Does E4orf1 prevent further deterioration in Alzheimer's disease pathology in older mice

Information

  • Research Project
  • 10303933
  • ApplicationId
    10303933
  • Core Project Number
    R21AG068940
  • Full Project Number
    1R21AG068940-01A1
  • Serial Number
    068940
  • FOA Number
    PA-20-195
  • Sub Project Id
  • Project Start Date
    9/30/2021 - 2 years ago
  • Project End Date
    6/30/2023 - 11 months ago
  • Program Officer Name
    MACKIEWICZ, MIROSLAW
  • Budget Start Date
    9/30/2021 - 2 years ago
  • Budget End Date
    6/30/2022 - a year ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    9/20/2021 - 2 years ago
Organizations

Does E4orf1 prevent further deterioration in Alzheimer's disease pathology in older mice

PROJECT SUMMARY/ABSTRACT Alzheimer's disease (AD), is a neurodegenerative disease with associated cognitive decline, dementia and eventual death. There has been significant advancement in our understanding of AD neuropathology, however, there are no therapeutic strategies that consistently relieve cognitive symptoms or prevent, cure or slow its progression. Interestingly, a number of well-designed epidemiological studies have established a link between Type 2 Diabetes (T2D), a chronic, age-related degenerative disorder and AD, identifying T2D as a risk factor for developing all cause dementia and dementia attributable to AD. T2D and AD, together with other neurological conditions, share several clinical and biochemical features. Particularly important amongst these is impaired insulin signaling, suggesting overlapping pathogenic mechanisms. Hence, an effective treatment strategy in one disease could have potential value in the other. Several clinical and basic science studies have shown that anti-diabetic medications can improve cognitive function. Despite promise, none of these strategies have resulted in improving our understanding or effective treatment options. The long-term goal is to dissect shared mechanisms between T2D and AD regulating the molecular pathways in AD progression. These discoveries will facilitate discover effective treatment strategies to prevent AD or its progression. Previous treatment strategies either act in the periphery or directly in the brain, raising the question if peripheral as well as central glycemic control needs to be targeted for influencing AD. Therefore, the central hypothesis is that peripheral hyperinsulinemia contributes to brain insulin resistance and cognitive decline, and that alleviating hyperinsulinemia in both periphery and brain regions will reduce AD-related molecular deterioration. The overall objective of this exploratory grant is to harness the ability of adenoviral protein E4orf1 to reduce peripheral and central hyperinsulinemia and hyperglycemia to attenuate AD progression. The rationale is that restoring normal insulin action and prevention of further impairment in cognition decline will help identify mechanisms to offer new therapeutic opportunities. Using the endogenous insulin sparing action of adenoviral protein E4orf1, the aims will elucidate a previously unidentified therapeutic approach for the effective treatment of AD. This is a paradigm shift from previously used anti-diabetic approaches for AD treatment and will help modify currently available therapies or identify new options for prevention and better clinical management of AD.

IC Name
NATIONAL INSTITUTE ON AGING
  • Activity
    R21
  • Administering IC
    AG
  • Application Type
    1
  • Direct Cost Amount
    125000
  • Indirect Cost Amount
    61400
  • Total Cost
    186400
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    866
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NIA:186400\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    CDIN
  • Study Section Name
    Cell Death in Neurodegeneration Study Section
  • Organization Name
    TEXAS TECH UNIVERSITY
  • Organization Department
    NUTRITION
  • Organization DUNS
    041367053
  • Organization City
    LUBBOCK
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    794091035
  • Organization District
    UNITED STATES