This disclosure relates to a storage assembly for documents and, more particularly, to a stack management arrangement for storing documents in a stack. For the purposes of the disclosure, the term document includes, but is not limited, to a banknote, sheet, bill, coupon, security paper, currency, ticket, or any other flexible planar item of a similar nature.
Document storage assemblies forming a compartment (e.g., a currency cassette) and usable with an automated transaction machine often include a platform, such as a pressure plate, to support a stack of bills. The pressure plate, along with any previously stacked bills, can be moved to permit stacking newly received bills. As the number of bills in the stack increases, any slight variation between the plane of the pressure plate and the plane of the stacked bills during movement due to stacking may cause the stack to buckle or drop under the force of gravity. If the stack buckles, the document storage cassette may be unable to accept any more bills for storage and thus the automatic transaction machine may require servicing. It is therefore important to minimize the variation between the plane of the pressure plate with respect to the plane of the stacked bills while stacking newly received bills. It is also important to maximize the space within the document storage cassette that is available for storing currency.
Pressure plate assemblies typically use one or more springs (e.g., conical springs) to bias the pressure plate in a certain direction. In a conventional assembly, the pressure plate uses a pin on each longitudinal edge, which fits into a slot of the storage compartment of the document storage assembly, to guide the pressure plate along a slot while newly received bills are stacked. Other pressure plate assemblies use a cantilever plate that is connected to a sleeve bearing that moves along a post to guide the pressure plate in order to stack newly received bills. Alternatively, a scissor mechanism coupled beneath the pressure plate may be used to move the pressure plate while stacking newly received bills. Yet a further alternative is to configure the pressure plate assembly so as to form a rack and meshed gear arrangement as disclosed in U.S. Patent Publication No. 2004/0195758, which is herein incorporated by reference in its entirety.
In certain arrangements, the document storage assembly is coupled to a bill validator and configured to stack bills within the assembly in a vertical orientation. More specifically, the bills are stacked so that the plane of the stacked bills is oriented in the vertical sense. When such a configuration is required, a condition can arise in which additional force is needed to displace the stack of bills within the document storage assembly. As the stack of bills stored within the document storage assembly increases, the stack begins to fall downward due to the effect of gravity and the stack begins to buckle. As the stack buckles, the frictional force caused by dragging the stack along the interior walls of the document storage assembly greatly increases the force needed to displace the stack of bills during a stacking event of a newly received bill.
This disclosure relates to a document storage assembly for storing documents in a stacked configuration. In some implementations there is provided a support plate assembly for biasing a stack of documents toward an opening in the housing of a document storage assembly. In some implementations the housing of the document storage assembly includes an assist mechanism to allow the stack of notes to be displaced during the stacking of a newly received document.
In some implementations, the document storage assembly is removably coupled to a document validation system. As is known, document validation systems are used to receive a document and determine the denomination and/or the authenticity of the inserted document. The general operation of document validation devices is known and, therefore, is not described in detail in the current disclosure.
The document storage assembly can include a stacking mechanism for inserting newly received documents into the document storage assembly storage compartment at least partially defined by the housing; Alternatively, the stacking mechanism can be a component of the document validation device. The document storage assembly includes a housing defining a storage compartment for containing the stacked documents. The housing includes an opening at one end through which newly received documents enter the housing, and the documents are stacked within the storage assembly. In some implementations, the housing further includes a movable access cover coupled to the housing body for allowing access to the contents stored therein. The removable access cover can be configured to have a securing feature (e.g., a locking mechanism) associated therewith to selectively secure the access cover between a closed (or locked) condition and an open or removed condition. For example, the access cover can include a locking mechanism for locking the access cover in place. In some implementations the access cover is pivotally coupled to the housing and in other implementations the access cover is slidingly engagable with the housing.
The document storage assembly includes a support plate for supporting a stack of documents. The support plate can be removably coupled to the housing and movable relative to the housing to allow for a displacement of a stack of documents during the stacking of a newly received document. In some implementations, the housing includes parallel racks, and the support plate includes gears for operative engagement with the parallel racks. In some implementations, gears are rotatably connected to at least two substantial edges of the support plate, and one or more substantially parallel racks are configured to engage one or more of the gears. In some implementations, the gears can be connected to one or more shafts at a first edge of the support plate, and one or more of the shafts can extend to a second edge of the support plate. One or more of the gears can be coupled to one or more of the shafts at the second edge of the support plate.
