108. These internal users are represented by users 110-116. As illustrated in the embodiment shown in FIG. 1, user I-A 110 and user I-B 112 are affiliated with the local server 106, and user I-C 114 and user I-D 116 are affiliated with the local server 108. It should be understood, however, that various other arrangements or configurations of local servers and users can be utilized.


The document security system 100 also facilitates access by external users to secured documents that are maintained by the document security system 100. In this regard, the document security system 100 includes an external access server 118. The external access server 118 allows external users to be granted access to some of the secured documents. More particularly, the external access server 118 is coupled between a private network 121 in the document security system 100 and a (public) data network 120 and thus facilitates the access from external users 122-128 to some of the secured files without compromising the security integrity of the document security system 100. The data network 120 is, for example, a global computer network, a wide area network or a local area network. However, since the external users 122-128 are not directly affiliated with the organization, the external users are therefore often given limited access rights to some of the secured documents from machines coupled to the data network 120. Although the document security system 100 shown in FIG. 1 illustrates multiple local servers 106 and 108, multiple internal users 110-116, multiple external users 122-128, it should be recognized that the document security system 100 can, more generally, utilize zero or more local servers, one or more internal users, and one or more external users.


According to one embodiment of the invention, external users are permitted to be members of user groups maintained by the central server 102. As such, the external users are able to exchange certain secured documents with internal users. In one embodiment, the exchange of the secured documents between internal and external users is limited to exchanges between members of a common user group. Despite document exchange capabilities, the external users are unable to perform various operations with respect to user groups that internal users would be able to perform. For example, external users would be unable to change group membership or to query group membership to determine who are the members of the user group. Typically, an external user would be added to a particular user group when a relationship between the organization and the external user is arranged. The exchange of documents between internal users and external users is secured using public key encryption. The document security system 100 manages the storage and accessibility of public and private keys for the internal and external users. The document security system 100 can advantageously minimize the client software needed at the machines utilized by the external users.


The invention facilitates exchange of files (e.g., documents) between internal users of an organization and external users. Although the external users are unaffiliated with the organization (i.e., not employees or contractors), the external users often have working relationships with internal users. These working relationships (also referred to herein as partner relationships) often present the need for file (document) exchange. A file security system (e.g., document security system 100) of the organization operates to protect the files of the organization and thus prevents or limits external users from accessing internal documents. According to the invention, external users having working relationships with internal users are able to be given limited user privileges within a file security system such that restricted file (document) exchange is permitted between such internal and external users.



FIG. 2 is a flow diagram of relationship setup processing 200 according to one embodiment of the invention. The relationship setup processing 200 operates to arrange or set up a partner relationship between a partner and an organization (e.g., company). The organization is typically represented by an internal user or a group of users, and the partner is typically represented by one or more external users.


The relationship setup processing 200 initially establishes 202 a partner relationship between a partner and an organization. In this context, the organization is deemed to protect various documents of the organization and its various internal users. In one embodiment, the organization uses a file (document) security system to protect the various documents. The partner is deemed external to the organization. However, the partner is desirous of exchanging documents with the organization. The partner relationship between the partner and the organization (or between respective members thereof) is such that document exchange is permitted so that mutual business objectives can be efficiently achieved. After the partner relationship has been established 202, key pairs are created 204. The key pairs are used in document exchanges between the partner and the organization (e.g., between respective individuals thereof). For example, each of the partner and the organization would have a public key for encryption, as well as a private key for decryption. For example, to release a document from the organization to the partner, the organization would secure (e.g., encrypt) the document using the public key of the partner and then, upon acquiring the secured document, the partner would unsecure (e.g., decrypt) the secured document using its private key. Similarly, when the partner releases a document to the organization, the partner can secure (e.g., encrypt) the document using the public key of the organization and then, upon acquiring the secured document, the organization can unsecure (e.g., decrypt) the document using its private key. After the key pairs are created 204, the key pairs can be stored 206 to a key store. In one embodiment, the key store is within the file security system. System rights for the partner can then be configured 208. The system rights can be configured to permit limited access privileges to the partner. For example, the partner can be configured to include one or more of its employees within a user group maintained for the organization. After the system rights have been configured 208, the relationship setup processing 200 ends.


According to one embodiment, a partner relationship between an organization and a partner can confer on the partner: (i) query rights, and (ii) rights to get public keys of the organization. For example query right might include the right to get members of a group used by the file security system. However, having the right to get public keys of the organization does not give access to secured documents of the organization.



FIG. 3 is a flow diagram of document delivery processing 300 according to one embodiment of the invention. The document delivery processing 300 serves to deliver a secured document from an internal user to an external user. The internal user is associated with an organization, and the external user is associated with the partner.


The document delivery processing 300 begins with a decision 302 that determines whether a request to release a document to an external user has been received. In one embodiment, the request to release a document to an external user is initiated by an internal user. When the decision 302 determines that a request to release a document to an external user has not yet been received, the document delivery processing 300 awaits such a request. In other words, the document delivery processing 300 can be considered to be invoked when a request to release a document to an external user is received.


After a request to release a document to an external user has been received, a public key associated with the external user is retrieved 304 from a key store. In general, the key store serves to store a plurality of keys utilized by a document security system of the organization. In one embodiment, the key store can be the key store 104 illustrated in FIG. 1. Next, a decision 306 determines whether a public key associated with the external user was available from the key store. In one embodiment, the availability of the public key is controlled by the partner relationship. When the decision 306 determines that the key store does not have a public key associated with the external user, then the document is not permitted to be delivered to the external user and thus the request is denied 308. Here, the particular external user is deemed not authorized to exchange documents with either the organization in general, or an internal user in particular.


On the other hand, when the decision 306 determines that a public key associated with the external user is available from the key store, then at least a portion of security information for the secured document is encrypted 310 using the public key. In one embodiment, the secured document that is to be delivered to the external user has a security information portion (also known as a header portion) and a data portion. The security information portion includes the security information providing restrictive access to the secured document. The security information may include access control components, such as keys or access rules that are utilized to control access to the data portion of the secured document. When the decision 306 determines that a public key is available, then at least a part of the security information portion for the secured document is encrypted 310 using the public key. Then, access control restrictions can be imposed 312 on the external user. The access control restrictions can limit the type, character or extent of access that the external user is granted with respect to the secured document. For example, the access control restrictions can be imposed by providing access rules within the security information portion of the secured document. After the access control restrictions are imposed 312 and encryption 310 with the public key, the secured document is released 314 to the external user. In one embodiment, the secured document is released 314 by being transmitted. Typically, the transmission of the secured document to the external user is performed through one or more networks (e.g., data networks). After the secured document has been released 314 to the external user (or after operation 308 when the request to deliver the secured document to the external user is denied), the document delivery processing 300 is complete and ends.



FIG. 4 is a flow diagram of document access processing 400 according to one embodiment of the invention. The document access processing 400 involves an external user accessing a secured document that has been made available to the external user by an internal user.


The document access processing 400 begins with the external user acting to login 402 to an external access server. The external access server is associated with the document security system and utilized to permit limited external access to the document security system. As an example, the external access server can be the external access server 118 illustrated in FIG. 1.


