The present disclosure generally relates to refrigerators, freezers, and other refrigeration devices and more specifically to door alarm systems for refrigeration devices.
Refrigerators typically sound an audible alarm when a door to either the freezer compartment or fresh food compartment remains open for a predetermined period of time. By sounding an alarm, a person may be prompted to close the door. In this manner, the refrigerator may avoid spoilage resulting from increased internal temperature of the freezer and fresh food compartments.
Door alarms may be helpful when a door to either compartment is inadvertently left open since sounding an alarm may bring attention to the undesirable and unintended condition of the refrigerator. However, as noted above, refrigerators sound an alarm after a predetermined period of time has past. By the time the refrigerator sounds the alarm, the person who opened the door may no longer be in the immediate vicinity. As such, the alarm may go unheard, and appropriate remedial action may not occur. Situations in which the alarm goes unanswered are more likely when the door fails to close due to an obstruction. In such situations, the person who opened the door is more likely to walk away from the refrigerator unaware that the door did not close properly.
Shown in and/or described in connection with at least one of the figures, and set forth more completely in the claims are systems and methods that detect failed attempts at closing a door of a refrigerator, freezer, or other refrigeration device and activate an alarm in response to detecting such an unsuccessful attempt.
These and other advantages, aspects and novel features of the present disclosure, as well as details of illustrated embodiments thereof, will be more fully understood from the following description and drawings.
In some embodiments, a door alarm system may monitor a door and detect a failed attempt at closing the door. In response to detecting the failed attempt, the door alarm system may generate a notification of the detected, failed attempt so that remedial action may be taken. In some embodiments, the door alarm system may monitor a door of a refrigeration device such as a door to a freezer compartment or fresh food compartment of a refrigerator.
Referring to
Further details of the refrigeration device 10 are shown in
As show, the refrigeration device 10 may further include a main microcontrol unit (MCU) 40. The main MCU 40 may be configured to control operation of various aspects of the refrigeration device 10. To this end, the main MCU 40 may include a processor 42, a memory 44, one or more I/O ports 46, and a network interface 48. In some embodiment, the processor 42, the memory 44, the I/O ports 46, and the network interface 48 may be implemented with separate, discrete components. In other embodiments, the processor 42, the memory 44, the I/O ports 46, and the network interface 48 may be provided by a single-chip microcontroller, which are available from various vendors.
The processor 42 may be configured to execute instructions, manipulate data and generally control operation of other components of the refrigeration device 10 as a result of its execution. The memory 44 may include various types of random access memory (RAM) devices, read only memory (ROM) devices, flash memory devices, and/or other types of volatile or non-volatile memory devices. In particular, such memory devices of the memory 44 may store instructions and/or data to be executed and/or otherwise accessed by the processor 42.
The I/O ports 46 may generally provide the main MCU 40 with the ability to send and receive data signals. In particular, one or more I/O ports 46 may be coupled to other components of the refrigeration device 10 to permit the exchange of data and other communications between the main MCU unit 40 and the other components. Moreover, one or more I/O ports 46 may be coupled to various sensors used to monitor aspects of the refrigeration device 10.
The network interface 48 may enable communication with external computing devices such as laptop computing devices, tablet computing device, smart phones, etc. via a network. To this end, the network interface 48 may include a wired network interface such as an Ethernet (IEEE 802.3) interface, a wireless network interface such as a WiFi (IEEE 802.11) interface, a radio or mobile interface such as a cellular interface (GSM, CDMA, LTE, etc.), and/or some other type of network interface capable of providing a communications link between the main MCU 40 and another computing device. In some other embodiments, the main MCU 40 may be implemented without the network interface 48. In such embodiments, the refrigeration device 10 may simply operate without networking capabilities.
The main MCU 40 may be configured to control operation of the refrigeration system 22. To this end, the refrigeration device 10 may further include temperature sensor 52, 54 coupled to I/O ports 46 of the main MCU 40. The temperature sensors 52, 54 may be respectively positioned in the freezer compartment 12 and the fresh food compartment 14. Based on signals received from temperature sensor 52, 54, the main MCU 40 may determine the internal temperature of the refrigerated compartments 12, 14 and may adjust the operation of the refrigeration system 22 to maintain the refrigerated compartments 12, 14 at desired temperature levels.
