Field of the Invention
The present invention relates to domestic appliances, and more particularly to domestic appliances with special-purpose control of door opening.
Discussion of the Related Art
It is conventional for microwave ovens, and other electrical domestic appliances with doors, to employ a purely mechanical, e.g. latched, opening mechanism for the door. For example, published UK patent application GB2410059A discloses domestic electrical appliance such as a refrigerator or microwave oven, with a door that is laterally hinged between a lower supporting hinge and an upper hinge. The upper hinge comprises an angled bracket with a projecting portion and the upper edge of the door is provided with a ramp-shaped slide block that progressively interferes with the projecting portion when the door is opened to angles greater than a predetermined value, for example 130-140 degrees, exerting an increasing resistant torque as the angle of opening increases.
A problem with conventional appliances is that often considerable force must be applied by the user, to a lever, handle or button, to mechanically release the latch or door lock in order to open the door; thus, for example, this can be problematic or unsatisfactory for the disabled and frail to use. Further, for such users, as well as the able bodied, such prior art mechanisms require the user to be physically present at the device to apply the force to open the door.
A further problem, particularly in relation to microwave ovens, is that they do not support automatic (or remote-controlled) opening of the door immediately, or some relatively short time after, cooking is finished (i.e. application of microwave power ceases). For example, it may be undesirable for hot, often steaming, food to remain standing in the oven with the door closed, and there is often a direction associated with the food or meal for it to be left standing in the “open” for some moments, prior to serving.
The present invention provides a domestic appliance, comprising: a housing; a front door; a retention mechanism, located within the housing and engageable with the door; wherein the retention mechanism is movable between a first configuration, in which the door is retained in a closed position, and a second configuration, in which the door is non-engaged; an electromechanical actuator, adapted to move the retention mechanism out of said first configuration; and a controller, coupled to the actuator, the controller being operable in response to one or more signals to activate the actuator, and thereby release the door from the closed position.
Preferably, the retention mechanism includes a rotatable member rotated, in use, by the electromechanical actuator while the actuator is activated; and a spring biasing element; wherein, in use, during at least part of the movement of the retention mechanism between the first configuration and the second configuration, the spring biasing element acts on the door, such that the door rotates to a partially open position. Preferably, in use, the electromechanical actuator moves the rotatable member into a position such that the spring biasing element acts on the door such that the door rotates to the partially open position. Preferably, the rotatable member has a guide surface, the guide surface including a transition point and being disposed such that, in use, a key member attached to the door is capable of sliding contact with the rotatable member along the guide surface; wherein, after the key member has slid beyond the transition point 324, forces due to gravity and to the spring biasing element operate on the door such that the door rotates to the partially open position.
According to one embodiment: the controller is operable in a switch activated mode; the housing is provided thereon with an electrical switch, for example a touch switch, coupled to the controller and operable by a user; and the controller is operable, in use, to activate said actuator when the detected signal from said electrical switch is HIGH.
According to a further embodiment: the controller is alternatively or additionally operable in a remote activated mode; the housing is provided thereon with a wireless receiver unit, for example an infra-red (IR) receiver, coupled to the controller and operable by a user remote unit, for example an IR remote control; and the controller is operable, in use, to activate said actuator when the detected signal from said wireless receiver unit is HIGH.
According to a further embodiment: the appliance is capable of performing a temporary electrical operation, wherein: the controller is alternatively or additionally operable in an auto-open mode, the housing is provided thereon with a user selection interface, for example buttons and/or dials and a display, coupled to the controller and operable by a user, the user selection interface including an auto-open setting selectable, in use, by the user; the controller is coupled for receiving an input signal (HIGH, LOW), indicative of whether the electrical operation in the appliance is on or off, respectively; and the controller is operable, in use, to activate said actuator when the received signal is LOW.
According to a further embodiment: the appliance is capable of performing a temporary electrical operation, wherein: the controller is alternatively or additionally operable in an delayed auto-open mode; the controller is coupled to a memory device, for storing a time period; the controller is coupled for receiving an input signal (HIGH, LOW), indicative of whether the electrical operation in the appliance is on or off, respectively; and whereby the controller is operable, in use, to activate said actuator when the controller determines that (a) the received signal is LOW, and (b) said time period has elapsed. Preferably, the user selection interface includes an delayed auto-open setting selectable, in use, by the user; wherein the user selection interface is operable by the user for inputting said time period prior to storage in the memory device. For example, the time period may be approximately (a) 1-20 seconds, (b) up to 1 minute, or (c) 1-5 minutes. However, in practice the period may be any number of minutes up to an hour, or any number of hours (e.g. up to 24), or any enumerable amount of time.