A decision 404 then determines whether the login 402 has been successful. When the decision 404 determines that login has not been successful, then access is denied 406 to the external access server and no secured documents are made available to external users. Following the operation 406, the document access processing 400 is complete and ends as the external user was unable to successfully log into the external access server.


On the other hand, when the decision 404 determines that the external user has successfully logged into the external access server, then a private key associated with the external user is retrieved 408. In one embodiment, the private key is downloaded from the document security system via the external access server. In another embodiment, the private key is recovered locally.


Next, a decision 410 determines whether an access request for an encrypted document has been received. When the decision 410 determines that an access request for the secured document has not yet been received, a decision 412 determines whether the document access processing 400 should end. When the decision 412 determines that the document access processing 400 should not end, then the document access processing 400 returns to repeat the decision 410 and subsequent operations. On the other hand, when the decision 412 determines that the document access processing 400 should end, then the document access processing 400 is complete and ends.


Alternatively, when the decision 410 determines that an access request for the secured document has been received, then at least a portion of the security information for the secured document is decrypted 414 using the private key. Next, document level security is evaluated 416 to permit or deny access to the document contents. Following the operation 416, the document access processing 400 is complete and ends.



FIG. 5 is a flow diagram of access control processing 500 according to one embodiment of the invention. The access control processing 500 is, for example, suitable for use as the operations carried out by the operation 416 illustrated in FIG. 4.


The access control processing 500 initially obtains 502 access rules associated with the secured document. In one embodiment, the access rules are provided within the security information portion of the secured document. The access rules are then evaluated 504 against the access privilege of the user attempting to access the secured document. A decision 506 then determines whether the access rules are satisfied. When the decision 506 determines that the access rules are not satisfied, then access to the secured document is denied. Alternatively, when the decision 506 determines that the access rules are satisfied, then a file key associated with the secured document is obtained 510. In one embodiment, the file key is provided within the security information portion of the secured document. The file key can be encrypted or in a clear format. In the case in which the file key is itself encrypted, the file key is first decrypted. Next, the secured document is decrypted 512 using the file key. Following the operation 512, the access control processing 500 is complete and ends.



FIGS. 6 and 7 pertain to document delivery processing in which an external user provides a secured document to an internal user. FIG. 6 is a flow diagram of client-side document delivery processing 600 according to one embodiment of the invention. The client-side document delivery processing 600 is referred to as client-side because a client machine associated with the external user is performing or initiating the operations.


The client-side document delivery processing 600 begins with a decision 602 that determines whether a request (from an external user) to release a document to an internal user has been received. When the decision 602 determines that a request to release a document to an internal user has not yet been received, the client-side document delivery processing 600 awaits such a request. Once the decision 602 determines that a request to release a document to an internal user has been received, the client-side document delivery processing 600 continues. In other words, the client-side document delivery processing 600 can be considered to be invoked when the decision 602 determines that a request to release a document to an internal user has been received. The external user can interact with the client machine to initiate or make such a request.


After the decision 602 determines that a request to release a document to an internal user has been received, a public key associated with the internal user is requested 604. Here, according to one embodiment, the public key associated with the internal user is requested 604 from the document security system. A decision 606 then determines whether a response has been received. When the decision 606 determines that a response has not yet been received, the client-side document delivery processing 600 awaits such a response. When the decision 606 determines that a response has been received, a decision 608 first determines whether the request is from an external user who is what they claim to be. According to one embodiment, certificates are used prevent someone from impersonating someone else. Depending on implementation, a certification of the external user may be issued by a third party (e.g., Certificate Authority) or the document security system itself. When the decision 608 determines that the external user is not who they claim to be, then the request is denied 610 because the response received was presumably from an unauthorized user or system.


On the other hand, when the decision 608 determines that the external user is who they claim to be (i.e., an authorized user), a decision 612 determines whether a public key is available. Here, the response received is examined to determine whether the response includes the public key associated with the internal user. Hence, when the public key is available, it is provided with the response being received. In one embodiment, the availability of the public key is controlled by the partner relationship.


When the decision 612 determines that the public key is not available, then the request is denied 610 because the client machine does not have access to the public key associated with the internal user. On the other hand, when the decision 612 determines that the public key is available, then at least a portion of the security information for the secured document is encrypted 614 using the public key. In one embodiment, a file key within the security information for the secured document is encrypted using the public key. Thereafter, the secured document is released 616 to the internal user. In one embodiment, the secured document is released 616 by being transmitted. Following the operations 610 or 616, the client-side document delivery processing 600 is complete and ends.



FIG. 7 is a flow diagram of server-side document delivery processing 700 according to one embodiment of the invention. The server-side document delivery processing 700 is, for example, performed by the document security system, such as the document security system 100 illustrated in FIG. 1. The server-side document delivery processing 700 is responsive to a public key request from the client-side document delivery processing 600.


The server-side document delivery processing 700 begins with a decision 702 that determines whether a request for a public key from an external user has been received. In one embodiment, the request is provided by the operation 604 of the client-side document delivery processing 600 illustrated in FIG. 6. When the decision 702 determines that a request for a public key has not yet been received, then the server-side document delivery processing 700 awaits such a request. When the decision 702 determines that a request for a public key has been received, then a decision 704 determines whether the external user (requester) is authorized to obtain the public key. Here, the authorization can be determined based on whether a partner relationship has been previously established between the external user and an organization. When the decision 704 determines that the external user is not authorized to receive the public key, then a response is prepared 710 indicating that access has been denied.


On the other hand, when the decision 704 determines that the external user is authorized to obtain the public key, then the public key associated with the internal user is retrieved 706 from a key store. The key store can, for example, be implemented as a database provided within the document security system. After the public key associated with the internal user has been retrieved 706, a response including the public key can be prepared 708. After the response has been prepared in operations 708 or 710, the response is signed 712 with a certificate for the organization. In one embodiment, the certificate would have been previously embedded a priori in the machine (e.g., client machine) of the external user. The signed response is then transmitted 714 to the external user. Typically, the transmission of the signed response is sent to the external user over a secured channel through a network (data network, e.g., the Internet). Following the operation 714, the server-side document delivery processing 700 is complete and ends.



FIG. 8 shows a basic security system 800 in which the invention may be practiced in accordance with one embodiment thereof. The security system 800 may be employed in an enterprise or inter-enterprise environment. It includes a first server 808 (also referred to as a central server) providing centralized access management for the enterprise. The first server 808 can control restrictive access to files secured by the security system 800. To provide dependability, reliability and scalability of the system, one or more second servers 804 (also referred to as local servers, of which one is shown) may be employed to provide backup or distributed access management for users or client machines serviced locally. For illustration purposes, there are two client machines 801 and 802 being serviced by a local server 804. Alternatively, one of the client machines 801 and 802 may be considered as a networked storage device.


Secured files may be stored in either one of the devices 801, 802, 804, 806 and 812. When a user of the client machine 801 attempts to exchange a secured file with a remote destination 812 being used by an external user, one or more of the processing 200, 300, 400, 500, 600 and 700 discussed above are activated to ensure that the requested secured file is delivered without compromising the security imposed on the secured file.