The main MCU 40 may be further configured to detect whether the doors 16, 18 are open or closed. To this end, the refrigeration device 10 may further include open door sensors 56, 58 that are coupled to I/O ports 46 of the main MCU 40. The open door sensors 56, 58 may provide the main MCU 40 with signals indicative of an open state or a closed state for an associated door 16, 18. In particular, the open door sensor 56 may be mounted such that a spring-loaded actuator of the open door sensor 56 is compressed by the freezer door 16 when the door 16 is closed. Similarly, the open door sensor 58 may be mounted such that a spring-loaded actuator of the open door sensor 58 is compressed by the fresh food door 18 when the door 18 is closed. When either door 16, 18 is opened, the actuator of the respective open door sensor 56, 58 may move outwardly, thereby causing the respective open door sensor 56, 58 to provide the main MCU 40 with a signal that indicates that the associated door 16, 18 is open. When either door 16, 18 is closed, the actuator of the respective sensor 56, 58 may move inwardly, thereby causing the respective open door sensor 56, 58 to provide the main MCU 40 with a signal that indicates that the associated door 16, 18 is closed.
The main MCU 40 may further generate notifications regarding detected status of the refrigeration device 10. To this end, a speaker 60 may be coupled to an I/O port 46 of the main MCU 40. The main MCU 40 may generate a door alarm notification by driving the speaker 60 to sound an audible alarm. The main MCU 40 may generate such a door alarm notification in response to either the freezer door 16 or the fresh food door 18 remaining open for more than a predetermined period of time. Furthermore, the main MCU 40 may also generate a door alarm notification by driving the speaker 60 to sound an audible alarm in response to detecting a failed attempt at closing either door 16, 18.
In some embodiments, the main MCU 40 may generate the door alarm notification immediately after detecting the failed attempt at closing either door 16, 18. In some embodiments, the main MCU 40 may generate the notification within 1 second, within 5 seconds, or within 10 seconds of detecting the failed attempt at closing either door 16, 18. Generating the notification so shortly after detecting the failed attempt may ensure that the person closing the door is still in the vicinity of the refrigeration device 10 when the notification is sent so that remedial action may be taken.
Besides sounding alarms, the main MCU 40 may also generate notifications and send such notifications via the network interface 48. For example, instead of, or in addition to, sounding an alarm via the speaker 60, the main MCU 40 may generate and send an email message, a short message service (SMS) message, an instant message, a push notification, or some other electronic message via the network interface 48 in order to notify a user of a detected status such as a detected open door, a detected failed attempt at closing a door, or some other detected status.
As shown in
The processor 74 may be configured to execute instructions, manipulate data and generally control operation of other components of the door alarm system 70 as a result of its execution. The memory 76 may include various types of random access memory (RAM) devices, read only memory (ROM) devices, flash memory devices, and/or other types of volatile or non-volatile memory devices. In particular, such memory devices of the memory 76 may store instructions and/or data to be executed and/or otherwise accessed by the processor 74.
Finally, the I/O ports 76 may generally provide the door alarm MCU 72 with the ability to send and receive data signals. In particular, one or more I/O ports 76 may be coupled to the main MCU 40 of the refrigeration device 10 to permit the exchange of data and other communications between the main MCU unit 40 and the door alarm MCU 72. Moreover, one or more I/O ports 76 may be coupled to door sensors 82, 86 used to monitor the freezer door 16 and the fresh food door 18.
The freezer door sensor 82 may be positioned to monitor the freezer door 16 and provide the door alarm MCU 72 with a status signal indicative of a position of the freezer door 16. Similarly, the fresh food door sensor 86 may be positioned to monitor the fresh food door 18 and provide the door alarm MCU 72 with a status signal indicative of a position of the fresh food door 18. In one embodiment, each sensor 82, 86 includes an angle sensor which detects an angle of the respective door 16, 18 with respect to a stationary part of the refrigeration device 10 and generates a status signal indicative of the detected angle. More specifically, as shown in
In some embodiments, each angle sensor 92, 94 may be implemented with an AS5048A sensor, which is available from ams Sensor Solutions Germany GmbH. The AS5048A sensor is a 14-bit magnetic rotary position sensor with digital interface. The AS5048A sensor may be attached to the hinges 17, 19, and may generate a digital reading indicative of the relative angle α1, α2. The AS5048A sensor may be further coupled to an I/O port 78 of the door alarm MCU 72 via a serial peripheral interface (SPI) so that the door alarm MCU 72 may obtain a reading of the relative angle α1, α2 from the angle sensor 92, 94. While each angle sensor 92, 94 may be implemented with an AS5048A sensor, other embodiments may use other angle sensors that are capable of monitoring the relative angle α1, α2 and providing a reading of such angle α1, α2.