In alternative embodiments, instead of being operable in response to a detected or received signal being HIGH, the controller is operable in response to (a) the detected or received signal being LOW, or (b) vice versa, or (c) the detected or received signal undergoing any predetermined detectable change in state or voltage level.
Suitably, the electromagnetic actuator comprises a solenoid, the armature of the solenoid cooperating, in use with the retention mechanism.
Suitably, the appliance is (a) an oven, and the temporary electrical operation is cooking by means of any combination of microwave, grill, convection or steaming, or (b) a breadmaker, yoghurt maker or the like, and the temporary electrical operation is electrical warming or heating.
Using techniques according to the invention, appliances such as microwave ovens can be opened with very little manual effort from the user, e.g. via touch switch or remote control, benefiting those of a frail disposition.
The invention enables the appliance to open automatically, such as the end of electrical (microwave, grill, convective) cooking. This can reduce the amount of moisture build-up on the interior of the oven due to steam.
Embodiments of the invention will now be described in detail, by way of example, with reference to the accompanying drawings, in which:
In the description and drawings, like numerals are used to designate like elements.
This invention concerns domestic appliances having a hinged door, such as ovens, fridges, freezers and the like. The invention is, for example, particularly beneficial in relation to microwave ovens. However, the invention is applicable to electrical domestic whether freestanding or adapted for built-in installation, i.e. installed within a framework or outer housing, or are mounted with kitchen or other household furniture (sometimes known as “slot-in” or “built-in” appliances).).
The present invention provides a domestic appliance, comprising: a housing; a front door; a retention mechanism, located within the housing and engageable with the door; wherein the retention mechanism is movable between a first configuration, in which the door is retained in a closed position, and a second configuration, in which the door is non-engaged; an electromechanical actuator, adapted to move the retention mechanism out of said first configuration; and a controller, coupled to the actuator, the controller being operable in response to one or more signals to activate the actuator, and thereby release the door from the closed position.
Preferably, the retention mechanism includes a rotatable member rotated, in use, by the electromechanical actuator while the actuator is activated; and a spring biasing element; wherein, in use, during at least part of the movement of the retention mechanism between the first configuration and the second configuration, the spring biasing element acts on the door, such that the door rotates to a partially open position. Preferably, in use, the electromechanical actuator moves the rotatable member into a position such that the spring biasing element acts on the door such that the door rotates to the partially open position. Preferably, the rotatable member has a guide surface, the guide surface including a transition point and being disposed such that, in use, a key member attached to the door is capable of sliding contact with the rotatable member along the guide surface; wherein, after the key member has slid beyond the transition point 324, forces due to gravity and to the spring biasing element operate on the door such that the door rotates to the partially open position.
According to one embodiment: the controller is operable in a switch activated mode; the housing is provided thereon with an electrical switch, for example a touch switch, coupled to the controller and operable by a user; and the controller is operable, in use, to activate said actuator when the detected signal from said electrical switch is HIGH.
According to a further embodiment: the controller is alternatively or additionally operable in a remote activated mode; the housing is provided thereon with a wireless receiver unit, for example an infra-red (IR) receiver, coupled to the controller and operable by a user remote unit, for example an IR remote control; and the controller is operable, in use, to activate said actuator when the detected signal from said wireless receiver unit is HIGH.
According to a further embodiment: the appliance is capable of performing a temporary electrical operation, wherein: the controller is alternatively or additionally operable in an auto-open mode, the housing is provided thereon with a user selection interface, for example buttons and/or dials and a display, coupled to the controller and operable by a user, the user selection interface including an auto-open setting selectable, in use, by the user; the controller is coupled for receiving an input signal (HIGH, LOW), indicative of whether the electrical operation in the appliance is on or off, respectively; and the controller is operable, in use, to activate said actuator when the received signal is LOW.
According to a further embodiment: the appliance is capable of performing a temporary electrical operation, wherein: the controller is alternatively or additionally operable in an delayed auto-open mode; the controller is coupled to a memory device, for storing a time period; the controller is coupled for receiving an input signal (HIGH, LOW), indicative of whether the electrical operation in the appliance is on or off, respectively; and whereby the controller is operable, in use, to activate said actuator when the controller determines that (a) the received signal is LOW, and (b) said time period has elapsed. Preferably, the user selection interface includes an delayed auto-open setting selectable, in use, by the user; wherein the user selection interface is operable by the user for inputting said time period prior to storage in the memory device. For example, the time period may be approximately (a) 1-20 seconds, (b) up to 1 minute, or (c) 1-5 minutes. However, in practice the period may be any number of minutes up to an hour, or any number of hours (e.g. up to 24), or any enumerable amount of time.