FIG. 9 shows an exemplary data structure 920 of a secured file that may be used in one embodiment of the invention. The data structure 920 includes two portions: a header (or header portion) 922 and encrypted data (or an encrypted data portion) 924. The header 922 can be generated in accordance with a security template associated with the store and thus provides restrictive access to the data portion 924 which is an encrypted version of a plain file. Optionally, the data structure 920 may also include an error-checking portion 925 that stores one or more error-checking codes, for example, a separate error-checking code for each block of encrypted data 924. These error-checking codes may also be associated with a Cyclical Redundancy Check (CRC) for the header 922 and/or the encrypted data 924. The header 922 includes a flag bit or signature 927 and security information 926 that is in accordance with the security template for the store. According to one embodiment, the security information 926 is encrypted and can be decrypted with a user key associated with an authenticated user (or requester).


The security information 926 can vary depending upon implementation. However, as shown in FIG. 9, the security information 926 includes a user identifier (ID) 928, access policy (access rules) 929, a file key 930 and other information 931. Although multiple user identifiers may be used, a user identifier 928 is used to identify a user or a group that is permitted to access the secured file. The access rules 929 provide restrictive access to the encrypted data portion 924. The file key 930 is a cipher key that, once obtained, can be used to decrypt the encrypted data portion 924 and thus, in general, is protected. In one implementation of the data structure 920, the file key 930 is encrypted in conjunction with the access rules 929. In another implementation of the data structure 920, the file key 930 is double encrypted with a protection key and further protected by the access rules 929. The other information 931 is an additional space for other information to be stored within the security information 926. For example, the other information 931 may be used to include other information facilitating secure access to the secured file, such as version number or author identifier.


The invention is preferably implemented by software or a combination of hardware and software, but can also be implemented in hardware. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.


The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in other various different settings with respect to various combinations, embodiments, implementations or features provided in the description herein.


The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that file security systems are able to protect secured files (e.g., documents) even when external users are provided limited access to secured files. Another advantage of the invention is that a file security system can permit external users to access certain secured files (e.g., secured documents) without compromising integrity of the file security system. For example, external users having working relationships with internal users are able to be given limited user privileges within the file security system such that restricted file (document) exchange is permitted between such internal and external users. Still another advantage of the invention is that that amount of specialized software required at machines utilized by external users is minimal.


The foregoing description of embodiments is illustrative of various aspects/embodiments of the present invention. Various modifications to the present invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.