In another embodiment, each sensor 82, 86 may include a linear distance sensor which detects a distance between the refrigerated compartment 12, 14 and the respective door 16, 18. More specifically, as shown in
In general, the distance sensors 102, 106 may each include an emitter and a detector. For example, the distance sensor 102 may include an infrared (IR) emitter 103 positioned on the front surface 11 of the freezer compartment 12 and an IR detector 104 positioned on the facing surface 21 of the freezer door 16. The IR emitter 103 may emit infrared energy with a beam angle of 20° and a wavelength of 850-950 nanometers (nm). The IR detector 104 may receive the emitted infrared energy and provide the distance sensor 102 with a signal indicative of the received energy. Based upon such signal received from the IR detector 104, the distance sensor 102 may generate a measurement of the distance d1 between the front surface 11 of the freezer compartment 12 and the facing surface 21 of the freezer door 16. While
The distance sensor 106 may be implemented in a similar manner with an IR emitter 107 on the front surface 13 of the compartment 14 and an IR detector 108 on the facing surface 23 of the fresh food door 18; or with the IR detector 108 on the front surface 13 of the compartment 14 and the IR emitter 107 on the facing surface 23 of the fresh food door 18. In this manner, the distance sensor 106 may generate a measurement of the distance d2 between the front surface 13 of the fresh food compartment 14 and the facing surface 23 of the fresh food door 18. Furthermore, while distance sensors 102, 106 have been described as IR sensors, distance sensors 102, 106 may be implemented using other forms of radiation such as acoustical, laser, or radio radiation.
Referring now to
At 610, the main MCU 40 may detect the fresh food door 18 has been opened. The MCU 40, in response to detecting that the fresh food door 18 has been open, may inform the door alarm MCU 72 of the detected state of the fresh food door 18. In particular, in response to the fresh food door 18 being opened, the actuator of the open door sensor 58 for the fresh food door 18 may move outwardly. Due to the outward movement of the actuator, the open door sensor 58 may provide the main MCU 40 with a signal indicating that the fresh food door 18 has been opened. The main MCU 40 may in turn provide the door alarm MCU 72 with a signal indicating that the fresh food door 18 has been opened.
In response to receiving the signal from the main MCU 40, the door alarm MCU 72 at 620 may begin to monitor the relative angle α2 of the fresh food door 18 via the angle sensor 94 to detect an attempt at closing door 18. At 630, the door alarm MCU 72 may detect, based on the detected angle α2, that the door 18 is moving from an open state toward a closed state and that an attempt to close the door 18 has commenced. In particular, the door alarm MCU 72 may determine that a person is attempting to close the door 18 in response to detecting that the detected angle α2 has decreased below a predetermined threshold angle αT2. In this manner, the door alarm MCU 72 does not determine that a person is attempting to close the fresh food door 18 when the door 18 is in the process of being opened. In particular, during the process of opening the fresh food door 18, the detected angle α2 is increasing. As such, even though the detected angle α2 may be less than the predetermined threshold angle αT2, the door alarm MCU 72 may determine that the door 18 is opening and not closing and thus does not inaccurately determine that someone is attempting to close the door 18.
In some embodiments, the predetermined threshold angle αT2 is 20°. However, other embodiments may utilize other threshold angles that are good indications that a person intended to close the door 18. For example, some embodiments may define the predetermined threshold angle αT2 any angle less than 25°, any angle less than 20°, any angle between 25° and 5°, or any angle between 20° and 10°.
If the door alarm MCU 72 at 630 does not detect an intent or attempt to close the door 18, then the door alarm MCU 72 may return to 620 and continue to monitor the angle α2 of the door 18 for an intent to close the door 18. Otherwise, the door alarm MCU 72 may proceed to 640 to attempt to detect a failed attempt at closing the door 18. At 640, the door alarm MCU 72 may determine whether the attempt at closing the door 18 failed. For example, if the rate of change for the detected angle α2 decreased by more than a threshold level TAstop and the door 18 is not closed, then the door alarm MCU 72 may determine that the attempt at closing the door 18 failed due to the door 18 likely hitting an obstruction. Furthermore, if the door alarm MCU 72 determines via the rate of change for the detected angle α2 that the door 18 slowly came to a stop and the door 18 is not closed, then again the door alarm MCU 72 may determine that the attempt at closing the door 18 failed.
In response to determining that the attempt at closing the door 18 failed, the door alarm MCU 72 at 650 may request the main MCU 40 to generate a door alarm notification. In response to such request, the main MCU 40 at 660 may generate a door alarm notification that informs a user that the door 18 failed to close. For example, the main MCU 40 may sound an alarm via speaker 60, send a notification message via network interface 48, or both.