In some implementations, the support plate includes a biasing mechanism for biasing the support plate towards the opening of the housing (e.g., towards the direction where documents enter the storage compartment). The biasing mechanism can include a spring (e.g., a torsion spring) coupled to at least one of the shafts to cause rotation of the associated shaft in a direction resulting in the support plate being urged toward the opening (or entry opening) of the housing.
The support plate can further include an installation mechanism operatively coupled to the biasing mechanism. The installation mechanism can be configured so as to prevent the biasing mechanism from urging the support plate toward the opening in the housing. In some implementations, the installation mechanism includes a movable actuator (or toggle) so as to engage at least one of the gears (or associated components) associated with the shaft coupled to the biasing spring to prevent rotation thereof. In some implementations, the support mechanism includes at least two pairs of gears connected to at least two shafts, respectively. In some implementations, the biasing spring is operatively coupled to one of the at least two shafts. In some implementations the installation mechanism is configured to prevent rotation of at least one shaft and allow rotation of the at least one other shaft.
In some implementations, the document storage assembly includes an assist mechanism for reducing the force required to displace a stack of documents as a newly received document is stacked. The assist mechanism can be selectively operable dependent on the size of the stack of documents exceeding a predetermined threshold. The assist mechanism can include a sliding plate slidingly coupled to the housing so as to support a stack of documents during displacement when a newly received document is stacked. In some implementations, the sliding plate is slidingly coupled to the housing by rolling balls or bearings. The sliding plate can be coupled to the housing other sliding mechanisms, for example sliding rails or groves.
When the document storage assembly is integrated into a document accepting or handling device in a horizontal configuration, the stack of documents will eventually settle onto the lower interior surface of the housing due to the influence of gravity. In prior known configurations, the force required to displace a stack of notes resting on the lower surface of a horizontal cassette requires a large pushing (or displacing) force from the stacking mechanism in order to displace the stack enough to deliver a newly received document. In an exemplary implementation of the document storage assembly, an assist mechanism is incorporated to minimize or reduce the force needed to stack a newly received document so that standard (or low power) stacking mechanisms can be utilized. By locating a sliding plate between the stack of documents and the lower surface of the housing, the documents can be displaced during a stacking event in a sliding manner with low friction. The ability to displace the stack of documents with a low frictional resistance allows for a more efficient and smaller force required to displace the stack.
Various aspects of the invention are set forth in the claims.
a illustrates a document storage assembly including a movable access cover in an open position.
b illustrates a documents storage assembly including an opening for receiving documents.
The disclosure relates to a storage assembly for documents and, more particularly, to a stack management arrangement for storing documents in a stack. In some implementations, a document storage assembly 50 is removably coupled to a document handling apparatus (or device) 10 as shown in
The validation module 20 is configured to accept an inserted document 60 at an inlet 21 and transport document 60 along a transport path past a document sensing component. The document sensing component is arranged to determine at least the denomination of document 60 or the authenticity of document 60. Documents determined to be acceptable by validation module 20 are transported to the document storage assembly 50. In some configurations, document 60 is transported by document handling apparatus 10 to a position adjacent to an opening 52 in document storage assembly 50 (see
Document storage assembly 50 can include a housing 55 defining an internal storage compartment 58 as shown in
In some implementations, housing 55 includes a moveable access cover 51 for selectively providing access to the contents of document storage assembly 50 and movable between an open and closed position as shown in
Housing 55 can include substantially parallel racks 59 (see
In some implementations, biasing mechanism 150 further includes an installation mechanism 200 for selectively locking biasing mechanism 150. More particularly, installation mechanism 200 is arranged to prevent lower gear pair 120 from advancing forward in direction A when in a locking position. Installation mechanism 200 can include a lock actuator 208, a linking gear 205, locking tab 220, and shaft 210 as shown in
In some implementations, document storage apparatus 50 includes an assist mechanism 300 arranged to support the displacement of a stack of documents 60 stacked within document storage assembly 50. Assist mechanism 300 can include a sliding plate 310 slidingly coupled to housing 55 as shown in
In some implementations, the stack of documents 60 is arranged to engage assist mechanism 300 upon being inserted into document storage apparatus 50. For example, a newly received document 60 can be positioned relative to opening 52 so as to engage sliding plate 310 during a stacking event. In other implementations, a secondary mechanism (not shown) can interact with the stack of documents 60 so that a pushing plate or other interactive member engages the stack at an opposite location of the stacks abutment with sliding plate 310 so as to ensure all documents in the stack are displaced and abutting sliding plate 310.