Claims
  • 1. A method for releasing a secured document from a document security system, the method comprising: receiving a request from a user affiliated with an organization to release a secured document including a security information portion and a data portion from the document security system, to an external user unaffiliated with the organization, wherein the document security system is associated with the organization, and wherein the security information portion includes a file key and access control restrictions pertaining to the data portion;in response to receiving the request: obtaining a public key associated with the external user;encrypting the data portion of the secured document using the file key;encrypting the security information portion of the secured document, including the file key, using the public key associated with the external user;imposing the access control restrictions by including access rules in the security information portion, wherein the access rules are defined in a markup language and limit a type, a location, and an extent of access that the external user is granted with respect to the secured document, the location of access being one of within the organization or outside of the organization; andreleasing the secured document including the encrypted file key to the external user.
  • 2. The method as recited in claim 1, wherein the document security system restricts access to a plurality of documents, the document security system comprising a key store that stores at least public keys associated with external users, and wherein the obtaining of the public key associated with the external user comprises obtaining the public key from the key store.
  • 3. The method as recited in claim 1, wherein the security information portion of the secured document includes a header comprising the encrypted file key that was used to encrypt the data portion of the secured document.
  • 4. The method as recited in claim 1, wherein the portion of the secured document being encrypted by the public key associated with the external user comprises at least some of the security information portion.
  • 5. The method as recited in claim 1, wherein the external user is in a partner relationship with the organization, and wherein the obtaining is controlled by the partner relationship.
  • 6. The method as recited in claim 1, further comprising: subsequently receiving the secured document at a computing device associated with the external user;retrieving a private key associated with the external user;decrypting at least a portion of the secured document using the private key associated with the external user; andevaluating document level security imposed by the access control restrictions to determine whether the external user gains access to an unsecured version of the secured document.
  • 7. The method as recited in claim 1, wherein obtaining the public key comprises: determining whether the internal user is permitted to receive the public key of the external user; andobtaining the public key associated with the external user in response to determining that the internal user is permitted to receive the public key of the external user.
  • 8. A method for releasing a secured document to a user affiliated with an organization, the method comprising: receiving, at a document security system associated with the organization, a request from an external user unaffiliated with the organization to release a secured document including a security information portion and a data portion to a user affiliated with the organization, wherein the security information portion includes a file key and access control restrictions pertaining to the data portion;receiving a public key associated with the user of the document security system over a data network;in response to receiving the request: authenticating that the received public key originated from the document security system over the data network;encrypting, using the file key from the security information portion, the data portion of the secured document;encrypting, using the received public key, the security information portion of the secured document, including the file key;imposing the access control restrictions by including access rules in the security information portion, wherein the access rules are defined in a markup language and limit a type, a location, a duration, and an extent of access that the user affiliated with the organization is granted with respect to the secured document, the location of access being one of within the organization or outside of the organization; andreleasing the secured document including the encrypted file key to the user of the document security system.
  • 9. The method as recited in claim 8, wherein the authenticating relies on a certificate received with the received public key.
  • 10. The method as recited in claim 9, wherein the user of the document security system is a member of the organization.
  • 11. The method as recited in claim 10, wherein the certificate is associated with the organization.
  • 12. The method as recited in claim 8, wherein the external user is in a partner relationship with the organization.
  • 13. The method as recited in claim 8, wherein the releasing of the secured document and the file key to the user of the document security system comprises transmitting the secured document and the file key to the internal user via the data network.
  • 14. The method as recited in claim 13, wherein the data network includes at least a part of the Internet.
  • 15. The method as recited in claim 8, wherein the encrypting operates to encrypt a header of the secured document, the header comprising the file key and wherein the releasing provides the file key within the header of the secured document.
  • 16. The method as recited in claim 15, wherein the header of the secured document is encrypted with the received public key.
  • 17. The method as recited in claim 8, wherein the document security system comprises at least a key store that stores at least public keys for users of the document security system, and wherein the receiving of the public key associated with the user of the document security system comprises receiving the public key associated with the user of the document security system from the key store.