If the door alarm MCU 72 at 640 determines the door 18 is closed, then the door alarm MCU 72 may determine that the door 18 was successfully closed. As such, the door alarm MCU 72 may proceed to 670. At 670, the door alarm MCU 72 may cease monitoring the angle α2 of the door 18 and may enter a sleep state to conserve energy. In some embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to the detected angle α2 having a predetermined relationship (e.g., less than or equal to) a predetermined value such as 0°. In some embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to receiving signals from the main MCU 40 that indicate that the door 18 is closed. For example, the main MCU 40 may send such a signal in response to the actuator of the open door sensor 58 being compressed by the door 18.
After generating the door alarm notification, the main MCU 40, the door alarm MCU 72, or both may continue to monitor the door 18 at 680 to determine when the door 18 is closed. In response to detecting that the door 18 is closed, the main MCU 40, the door alarm MCU 72, or both may reset the alarm at 690. For example, the main MCU 40 may detect that the door 18 has closed via the open door sensor 58 for the door 18 and instruct the door alarm MCU 72 to proceed to 670 in order to cease monitoring the angle of the door 18 and enter a sleep state. In other embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to the detected angle α2 having a predetermined relationship (e.g., less than or equal to) a predetermined value such as 0°.
Referring now to
At 710, the main MCU 40 may detect the fresh food door 18 has been opened. The MCU 40, in response to detecting that the fresh food door 18 has been open, may inform the door alarm MCU 72 of the detected state of the fresh food door 18. In particular, in response to the fresh food door 18 being opened, the actuator of the open door sensor 58 for the fresh food door 18 may move outwardly. Due to the outward movement of the actuator, the open door sensor 58 may provide the main MCU 40 with a signal indicating that the fresh food door 18 has been opened. The MCU 40 may in turn provide the door alarm MCU 72 with a signal indicating that the fresh food door 18 has been opened.
In response to received the signal from the main MCU 40, the door alarm MCU 72 at 720 may begin to monitor the distance d2 between the front surface 13 of the compartment 14 and the facing surface of the fresh food door 18 via the distance sensor 106 to detect an attempt at closing door 18. At 730, the door alarm MCU 72 may detect, based on the detected distance d2, that the door 18 is moving from an open state toward a closed state and that an attempt to close the door 18 has commenced. In particular, the door alarm MCU 72 may determine that a person is attempting to close the door 18 in response to detecting that the detected distance d2 is decreasing. In this manner, the door alarm MCU 72 does not determine that a person is attempting to close the fresh food door 18 when the door 18 is in the process of being opened. Moreover, since the distance sensor 106, as note above, provides a limited range, e.g., 0-200 millimeters, the door alarm MCU 72 does not register or detect an attempt at closing the door 18 until the door 18 is nearly closed. In particular, after fully opening the door 18, if a person merely closes the door 18 a few inches, the door alarm MCU 72 will not falsely detect this slight change in the door's position as an attempt at closing the door 18 since the door 18 will remain out of range of its distance sensor 106.
If the door alarm MCU 72 at 730 does not detect an intent or attempt to close the door 18, then the door alarm MCU 72 may return to 720 and continue to monitor the distance d2 of the door 18 for an intent to close the door 18. Otherwise, the door alarm MCU 72 may proceed to 740 to attempt to detect a failed attempt at closing the door 18. At 740, the door alarm MCU 72 may determine whether the attempt at closing the door 18 failed. For example, if the rate of change for the detected distance d2 decreased by more than a threshold level TDstop and the door 18 is not closed, then the door alarm MCU 72 may determine that the attempt at closing the door 18 failed due to the door 18 likely hitting an obstruction. Furthermore, if the door alarm MCU 72 determines via the rate of change for the detected distance d2 that the door 18 slowly came to a stop and the door 18 is not closed, then again the door alarm MCU 72 may determine that the attempt at closing the door 18 failed.
In response to determining that the attempt at closing the door 18 failed, the door alarm MCU 72 at 750 may request the main MCU 40 to generate a door alarm notification. In response to such request, the main MCU 40 at 760 may generate a door alarm notification that informs a user that the door 18 failed to close. For example, the main MCU 40 may sound an alarm via speaker 60, send a notification message via network interface 48, or both.