In alternative embodiments, instead of being operable in response to a detected or received signal being HIGH, the controller is operable in response to (a) the detected or received signal being LOW, or (b) vice versa, or (c) the detected or received signal undergoing any predetermined detectable change in state or voltage level.
Suitably, the electromagnetic actuator comprises a solenoid, the armature of the solenoid cooperating, in use with the retention mechanism.
Suitably, the appliance is (a) an oven, and the temporary electrical operation is cooking by means of any combination of microwave, grill, convection or steaming, or (b) a breadmaker, yoghurt maker or the like, and the temporary electrical operation is electrical warming or heating.
Using techniques according to the invention, appliances such as microwave ovens can be opened with very little manual effort from the user, e.g. via touch switch or remote control, benefiting those of a frail disposition.
The invention enables the appliance to open automatically, such as the end of electrical (microwave, grill, convective) cooking. This can reduce the amount of moisture build-up on the interior of the oven due to steam.
In the control panel 104 is a display 108, typically a LED numeric display, for example displaying current time and remaining cooking time; however, it will be appreciated that many forms of display, e.g. LCD, may be used. Also provided are a number of control/selection buttons 110, a dial 112 and a door release switch 114. In accordance with this embodiment of the invention, the control/selection buttons 110 and the door release switch 114 are of the momentary switch type, or more preferably the touch switch type. Persons skilled in the art will appreciate that known membrane, tactile or touch switch components, or any other similar switch types, may be used.
Referring to
Based on the status of the inputs from the touch switch 206, the IR receiver module 208, the controller 202 controls the actuation of the solenoid 212 via driver circuit 214. Thus, the controller 202 is able to implement several modes of door opening—
(i) following user actuation of touch switch,
(ii) automatically after microwave power goes off,
(ii) automatically a certain time after microwave power going off, and
(iv) following receipt of command via IR remote control.
Alternatively, the door may be opened as a result of some other predefined sequence, such as prompting the user to stir or turn over food currently being cooked.
There is described below in pseudocode just one example of a procedure for use by the controller 202 for controlling the actuation of the solenoid 212. However, it will be appreciated by persons skilled in the art that other suitable procedure may be used to implement some or all of the techniques according to embodiments of the invention.
While system is on do
Referring to
During the door opening action, the hook spacer 308 rotates about axis 310, and a first sloping portion 312 of the hook spacer 308 abuts and pushes upwards upon a tip 314 of door key 316.
Accordingly (referring to
Referring to
Referring now to
Although particular embodiment(s) of the present invention have been shown and described, it will be understood that it is not intended to limit the invention to the preferred embodiment(s) and it will be obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention. Thus, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the claims.
All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | Kind |
---|---|---|---|
0612374.9 | Jun 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/005545 | 6/22/2007 | WO | 00 | 12/20/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/147628 | 12/27/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3823294 | Takayama et al. | Jul 1974 | A |
4360723 | Fukuda et al. | Nov 1982 | A |
4374320 | Barnett | Feb 1983 | A |
4450335 | Shimizu et al. | May 1984 | A |
4825027 | Yoon | Apr 1989 | A |
5493099 | McWilliams, III | Feb 1996 | A |
5801363 | Michaluk, III | Sep 1998 | A |
5886644 | Keskin et al. | Mar 1999 | A |
6137096 | Seo | Oct 2000 | A |
6525644 | Stillwagon | Feb 2003 | B1 |
20020014486 | Chun | Feb 2002 | A1 |
20040108106 | Clark et al. | Jun 2004 | A1 |
20040255929 | Miller et al. | Dec 2004 | A1 |
20050121919 | Smock et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
4040424 | Jun 1992 | DE |
4229731 | Apr 1993 | DE |
031 142 | Jul 1981 | EP |
0342307 | Nov 1989 | EP |
0 917 404 | May 1999 | EP |
1457579 | Apr 1973 | GB |
WO 2007147628 | Dec 2007 | WO |
Entry |
---|
International Search Report issued in the parallel GB case (GB0612374.9) dated Sep. 26, 2006. |
International Search Report and Written Opinion dated Aug. 22, 2007, for International Application No. PCT/EP2007/005545, dated Sep. 14, 2007, 8 pp. |
International Preliminary Report on Patentability dated Jul. 4, 2008, for International Application No. PCT/EP2007/005545, dated Oct. 15, 2008, 8 pp. |
Number | Date | Country | |
---|---|---|---|
20110139772 A1 | Jun 2011 | US |