  • 18. A non-transitory tangible computer-readable medium having instructions stored thereon in a document security system, the instructions comprising: instructions to receive a request from a first user affiliated with an organization to release a secured document including a security information portion and a data portion from the document security system, to an external user unaffiliated with the organization, wherein the document security system is associated with the organization, and wherein the security information portion includes a file key and access control restrictions pertaining to the data portion;instructions to, in response to receiving the request: obtain a public key associated with the external user;encrypt, using the file key from the security information portion, the data portion of the secured document;encrypt the security information portion of the secured document, including the file key, using the public key associated with the external user;impose the access control restrictions by including access rules in the security information portion, wherein the access rules are defined in a markup language and limit a type, a location, and an extent of access that the external user is granted with respect to the secured document, the location of access being one of within the ornanization or outside of the organization; andrelease the secured document including the encrypted file key to the external user.
  • 19. The non-transitory tangible computer readable medium as recited in claim 18, wherein the document security system comprises at least a key store that stores at least public keys for the external user, and wherein the obtaining further comprises obtaining the public key from the key store.
  • 20. The non-transitory tangible computer readable medium as recited in claim 18, wherein the instructions to obtain further comprise instructions to obtain the public key associated with the external user from the document security system over a data network.
  • 21. The non-transitory tangible computer readable medium as recited in claim 20, wherein the instructions further comprise: instructions to authenticate that the public key originated from the document security system and was provided to the external user over the data network.
  • 22. The non-transitory tangible computer readable medium as recited in claim 20, wherein the instructions to obtain further comprise instructions to retrieve the public key associated with the external user from a key store within the document security system.
  • 23. The non-transitory tangible computer readable medium as recited in claim 18, wherein the portion of the secured document being encrypted by the public key comprises at least some of the security information portion.
US Referenced Citations (662)
Number Name Date Kind
4203166 Eshram et al. May 1980 A
4238854 Ehrsam et al. Dec 1980 A
4423387 Sempel Dec 1983 A
4734568 Watanabe Mar 1988 A
4757533 Allen et al. Jul 1988 A
4796220 Wolfe Jan 1989 A
4799258 Davies Jan 1989 A
4827508 Shear May 1989 A
4887204 Johnson et al. Dec 1989 A
4888800 Marshall et al. Dec 1989 A
4912552 Allison et al. Mar 1990 A
4972472 Brown et al. Nov 1990 A
5032979 Hecht et al. Jul 1991 A
5052040 Preston et al. Sep 1991 A
5058164 Elmer et al. Oct 1991 A
5144660 Rose Sep 1992 A
5204897 Wyman Apr 1993 A
5212788 Lomet et al. May 1993 A
5220657 Bly et al. Jun 1993 A
5235641 Nozawa et al. Aug 1993 A
5247575 Sprague et al. Sep 1993 A
5267313 Hirata Nov 1993 A
5276735 Boebert et al. Jan 1994 A
5301247 Rasmussen et al. Apr 1994 A
5319705 Halter et al. Jun 1994 A
5369702 Shanton Nov 1994 A
5375169 Seheidt et al. Dec 1994 A
5404404 Novorita Apr 1995 A
5406628 Beller et al. Apr 1995 A
5414852 Kramer et al. May 1995 A
5434918 Kung et al. Jul 1995 A
5461710 Bloomfield et al. Oct 1995 A
5467342 Logston et al. Nov 1995 A
5495533 Linehan et al. Feb 1996 A
5497422 Tysen et al. Mar 1996 A
5499297 Boebert Mar 1996 A
5502766 Boebert et al. Mar 1996 A
5535375 Eshel et al. Jul 1996 A
5557765 Lipner et al. Sep 1996 A
5570108 McLaughlin et al. Oct 1996 A
5584023 Hsu Dec 1996 A
5600722 Yamaguchi et al. Feb 1997 A
5606663 Kadooka Feb 1997 A
5619576 Shaw Apr 1997 A
5638501 Gough et al. Jun 1997 A
5640388 Woodhead et al. Jun 1997 A
5655119 Davy Aug 1997 A
5661668 Yemini et al. Aug 1997 A
5661806 Nevoux et al. Aug 1997 A
5671412 Christiano Sep 1997 A
5673316 Auerbach et al. Sep 1997 A
5677953 Dolphin Oct 1997 A
5680452 Shanton Oct 1997 A
5682537 Davies et al. Oct 1997 A
5684987 Mamiya et al. Nov 1997 A
5689688 Strong et al. Nov 1997 A
5689718 Sakurai et al. Nov 1997 A
5693652 Barrus et al. Dec 1997 A
5699428 McDonnal et al. Dec 1997 A
5708709 Rose Jan 1998 A
5715403 Stefik Feb 1998 A
5717755 Shanton Feb 1998 A
5719941 Swift et al. Feb 1998 A
5720033 Deo Feb 1998 A
5721780 Ensor et al. Feb 1998 A
5729734 Parker et al. Mar 1998 A
5732265 Dewitt et al. Mar 1998 A
5745573 Lipner et al. Apr 1998 A
5745750 Porcaro Apr 1998 A
5748736 Mittra May 1998 A
5751287 Hahn et al. May 1998 A
5757920 Misra et al. May 1998 A
5765152 Ericson Jun 1998 A
5768381 Hawthorne Jun 1998 A
5778065 Hauser et al. Jul 1998 A
5778350 Adams et al. Jul 1998 A
5781711 Austin et al. Jul 1998 A
5787169 Eldridge et al. Jul 1998 A
5787173 Seheidt et al. Jul 1998 A
5787175 Carter Jul 1998 A
5790789 Suarez Aug 1998 A
5790790 Smith et al. Aug 1998 A
5813009 Johnson et al. Sep 1998 A
5821933 Keller et al. Oct 1998 A
5825876 Peterson Oct 1998 A
5835592 Chang et al. Nov 1998 A
5835601 Shimbo et al. Nov 1998 A
5850443 Van Oorschot et al. Dec 1998 A
5857189 Riddle Jan 1999 A
5862325 Reed et al. Jan 1999 A
5870468 Harrison Feb 1999 A
5870477 Sasaki et al. Feb 1999 A
5881287 Mast Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5893084 Morgan et al. Apr 1999 A
5898781 Shanton Apr 1999 A
5922073 Shimada Jul 1999 A
5923754 Angelo et al. Jul 1999 A
5933498 Schneck et al. Aug 1999 A
5944794 Okamoto et al. Aug 1999 A
5953419 Lohstroh et al. Sep 1999 A
5968177 Batten-Carew et al. Oct 1999 A
5970502 Salkewicz et al. Oct 1999 A
5978802 Hurvig Nov 1999 A
5987440 O'Neil et al. Nov 1999 A
5991879 Still Nov 1999 A
5999907 Donner Dec 1999 A
6011847 Follendore, III Jan 2000 A
6014730 Ohtsu Jan 2000 A
6023506 Ote et al. Feb 2000 A
6031584 Gray Feb 2000 A
6032216 Schmuck et al. Feb 2000 A
6035404 Zhao Mar 2000 A
6038322 Harkins Mar 2000 A
6044155 Thomlinson et al. Mar 2000 A
6055314 Spies et al. Apr 2000 A
6058424 Dixon et al. May 2000 A
6061790 Bodnar May 2000 A
6069957 Richards May 2000 A
6070244 Orchier et al. May 2000 A