If the door alarm MCU 72 at 740 determines the door 18 is closed, then the door alarm MCU 72 may determine that the door 18 was successfully closed. As such, the door alarm MCU 72 may proceed to 770. At 770, the door alarm MCU 72 may cease monitoring the distance d2 of the door 18 and may enter a sleep state to conserve energy. In some embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to detecting that distance d2 has a predetermined relationship (e.g., less than or equal to) a predetermined value such as 0 millimeters. In some embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to receiving signals from the main MCU 40 that indicate that the door 18 is closed. For example, the main MCU 40 may send such a signal in response to the actuator of the open door sensor 58 being compressed by the door 18.
After generating the notification, the main MCU 40, the door alarm MCU 72, or both may continue to monitor the door 18 at 780 to determine when the door 18 is closed. In response to detecting that the door 18 is closed, the main MCU 40, the door alarm MCU 72, or both may reset the alarm at 790. For example, the main MCU 40 may detect that the door 18 has closed via the open door sensor 58 for the door 18 and instruct the door alarm MCU 72 to proceed to 770 in order to cease monitoring the angle of the door 18 and enter a sleep state. In other embodiments, the door alarm MCU 72 may determine that the door 18 is closed in response to the detected angle α2 having a predetermined relationship (e.g., less than or equal to) a predetermined value such as 0°.
Various embodiments have been described herein by way of example and not by way of limitation in the accompanying figures. For clarity of illustration, exemplary elements illustrated in the figures may not necessarily be drawn to scale. In this regard, for example, the dimensions of some of the elements may be exaggerated relative to other elements to provide clarity. Furthermore, where considered appropriate, reference labels have been repeated among the figures to indicate corresponding or analogous elements.
Moreover, certain embodiments may be implemented as a plurality of instructions on a tangible, computer readable storage medium such as, for example, flash memory devices, hard disk devices, compact disc media, DVD media, EEPROMs, etc. Such instructions, when executed by one or more computing devices, may result in the one or more computing devices such as the MCUs 40, 72 performing various aspects of the processes depicted in
While the present disclosure has described certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the intended scope of protection. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. Therefore, it is intended that the present disclosure not be limited to the particular embodiment or embodiments disclosed, but encompass all embodiments falling within the scope of the appended claims.
The present application is a continuation of U.S. application Ser. No. 17/017,983, filed Sep. 11, 2020, now U.S. Pat. No. 11,435,137, which is a continuation of U.S. application Ser. No. 16/020,237, filed Jun. 27, 2018, now U.S. Pat. No. 10,775,102, which is a continuation of U.S. application Ser. No. 15/147,588, filed May 5, 2016, now U.S. Pat. No. 10,036,588. The aforementioned documents are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4528558 | Steers et al. | Jul 1985 | A |
4566285 | Tershak et al. | Jan 1986 | A |
5451930 | McDaniel | Sep 1995 | A |
5479152 | Walker et al. | Dec 1995 | A |
6811236 | Spong | Nov 2004 | B1 |
9951989 | Xia et al. | Apr 2018 | B2 |
20050178131 | Ryu et al. | Aug 2005 | A1 |
20130099715 | Fuhge | Apr 2013 | A1 |
20140313328 | Park et al. | Oct 2014 | A1 |
20160165114 | Kim et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2005172299 | Jun 2005 | JP |
2005172301 | Jun 2005 | JP |
Entry |
---|
“Precision Hall Effect Angle Sensor IC with I2C Interface”, Allegro MicroSystems, LLC, A1332, dated Dec. 1, 2015, 20 pages. |
“14-bit Resolution”, www.ams.com/AS5048, dated Nov. 2012, 2 pages. |
“14-bit Rotary Position Sensor with Digital Interface”, AS5048A, ww.ams.com, dated Jun. 26, 2013, 8 pages. |
“optoNCDT//Laser Triangulation Displacement Sensors”, Micro-Epsilon, dated Apr. 2016, 8 pages. |
“Digital IR Line Sensor—QRE1113”, www.robotshop.com/en/sfe-digital-ir-line-sensor-qre1113.html, dated Apr. 27, 2016, 3 pages. |
“Industry Standard Laser Sensor”, www.micro-epsilon.com/displacement-position-sensors/laser-sensor/optoNCDT_1700_basic/index.html, dated Apr. 27, 2016, 2 pages. |
“QRE1113, QRE1113GR Miniature Reflective Object Sensor”, Fairchild Semiconductor Corporation, dated Sep. 2009, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20230014709 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17017983 | Sep 2020 | US |
Child | 17902006 | US | |
Parent | 16020237 | Jun 2018 | US |
Child | 17017983 | US | |
Parent | 15147588 | May 2016 | US |
Child | 16020237 | US |