The operation of the document storage assembly is now described. When a document 60 is inserted into document handling apparatus 10 through inlet 21, validation module 20 determines the acceptability of document 60. An acceptable document 60 is transported by document handling apparatus 10 to a position adjacent document storage assembly 50. Acceptable documents 60, adjacent to document storage assembly 50, are stacked therein by stacker mechanism 70. As documents 60 are stacked into document storage assembly 50, support plate 100 is displaced by stacking mechanism 70 as shown in
As additional documents are stacked in document storage assembly 50, the size of stacked documents 60 increases. After the stack of documents 60 exceeds a certain threshold, at least a portion of the stack may be displaced downward (e.g., due to gravitational effects) and may abut housing 55 (or sliding plate 310) as shown in
Once the stack of documents 60 exceeds a size threshold, a portion of the stack of documents 60 can become vertically displaced so as to abut housing 55 (or sliding plate 310). When the vertically displaced portion of the stack abuts sliding plate 310, the displaced portion of the stack abuts sliding plate 310 (or housing 55) and causes sliding plate 310 to be laterally (or longitudinally) displaced so as to move with the stack of documents 60 as a newly received document 60 is added to the stack. Due to the vertically displaced portion of the stack of documents 60 resting on (or abutting) sliding plate 310, the resistive (or frictional) force required to displace the stack of documents 60 laterally can be maintained (or reduced) so as to be similar to that of a non-vertically displaced stack.
For example,
In some implementations, document storage assembly 50 includes an installation mechanism 200. Installation mechanism 200 can allow for the removal of support plate 100 from housing 55. Installation mechanism 200 has two states, a locked state and an unlocked state. In the locked state, actuator 208 is in a position displaced laterally inward from the perimeter of support plate 100. Actuator 208 is operatively coupled to linking gear 205 so as to allow linking gear 205 to slide about shaft 210. Laterally inward displacement of actuator 208, and thus linking gear 205, removes linking gear 205 from meshing engagement with gear 120b of biasing mechanism 150 and maintaining meshing engagement with a transfer gear 125. Transfer gear 125 can be further meshingly engaged with upper gear 120a. As actuator 208 is laterally displaced inward, locking tab 220 also is displaced inward and into a blocking position preventing further rotation of shaft 130 of biasing mechanism 150. More specifically, the blocking position of locking tab 220 causes abutment with protrusion 185 of shaft 130 so as to prevent further rotation of shaft 130 in the direction of arrow Z.
To transition installation mechanism 200 from the locked position to the unlocked position, actuator 208 is moved laterally outward toward the perimeter of support plate 100. Movement of actuator 208 to the unlocked position causes linking gear 205 to slide about shaft 210 and into meshing engagement with gear 120b. Additionally, locking tab 220 moves out of a blocking position, thus allowing free rotation (e.g., in direction Z) of shaft 130 of biasing mechanism 150.
Support plate 100 can be removed from housing 55 when installation mechanism 200 is in the locked position. For example, support plate 100 can be located at some distance from the front of housing 55 due to a stack of documents 60. To extract support plate 100, access cover 51 is removed from housing 55 and installation mechanism 200 is placed in the locked position. Having installation mechanism in the locked position causes locking tab 220 to come into abutment with protrusion 185 and thus prevents any further forward movement of support plate 100 (i.e., in direction A). With linking gear 205 not in meshing engagement between transfer gear 125 and lower gear 120b, upper gear 120a is still free to rotate about shaft 130a. By pivoting the upper edge of support plate 100 upper gears 120a rotate along rack 59 until they are no longer in contact with rack 59. Once upper gears 120a have been removed from contact with rack 59, lower gears 102b can be lifted upward away from lower rack 59. Once both pairs of gears 120a and 120b are no longer in contact with racks 59, support plate can be rotated and extracted from housing 55.
Other implementations are within the scope of the claims.
This application is a national phase filing under 35 U.S.C. §371 of international patent application number PCT/US2010/049618 filed Sep. 21, 2010, which claims priority U.S. provisional patent application No. 61/244,611 filed Sep. 22, 2009, each of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/049618 | 9/21/2010 | WO | 00 | 7/18/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/037904 | 3/31/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4978416 | Potter et al. | Dec 1990 | A |
6896255 | Fick et al. | May 2005 | B1 |
7481308 | Bergeron et al. | Jan 2009 | B2 |
7789214 | Bergeron et al. | Sep 2010 | B2 |
8146914 | Cost | Apr 2012 | B2 |
Number | Date | Country |
---|---|---|
S5081897 | Jul 1975 | JP |
2004310773 | Nov 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20120273378 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61244611 | Sep 2009 | US |