6085323 Shimizu et al. Jul 2000 A
6088717 Reed et al. Jul 2000 A
6088805 Davis et al. Jul 2000 A
6098056 Rusnak et al. Aug 2000 A
6101507 Cane et al. Aug 2000 A
6105131 Carroll Aug 2000 A
6122630 Strickler et al. Sep 2000 A
6134327 Van Oorschot Oct 2000 A
6134658 Multerer et al. Oct 2000 A
6134660 Boneh et al. Oct 2000 A
6134664 Walker Oct 2000 A
6141754 Choy Oct 2000 A
6145084 Zuili et al. Nov 2000 A
6148338 Lachelt et al. Nov 2000 A
6158010 Moriconi et al. Dec 2000 A
6161139 Win et al. Dec 2000 A
6182142 Win et al. Jan 2001 B1
6185684 Pravetz et al. Feb 2001 B1
6192408 Vahalia et al. Feb 2001 B1
6199070 Polo-Wood et al. Mar 2001 B1
6205549 Pravetz et al. Mar 2001 B1
6212561 Sitaraman et al. Apr 2001 B1
6223285 Komuro et al. Apr 2001 B1
6226618 Downs et al. May 2001 B1
6226745 Wiederhold May 2001 B1
6240188 Dondeti et al. May 2001 B1
6249755 Yemini et al. Jun 2001 B1
6249873 Richard et al. Jun 2001 B1
6253193 Ginter et al. Jun 2001 B1
6260040 Kauffman et al. Jul 2001 B1
6260141 Park Jul 2001 B1
6263348 Kathrow et al. Jul 2001 B1
6266420 Langford et al. Jul 2001 B1
6272631 Thomlinson et al. Aug 2001 B1
6272632 Carmen et al. Aug 2001 B1
6282649 Lambert et al. Aug 2001 B1
6289450 Pensak et al. Sep 2001 B1
6289458 Garg et al. Sep 2001 B1
6292895 Baltzley Sep 2001 B1
6292899 McBride Sep 2001 B1
6295361 Kadansky et al. Sep 2001 B1
6299069 Shona Oct 2001 B1
6301614 Najork et al. Oct 2001 B1
6308256 Folmsbee Oct 2001 B1
6308273 Goertzel et al. Oct 2001 B1
6314408 Salas et al. Nov 2001 B1
6314409 Schneck et al. Nov 2001 B2
6317777 Skarbo et al. Nov 2001 B1
6332025 Takahashi et al. Dec 2001 B2
6336114 Garrison Jan 2002 B1
6339423 Sampson et al. Jan 2002 B1
6339825 Pensak et al. Jan 2002 B2
6341164 Dilkie et al. Jan 2002 B1
6343316 Sakata Jan 2002 B1
6347374 Drake et al. Feb 2002 B1
6349337 Parsons, Jr. Feb 2002 B1
6351813 Mooney et al. Feb 2002 B1
6356903 Baxter et al. Mar 2002 B1
6356941 Cohen Mar 2002 B1
6357010 Viets et al. Mar 2002 B1
6363480 Perlman Mar 2002 B1
6370249 Van Oorschot Apr 2002 B1
6381698 Devanbu et al. Apr 2002 B1
6385644 Devine et al. May 2002 B1
6389433 Bolosky et al. May 2002 B1
6389538 Gruse et al. May 2002 B1
6393420 Peters May 2002 B1
6405315 Burns et al. Jun 2002 B1
6405318 Rowland Jun 2002 B1
6408404 Ladwig Jun 2002 B1
6421714 Rai et al. Jul 2002 B1
6442688 Moses et al. Aug 2002 B1
6442695 Dutcher et al. Aug 2002 B1
6446090 Hart Sep 2002 B1
6449721 Pensak et al. Sep 2002 B1
6453353 Win et al. Sep 2002 B1
6453419 Flint et al. Sep 2002 B1
6466476 Wong et al. Oct 2002 B1
6466932 Dennis et al. Oct 2002 B1
6476833 Moshfeghi Nov 2002 B1
6477544 Bolosky et al. Nov 2002 B1
6487662 Kharon et al. Nov 2002 B1
6490680 Scheidt et al. Dec 2002 B1
6505300 Chan et al. Jan 2003 B2
6510349 Schneck et al. Jan 2003 B1
6519700 Ram et al. Feb 2003 B1
6529956 Smith et al. Mar 2003 B1
6530020 Aoki Mar 2003 B1
6530024 Proctor Mar 2003 B1
6542608 Scheidt et al. Apr 2003 B2
6549623 Scheidt et al. Apr 2003 B1
6550011 Sims Apr 2003 B1
6557039 Leong et al. Apr 2003 B1
6567914 Just et al. May 2003 B1
6571291 Chow May 2003 B1
6574733 Langford Jun 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6587946 Jakobsson Jul 2003 B1
6588673 Chan et al. Jul 2003 B1
6594662 Sieffert et al. Jul 2003 B1
6598161 Kluttz et al. Jul 2003 B1
6601170 Wallace, Jr. Jul 2003 B1
6603857 Batten-Carew et al. Aug 2003 B1
6608636 Roseman Aug 2003 B1
6611599 Natarajan Aug 2003 B2
6611846 Stoodley Aug 2003 B1
6615349 Hair Sep 2003 B1
6615350 Schell et al. Sep 2003 B1
6625650 Stelliga Sep 2003 B2
6625734 Marvit et al. Sep 2003 B1
6629243 Kleinman et al. Sep 2003 B1
6633311 Douvikas et al. Oct 2003 B1
6640307 Viets et al. Oct 2003 B2
6646515 Jun et al. Nov 2003 B2
6647388 Numao et al. Nov 2003 B2
6678835 Shah et al. Jan 2004 B1
6683954 Searle Jan 2004 B1
6687822 Jakobsson Feb 2004 B1
6698022 Wu Feb 2004 B1
6711683 Laczko et al. Mar 2004 B1
6718361 Basani et al. Apr 2004 B1
6735701 Jacobson May 2004 B1
6738908 Bonn et al. May 2004 B1
6751573 Burch Jun 2004 B1
6754657 Lomet Jun 2004 B2
6754665 Futagami et al. Jun 2004 B1
6775779 England et al. Aug 2004 B1
6779031 Picher-Dempsey Aug 2004 B1
6782403 Kino et al. Aug 2004 B1
6801999 Vankatesan et al. Oct 2004 B1
6807534 Erickson Oct 2004 B1
6807636 Hartman et al. Oct 2004 B2
6810389 Meyer Oct 2004 B1
6810479 Barlow et al. Oct 2004 B1
6816871 Lee Nov 2004 B2
6816969 Miyazaki et al. Nov 2004 B2
6826698 Minkin et al. Nov 2004 B1
6834333 Yoshino et al. Dec 2004 B2
6834341 Bahl et al. Dec 2004 B1
6842825 Geiner et al. Jan 2005 B2
6845452 Roddy et al. Jan 2005 B1
6851050 Singhal et al. Feb 2005 B2
6862103 Miura et al. Mar 2005 B1
6865555 Novak Mar 2005 B2
6870920 Henits Mar 2005 B2
6874139 Krueger et al. Mar 2005 B2
6877010 Smith-Semedo et al. Apr 2005 B2
6877136 Bess et al. Apr 2005 B2
6882994 Yoshimura et al. Apr 2005 B2
6889210 Vainstein May 2005 B1
6891953 DeMello et al. May 2005 B1
6892201 Brown et al. May 2005 B2
6892306 En-Seung et al. May 2005 B1
6898627 Sekiguchi May 2005 B1
6907034 Begis Jun 2005 B1
6909708 Krishnaswamy et al. Jun 2005 B1
6915425 Xu et al. Jul 2005 B2
6915434 Kuroda et al. Jul 2005 B1
6915435 Merriam Jul 2005 B1
6920558 Sames et al. Jul 2005 B2
6922785 Brewer et al. Jul 2005 B1
6924425 Naples et al. Aug 2005 B2
6931450 Howard et al. Aug 2005 B2
6931530 Pham et al. Aug 2005 B2
6931597 Prakash Aug 2005 B1
6938042 Aboulhosn et al. Aug 2005 B2
6938156 Wheeler et al. Aug 2005 B2
6941355 Donaghey et al. Sep 2005 B1
6941456 Wilson Sep 2005 B2
6941472 Moriconi et al. Sep 2005 B2
6944183 Iyer et al. Sep 2005 B1
6947556 Matyas, Jr. et al. Sep 2005 B1
6950818 Dennis et al. Sep 2005 B2
6950936 Subramaniam et al. Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6950943 Bacha et al. Sep 2005 B1
6952780 Olsen et al. Oct 2005 B2
6957261 Lortz Oct 2005 B2
6959308 Gramsamer et al. Oct 2005 B2
6961849 Davis et al. Nov 2005 B1
6961855 Rich et al. Nov 2005 B1
6968060 Pinkas Nov 2005 B1
6968456 Tripathi et al. Nov 2005 B1
6971018 Witt et al. Nov 2005 B1
6976259 Dutta et al. Dec 2005 B1
6978366 Ignatchenko et al. Dec 2005 B1
6978376 Giroux et al. Dec 2005 B2
6978377 Asano et al. Dec 2005 B1
6987752 Falco et al. Jan 2006 B1
6988133 Zavalkovsky et al. Jan 2006 B1
6988199 Toh et al. Jan 2006 B2
6993135 Ishibashi Jan 2006 B2
6996718 Henry et al. Feb 2006 B1
7000150 Zunino et al. Feb 2006 B1
7003116 Riedel et al. Feb 2006 B2
7003117 Kacker et al. Feb 2006 B2
7003560 Mullen et al. Feb 2006 B1
7003661 Beattie et al. Feb 2006 B2
