This is directed to an array of domes constructed in a cosmetic conductive material for use in a dome switch assembly. In addition, this is directed to a dome for use with a dome switch, where the dome extends around the side edge of the circuit board on which the switch is provided.
Users can provide inputs to electronic devices using many different approaches. One common approach can include a dome switch. Using a dome switch, a user can short an electrical circuit to provide a detectable input. The dome switch is typically constructed by placing a conductive dome over a contact pad on a circuit board. When the dome is pressed, the dome can invert such that the inner surface of the dome contacts the contact pad. The dome inversion also provides a tactile ‘click’ that enhances the user's interaction with the switch. To actuate the dome switch, a user typically presses a cosmetic piece placed over the dome. In response to the user pressing the cosmetic piece, the dome is in turn is depressed and contacts the contact point.
Individual dome switches are typically constructed by adhering the domes to the circuit board. For example, an adhesive can be used around the periphery of each dome. As another example, a layer of adhesive material (e.g., a layer of tape) can be placed over the surface of the dome and adhere to circuit board. These approaches, however, are typically applied only to individual domes, and do not ensure a water-tight or water resistant fit for the domes. In particular, water can be introduced between the dome and the conductive pad, thus shorting the dome switch.
A sheet of conductive material into which domes are formed is provided for an array of dome switches. The sheet of conductive material can serve as the cosmetic outer surface for the electronic device in which the dome switch array is provided. In some embodiments, the sheet of material, or material for individual domes can be folded over the edge of the circuit board on which the domes are provided, such that the domes are coupled to the underside of the circuit board.
Several domes can be constructed in a single piece of conductive material. For example, several domes can be stamped at a preset distribution within a sheet of metal. The domes can be placed at any suitable position along the surface of the material, including for example at positions defined by the locations of contact pads on a circuit board. The conductive material can be electrically coupled to the circuit board at any suitable location, including for example along an edge of the piece of material. Because the entire piece of material is conductive, the edges of each dome need not be electrically coupled to the circuit board to create an electrical circuit between the circuit board, domes, and contact pads.
In some embodiments, the conductive material can be finished to serve as a cosmetic outer surface of the electronic device. For example, the conductive material can be polished or a label can be placed on the material. In some embodiments, some or all of the body of the electronic device can be manufactured (e.g., injection molded) around the conductive material such that the domes of the conductive material remain exposed for actuation by the user.
In one implementation, the sheet of material can extend around the side walls of the circuit board. For example, the sheet of conductive material can be sized such that it may be bent around the periphery of the circuit board and electrically coupled to the bottom of the circuit board, for example by soldering. This approach may provide a water resistant dome switch, whereby water can be prevented from leaking between the dome and the circuit board.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings in which:
An electronic device can include several input interfaces for detecting inputs provided by a user. In particular, an electronic device can include one or more dome switches exposed to the user.
Using the approach described in connection with
Cover 102 can have any suitable size, cross-section, and number of domes. For example, cover 102 can be constructed from a thin sheet of conductive material into which domes 104 are stamped.
Plate 302 can have any suitable dimensions. In some embodiments, plate 302 can be a substantially rectangular, for example as a 4.0 mm by 27.0 mm rectangle. Plate 302 can have any suitable thickness, including for example a varying thickness. In one implementation, the thickness of domes 304 can be less than that of the other portions of cover 302 to allow the domes to deflect more easily. As another example, domes 304 can have a larger thickness than the other portions of cover 302 to reduce the overall size of the electronic device (e.g., little thickness is needed around the domes because those portions of cover 300 are purely cosmetic). Cover 300 can have any suitable thickness, including for example a thickness in the range of 0.1 mm to 2 mm (e.g., 0.8 mm to 1 mm).
In some embodiments, the thickness, size and distribution of each dome 304 can be selected to provide a particular tactile feedback to the user. In particular, as each dome 304 inverts, the user can feel the dome deflect and bounce back upon release. The force required to deflect the dome can be characterized by a click factor, the measurement of which is well known in the art. The domes in cover 300 can have any suitable click ratio, including for example a ratio in the range of 0.03 to 0.6. In some embodiments, the click ratio for the domes can be larger than 0.3.
In some embodiments, the plate or sheet of material having the domes can be bent (e.g., at 90 degree angles) such that different domes are on different planes. This can allow, for example, a single sheet of material to be used to provide an input interface along several sides of an electronic device. The plate of conductive material can be bent in any suitable shape, including for example based on aesthetic considerations of the electronic device.
The cover having several domes, or individual domes can be coupled to a circuit board using any suitable approach. In some embodiments, the coupling approach selected can provide a water-tight fit.
To close electronic device 400, wall 430 can be coupled to extension 410. In some embodiments, wall 430 and cover 401 can be constructed from the same material (e.g., a metal) to provide a consistent aesthetically pleasing device. Alternatively, additional components can be placed over one or both of cover 401 and wall 430 (e.g., inject mold plastic around cover 401 and wall 430). In some embodiments, the coupling between wall 430 and extension 404 can be a water-tight seal preventing water from shorting the dome switch. To actuate the dome switch, circuit board 410 can include contact pad 412 positioned substantially underneath dome 402. When dome 402 is inverted, the inner surface of the dome can contact pad 412 and close an electrical circuit. If cover 401 is constructed from an electrically conductive material, cover 401 can be electrically coupled to the bottom surface of circuit board 410, for example via solder joints 420, to close to electrical circuit of the dome switch. The solder joint, or other electrically conductive coupling between circuit board 410 and cover 401 can provide a secondary water-tight seal for the dome switch.
To actuate the dome switch, circuit board 510 can include contact pad 512 positioned substantially underneath dome 502. When dome 502 is inverted, the inner surface of the dome can contact pad 512 and close an electrical circuit. If cover 501 is constructed from an electrically conductive material, cover 501 can be electrically coupled to the bottom surface of circuit board 510, for example via solder joints 520, to close to electrical circuit of the dome switch. The solder joint, or other electrically conductive coupling between circuit board 510 and cover 501 can provide a water-tight seal for the dome switch.
The electronic device can be closed using any suitable approach. In some embodiments, housing 530 can be placed around circuit board 520 such that housing 530 is coupled to extension 504 of cover 501. Housing 530 can be manufactured from any suitable material, including for example a metal (e.g., the same conductive material as cover 501), a plastic (e.g., injection molded around cover 501 and circuit board 510), a composite material, or any other suitable material. In some embodiments, the connection between housing 530 and extension 504 can be substantially water-tight to form a barrier around the dome switch. Alternatively, the connection between housing 530 and extension 504 can include one or more openings, for example for sound waves to propagate to or from a microphone or speaker, while ensuring that solder joint 520 provides a water-tight seal around the dome switch.
The above described embodiments of the present invention are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims which follow.
Number | Date | Country | |
---|---|---|---|
61181147 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12552948 | Sep 2009 | US |
Child | 13570639 | US |