7010689 Matyas et al. Mar 2006 B1
7010809 Hori et al. Mar 2006 B2
7013332 Friedel et al. Mar 2006 B2
7013485 Brown et al. Mar 2006 B2
7020645 Bisbee et al. Mar 2006 B2
7024427 Bobbitt et al. Apr 2006 B2
7035854 Hsiao et al. Apr 2006 B2
7035910 Dutta et al. Apr 2006 B1
7043637 Bolosky et al. May 2006 B2
7046807 Hirano et al. May 2006 B2
7047404 Doonan et al. May 2006 B1
7051213 Kobayashi et al. May 2006 B1
7058696 Phillips et al. Jun 2006 B1
7058978 Feuerstein et al. Jun 2006 B2
7073063 Peinado Jul 2006 B2
7073073 Nonaka et al. Jul 2006 B1
7076067 Raike et al. Jul 2006 B2
7076312 Law et al. Jul 2006 B2
7076469 Schreiber et al. Jul 2006 B2
7076633 Tormasov et al. Jul 2006 B2
7080077 Ramamurthy et al. Jul 2006 B2
7095853 Morishita Aug 2006 B2
7096266 Lewin et al. Aug 2006 B2
7099926 Ims et al. Aug 2006 B1
113594 Boneh et al. Sep 2006 A1
7103911 Spies et al. Sep 2006 B2
7107185 Yemini et al. Sep 2006 B1
7107269 Arlein et al. Sep 2006 B2
7107416 Stuart et al. Sep 2006 B2
7116785 Okaue Oct 2006 B2
7117322 Hochberg et al. Oct 2006 B2
7120635 Bhide et al. Oct 2006 B2
7120757 Tsuge Oct 2006 B2
7120935 Serani et al. Oct 2006 B2
7124164 Chemtob Oct 2006 B1
7126957 Isukapalli et al. Oct 2006 B1
7130964 Ims et al. Oct 2006 B2
7131071 Gune et al. Oct 2006 B2
7134041 Murray et al. Nov 2006 B2
7136903 Phillips et al. Nov 2006 B1
7139399 Zimmermann Nov 2006 B1
7140044 Redlich et al. Nov 2006 B2
7145898 Elliott Dec 2006 B1
7146388 Stakutis et al. Dec 2006 B2
7146498 Takechi et al. Dec 2006 B1
7159036 Hinchliffe et al. Jan 2007 B2
7168094 Fredell Jan 2007 B1
7171557 Kallahalla et al. Jan 2007 B2
7174563 Brownlie et al. Feb 2007 B1
7177427 Komuro et al. Feb 2007 B1
7177839 Claxton et al. Feb 2007 B1
7178033 Garcia Feb 2007 B1
7181017 Nagel et al. Feb 2007 B1
7185364 Knouse et al. Feb 2007 B2
7187033 Pendharkar Mar 2007 B2
7188181 Squier et al. Mar 2007 B1
7194764 Martherus et al. Mar 2007 B2
7197638 Grawrock et al. Mar 2007 B1
7200747 Riedel et al. Apr 2007 B2
7203317 Kallahalla et al. Apr 2007 B2
7203968 Asano et al. Apr 2007 B2
7219230 Riedel et al. May 2007 B2
7224795 Takada et al. May 2007 B2
7225256 Villavicencio May 2007 B2
7227953 Shida Jun 2007 B2
7233948 Shamoon et al. Jun 2007 B1
7237002 Estrada et al. Jun 2007 B1
7249044 Kumar et al. Jul 2007 B2
7249251 Todd et al. Jul 2007 B2
7260555 Rossmann et al. Aug 2007 B2
7265764 Alben et al. Sep 2007 B2
7266684 Jancula Sep 2007 B2
7280658 Amini et al. Oct 2007 B2
7281272 Rubin et al. Oct 2007 B1
7287055 Cannata et al. Oct 2007 B2
7287058 Loveland et al. Oct 2007 B2
7290148 Tozawa et al. Oct 2007 B2
7308702 Thomsen et al. Dec 2007 B1
7313824 Bala et al. Dec 2007 B1
7319752 Asano et al. Jan 2008 B2
7340600 Corella Mar 2008 B1
7343488 Yadav Mar 2008 B2
7359517 Rowe Apr 2008 B1
7362868 Madoukh et al. Apr 2008 B2
7380120 Garcia May 2008 B1
7383586 Cross et al. Jun 2008 B2
7386529 Kiessig et al. Jun 2008 B2
7386599 Piersol et al. Jun 2008 B1
7401220 Bolosky et al. Jul 2008 B2
7406596 Tararukhina et al. Jul 2008 B2
7415608 Bolosky et al. Aug 2008 B2
7434048 Shapiro et al. Oct 2008 B1
7454612 Bolosky et al. Nov 2008 B2
7461157 Ahlard et al. Dec 2008 B2
7461405 Boudreault et al. Dec 2008 B2
7478243 Bolosky et al. Jan 2009 B2
7478418 Supramaniam et al. Jan 2009 B2
7484245 Friedman et al. Jan 2009 B1
7496959 Adelstein et al. Feb 2009 B2
7509492 Boyen et al. Mar 2009 B2
7512810 Ryan Mar 2009 B1
7539867 Bolosky et al. May 2009 B2
7555558 Kenrich et al. Jun 2009 B1
7562223 Ragnet et al. Jul 2009 B2
7562232 Zuili et al. Jul 2009 B2
7565683 Huang et al. Jul 2009 B1
7614077 Brew et al. Nov 2009 B2
7631184 Ryan Dec 2009 B2
7681034 Lee et al. Mar 2010 B1
7698230 Brown et al. Apr 2010 B1
7702909 Vainstein Apr 2010 B2
7703140 Nath et al. Apr 2010 B2
7707427 Kenrich et al. Apr 2010 B1
7729995 Alain et al. Jun 2010 B1
7730543 Nath et al. Jun 2010 B1
7748045 Kenrich et al. Jun 2010 B2
7921288 Hildebrand Apr 2011 B1
20010000265 Schreiber et al. Apr 2001 A1
20010011254 Clark Aug 2001 A1
20010018743 Morishita Aug 2001 A1
20010021255 Ishibashi Sep 2001 A1
20010021926 Schneck et al. Sep 2001 A1
20010023421 Numao et al. Sep 2001 A1
20010032181 Jakstadt et al. Oct 2001 A1
20010033611 Grimwood et al. Oct 2001 A1
20010034839 Karjoth et al. Oct 2001 A1
20010042110 Furusawa et al. Nov 2001 A1
20010044903 Yamamoto et al. Nov 2001 A1
20010056541 Matsuzaki et al. Dec 2001 A1
20010056550 Lee Dec 2001 A1
20020003886 Hillegass et al. Jan 2002 A1
20020004902 Toh et al. Jan 2002 A1
20020007335 Millard et al. Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020013772 Peinado Jan 2002 A1
20020016921 Olsen et al. Feb 2002 A1
20020016922 Richards et al. Feb 2002 A1
20020023208 Jancula Feb 2002 A1
20020026321 Faris et al. Feb 2002 A1
20020027886 Fischer et al. Mar 2002 A1
20020029340 Pensak et al. Mar 2002 A1
20020031230 Sweet et al. Mar 2002 A1
20020035624 Kim Mar 2002 A1
20020036984 Chiussi et al. Mar 2002 A1
20020041391 Bannai Apr 2002 A1
20020042756 Kumar et al. Apr 2002 A1
20020046350 Lordemann et al. Apr 2002 A1
20020050098 Chan May 2002 A1
20020052981 Yasuda May 2002 A1
20020056042 van der Kaay et al. May 2002 A1
20020059144 Meffert et al. May 2002 A1
20020062240 Morinville May 2002 A1
20020062245 Niu et al. May 2002 A1
20020062451 Scheidt et al. May 2002 A1
20020069077 Brophy et al. Jun 2002 A1
20020069272 Kim et al. Jun 2002 A1
20020069363 Winburn Jun 2002 A1
20020073320 Rinkevich et al. Jun 2002 A1
20020077986 Kobata et al. Jun 2002 A1
20020077988 Sasaki et al. Jun 2002 A1
20020078239 Howard et al. Jun 2002 A1
20020078361 Giroux et al. Jun 2002 A1
20020087479 Malcolm Jul 2002 A1
20020091532 Viets et al. Jul 2002 A1
20020091745 Ramamurthy et al. Jul 2002 A1
20020091928 Bouchard et al. Jul 2002 A1
20020093527 Sherlock et al. Jul 2002 A1
20020099947 Evans Jul 2002 A1
20020112035 Carey et al. Aug 2002 A1
20020120851 Clarke Aug 2002 A1
20020124180 Hagman Sep 2002 A1
20020129158 Zhang et al. Sep 2002 A1
20020129235 Okamoto et al. Sep 2002 A1
20020133500 Arlein et al. Sep 2002 A1
20020133699 Pueschel Sep 2002 A1
20020138571 Trinon et al. Sep 2002 A1
20020138762 Horne Sep 2002 A1
20020143710 Liu Oct 2002 A1
20020143906 Tormasov et al. Oct 2002 A1
20020150239 Carny et al. Oct 2002 A1
20020152302 Motoyama et al. Oct 2002 A1
20020156726 Kleckner et al. Oct 2002 A1
20020157016 Russell et al. Oct 2002 A1
20020162104 Raike et al. Oct 2002 A1
20020165870 Chakraborty et al. Nov 2002 A1
20020169963 Seder et al. Nov 2002 A1
20020169965 Hale et al. Nov 2002 A1
20020172367 Mulder et al. Nov 2002 A1
20020174030 Praisner et al. Nov 2002 A1
20020174109 Chandy et al. Nov 2002 A1
20020174415 Hines Nov 2002 A1
20020176572 Ananth Nov 2002 A1
20020178271 Graham et al. Nov 2002 A1
20020184488 Amini et al. Dec 2002 A1
20020194484 Bolosky et al. Dec 2002 A1
20020198798 Ludwig et al. Dec 2002 A1
20030005168 Leerssen et al. Jan 2003 A1
20030009685 Choo et al. Jan 2003 A1
20030014391 Evans et al. Jan 2003 A1
20030023559 Choi et al. Jan 2003 A1
20030026431 Hammersmith Feb 2003 A1
20030028610 Pearson Feb 2003 A1
20030033528 Ozog et al. Feb 2003 A1
20030037029 Holenstein et al. Feb 2003 A1
20030037133 Owens Feb 2003 A1
20030037237 Abgrall et al. Feb 2003 A1
20030037253 Blank et al. Feb 2003 A1
20030046176 Hynes Mar 2003 A1
20030046238 Nonaka et al. Mar 2003 A1
20030046270 Leung et al. Mar 2003 A1
20030050919 Brown et al. Mar 2003 A1
20030051039 Brown et al. Mar 2003 A1
20030051148 Garney Mar 2003 A1
20030056139 Murray et al. Mar 2003 A1
20030061482 Emmerichs Mar 2003 A1
20030061506 Cooper Mar 2003 A1
20030074580 Knouse et al. Apr 2003 A1
20030078959 Yeung et al. Apr 2003 A1
20030079175 Limantsev Apr 2003 A1
20030081784 Kallahalla et al. May 2003 A1
20030081785 Boneh et al. May 2003 A1
20030081787 Kallahalla et al. May 2003 A1
20030081790 Kallahalla et al. May 2003 A1
20030088517 Medoff May 2003 A1
20030088783 DiPierro May 2003 A1
20030093250 Goebel May 2003 A1
20030093457 Goldick May 2003 A1
20030093467 Anderson May 2003 A1
20030095552 Bernhard et al. May 2003 A1
20030099248 Speciner May 2003 A1
20030101072 Dick et al. May 2003 A1
20030110169 Zuili Jun 2003 A1
20030110266 Rollins et al. Jun 2003 A1
20030110280 Hinchliffe et al. Jun 2003 A1
20030110397 Supramaniam et al. Jun 2003 A1
20030115146 Lee et al. Jun 2003 A1
20030115218 Bobbitt et al. Jun 2003 A1
20030115570 Bisceglia Jun 2003 A1
20030120601 Ouye Jun 2003 A1
20030120684 Zuili et al. Jun 2003 A1
20030126434 Lim et al. Jul 2003 A1
20030132949 Fallon et al. Jul 2003 A1
20030154381 Ouye Aug 2003 A1
20030154396 Godwin et al. Aug 2003 A1
20030154401 Hartman et al. Aug 2003 A1
20030159048 Matsumoto et al. Aug 2003 A1
20030159066 Staw et al. Aug 2003 A1
20030163704 Dick et al. Aug 2003 A1
20030165117 Garcia-Luna-Aceves et al. Sep 2003 A1
20030172280 Scheidt et al. Sep 2003 A1
20030177070 Viswanath et al. Sep 2003 A1
20030177378 Wittkotter Sep 2003 A1
20030182310 Charnock et al. Sep 2003 A1
20030182579 Leporini et al. Sep 2003 A1
20030182584 Banes et al. Sep 2003 A1
20030191938 Woods et al. Oct 2003 A1
20030196096 Sutton Oct 2003 A1
20030197729 Denoue et al. Oct 2003 A1
20030200202 Hsiao et al. Oct 2003 A1
20030204692 Tamer et al. Oct 2003 A1
20030208485 Castellanos Nov 2003 A1
20030217264 Martin et al. Nov 2003 A1
20030217281 Ryan Nov 2003 A1
20030217333 Smith et al. Nov 2003 A1
20030220999 Emerson Nov 2003 A1
20030222141 Vogler et al. Dec 2003 A1
20030226013 Dutertre Dec 2003 A1
20030233650 Zaner et al. Dec 2003 A1
20040022390 McDonald et al. Feb 2004 A1
20040025037 Hair Feb 2004 A1
20040039781 LaVallee et al. Feb 2004 A1
20040041845 Alben et al. Mar 2004 A1
20040049702 Subramaniam et al. Mar 2004 A1
20040064507 Sakata Apr 2004 A1
20040064710 Vainstein Apr 2004 A1
20040068524 Aboulhosn et al. Apr 2004 A1
20040068664 Nachenberg et al. Apr 2004 A1
20040073660 Toomey Apr 2004 A1
20040073718 Johannessen et al. Apr 2004 A1
20040088548 Smetters et al. May 2004 A1
20040098580 DeTreville May 2004 A1
20040103202 Hildebrand et al. May 2004 A1
20040103280 Balfanz et al. May 2004 A1
20040131191 Chen et al. Jul 2004 A1
20040133544 Kiessig et al. Jul 2004 A1
20040158586 Tsai Aug 2004 A1
20040186845 Fukui Sep 2004 A1
20040193602 Liu et al. Sep 2004 A1
20040193905 Lirov et al. Sep 2004 A1
20040193912 Li et al. Sep 2004 A1
20040199514 Rosenblatt et al. Oct 2004 A1
20040205576 Chikirivao et al. Oct 2004 A1
20040215956 Venkatachary et al. Oct 2004 A1
20040215962 Douceur et al. Oct 2004 A1
20040243853 Swander et al. Dec 2004 A1
20040254884 Haber et al. Dec 2004 A1
20050021467 Franzdonk Jan 2005 A1
20050021629 Cannata et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050039034 Doyle et al. Feb 2005 A1
20050050098 Barnett Mar 2005 A1
20050071275 Vainstein et al. Mar 2005 A1
20050071657 Ryan Mar 2005 A1
20050071658 Nath et al. Mar 2005 A1
20050081029 Thornton et al. Apr 2005 A1
20050086531 Kenrich Apr 2005 A1
20050091289 Shappell et al. Apr 2005 A1
20050091484 Thornton et al. Apr 2005 A1
20050097061 Shapiro et al. May 2005 A1
20050120199 Carter Jun 2005 A1
20050138371 Supramaniam et al. Jun 2005 A1
20050138383 Vainstein Jun 2005 A1
20050168766 Troyansky et al. Aug 2005 A1
20050177716 Ginter et al. Aug 2005 A1
20050177858 Ueda Aug 2005 A1
20050193397 Corenthin et al. Sep 2005 A1
20050198326 Schlimmer et al. Sep 2005 A1
20050223242 Nath Oct 2005 A1
20050223414 Kenrich et al. Oct 2005 A1
20050235154 Serret-Avila Oct 2005 A1
20050256909 Aboulhosn et al. Nov 2005 A1
20050268033 Ogasawara et al. Dec 2005 A1
20050273600 Seeman Dec 2005 A1
20050283610 Serret-Avila et al. Dec 2005 A1
20050288961 Tabrizi Dec 2005 A1
20060005021 Torrubia-Saez Jan 2006 A1
20060075258 Adamson et al. Apr 2006 A1
20060075465 Ramanathan et al. Apr 2006 A1
20060093150 Reddy et al. May 2006 A1
20060101285 Chen et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20060168147 Inoue et al. Jul 2006 A1
20060184637 Hultgren et al. Aug 2006 A1
20060230437 Boyer et al. Oct 2006 A1
20060277316 Wang et al. Dec 2006 A1
20070006214 Dubal et al. Jan 2007 A1
20070067837 Schuster Mar 2007 A1
20070083575 Leung et al. Apr 2007 A1
20070192478 Louie et al. Aug 2007 A1
20070294368 Bomgaars et al. Dec 2007 A1
20080075126 Yang Mar 2008 A1
20090254843 Van Wie et al. Oct 2009 A1
20100047757 McCurry et al. Feb 2010 A1
20100199088 Nath Aug 2010 A1
Foreign Referenced Citations (25)
Number Date Country
0 672 991 Sep 1995 EP
0 674 253 Sep 1995 EP
0 809 170 Nov 1997 EP
0 913 966 May 1999 EP
0 913 967 May 1999 EP
0 950 941 Oct 1999 EP
0 950 941 Oct 1999 EP
1 107504 Jun 2001 EP
I107 504 Jun 2001 EP
1 130 492 Sep 2001 EP
1 154 348 Nov 2001 EP
1 324 565 Jul 2003 EP
1324565 Jul 2003 EP
2 328 047 Feb 1999 GB
2001-036517 Feb 2001 JP
2006-244044 Sep 2006 JP
2009-020720 Jan 2009 JP
WO 9641288 Dec 1996 WO
WO 0056028 Sep 2000 WO
WO 0161438 Aug 2001 WO
WO 0163387 Aug 2001 WO
WO 0163387 Aug 2001 WO
WO 0177783 Oct 2001 WO
WO 0178285 Oct 2001 WO
WO 0184271 Nov 2001 WO
Related Publications (1)
Number Date Country
20040064710 A1 Apr 2004 US