This invention relates to door assemblies with vented insulated glazing units (IGU), and to methods of making and using the same.
Traditional solid wood doors have become relatively expensive due to raw material costs. A commonplace alternative to traditional solid wood doors in residential and commercial buildings is a door assembly that includes a rectangular doorframe of stiles and rails, and door skins secured to the opposite sides of the doorframe. The door skins can be made of, for example, steel, fiberglass composites, cellulosic (e.g., wood) composites, high density fiberboard (HDF), medium density fiberboard (MDF), and other materials. The door cavity between the door skins typically includes a core. The core can be a pre-formed structure or formed in situ, such as by injecting a foam precursor composition into the door cavity and allowing the precursor composition to expand and fill the door cavity with foam. Wood grain can be molded or embossed onto the exterior surfaces of the door skins. Further, paneling can be formed in the exterior surfaces of the door skins to give an appearance that simulates solid wood products.
The door assemblies may also include glazing inserts, especially IGUs, which are typically double-glazing (double-pane) or triple-glazing (triple-pane) structures with a sealed cavity between the panes. U.S. Pat. Nos. 9,290,989, 9,125,510, and 9,080,380 and U.S. Application Publication Nos. 2016/0010386 and 2008/0245003, each assigned to Masonite Corporation, disclose door assemblies including IGUs.
The inventors have determined that issues may arise when the door assembly construction does not permit gas flow exchange between the sealed cavity of the IGU and the outside atmosphere/environment. A lack of pressure balance between the IGU sealed cavity and the outside atmosphere can result in deflection of glazing panes—either inwardly towards the sealed cavity or outwardly away from the sealed cavity. A pressure differential can arise due to changes in temperature and/or altitude (for example, during shipping of the IGU-containing door assembly). Deflection of glazing panes caused by a pressure differential is particularly noticeable with Simulated Divided Lite (SDL) glazing units, such as when grilles of the SDL structure are applied on external or internal surfaces of the glazing panes. When the panes deflect inward or outward, for example due to temperature or altitude changes, the grilles deflect with the glazing panes or separate from the glazing panes, so that the IGU does not accurately simulate the appearance of a true divided light IGU. Lack of pressure balance in the IGU may also create stress along the sealed perimeter of the IGU. This can result in failure of the IGU's seal, thereby reducing the life of the IGU. In the case of IGUs with components such as blinds inside the sealed cavity, inward deflection (bowing) of the glazing panes can interfere with the blind raise/lower and/or tilting mechanism(s), resulting in performance issues.
A first aspect of the invention provides a door assembly including a doorframe having opposite first and second sides, an insulated glazing unit (IGU), first and second door skins, a door core component, and a gas passageway. The insulated glazing unit includes a substantially sealed IGU cavity and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective openings within which the insulated glazing unit is provided. The door core component is positioned within a door cavity between the first and second door skins and in direct contact with the insulated glazing unit. The gas passageway provides gas communication between the sealed IGU cavity and the atmosphere outside the door assembly. The gas passageway may include a gas passage conduit, e.g. a capillary, passing through at least a portion of the door core component, and including a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with the atmosphere outside of the door assembly.
A second aspect of the invention provides a door assembly including a doorframe having opposite first and second sides, an insulated glazing unit, first and second door skins, a gas passage conduit, and a channel. The insulated glazing unit includes an IGU spacer, a first glazing pane having a first exterior surface, a second glazing pane having a second exterior surface that is opposite to the first exterior surface, a substantially sealed IGU cavity, and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective openings within which the insulated glazing unit is provided. The first door skin has a first lip secured directly to the first exterior surface of the first glazing pane of the insulated glazing unit and the second door skin has a second lip secured directly to the second exterior surface of the second glazing pane. The gas passage conduit includes a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with an air pocket within the door assembly. The channel connects the air pocket with atmosphere outside of the door assembly. The gas passage conduit, the air pocket, and the channel provide a gas passageway for gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
A third aspect of the invention provides a door assembly including a doorframe having opposite first and second sides, an insulating glazing unit, first and second door skins, and a gas passage conduit. The insulated glazing unit includes a substantially sealed IGU cavity and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective first and second openings within which the insulated glazing unit is provided. The gas passage conduit includes a first end communicating with the substantially sealed IGU cavity through the first hole and a second end extending to and communicating with a second hole or an air pocket in the doorframe that communicates with atmosphere outside of the door assembly. The gas passage conduit and the air pocket provide a gas passageway to effect gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
A fourth aspect of the invention provides a method of making a door assembly. An insulated glazing unit (IGU) is provided between openings of first and second door skins, and the first and second door skins are respectively secured to opposite first and second sides of a doorframe. The insulated glazing unit has a first hole communicating with a substantially sealed IGU cavity of the insulated glazing unit. A first end of a gas passage conduit is positioned in communication with the first hole of the insulated glazing unit, and a second end of the gas passage conduit is positioned in communication with atmosphere outside of the door assembly to permit gas exchange between the IGU cavity and the atmosphere outside of the door assembly. A door core component is positioned within a door cavity between the first and second door skins and in direct contact with the insulated glazing unit, and the gas passage conduit passes through at least a portion of the door core component.
A fifth aspect of the invention provides a method of making a door assembly. An insulated glazing unit (IGU) is provided between openings of first and second door skins, and the first and second door skins are respectively secured to opposite first and second sides of a doorframe. The insulated glazing unit has a first hole communicating with a substantially sealed IGU cavity of the insulated glazing unit. The first door skin has a first lip secured directly to a first exterior surface of a first glazing pane of the insulated glazing unit and the second door skin has a second lip secured directly to a second exterior surface of a second glazing pane of the insulated glazing unit. A first end of a gas passage conduit is positioned in communication with the first hole of the insulated glazing unit, and a second end of the gas passage conduit is positioned in communication with an air pocket within the door assembly. The door assembly further includes a channel connecting the air pocket with atmosphere outside of the door assembly to permit gas exchange between the IGU cavity and the atmosphere outside of the door assembly. The gas passage conduit, the air pocket, and the channel provide a gas passageway for gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
A sixth aspect of the invention provides a method of making a door assembly. An insulated glazing unit (IGU) is provided between openings of first and second door skins, and the first and second door skins are respectively secured to opposite first and second sides of a doorframe. The insulated glazing unit has a first hole communicating with a substantially sealed IGU cavity of the insulated glazing unit. A first end of a gas passage conduit is positioned in communication with the first hole of the insulated glazing unit, and a second end of the gas passage conduit is positioned in communication with a second hole or an air pocket in the doorframe that communicates with atmosphere outside of the door assembly. The gas passage conduit, and the air pocket provide a gas passageway for gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
According to a seventh aspect of the invention, a method of venting a door assembly is provided. The door assembly includes a doorframe having opposite first and second sides, an insulated glazing unit (IGU), first and second door skins, a door core component, and a gas passage conduit. The insulated glazing unit includes a substantially sealed IGU cavity and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective openings between which the insulated glazing unit is provided. The door core component is positioned within a door cavity between the first and second door skins and in direct contact with the insulated glazing unit. Venting is performed through the gas passage conduit that passes through at least a portion of the door component and includes a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with atmosphere outside of the door assembly.
An eighth aspect of the invention provides a method of venting a door assembly. The door assembly includes a doorframe having opposite first and second sides, an insulated glazing unit (IGU), first and second door skins, and a channel. The insulated glazing unit includes an IGU spacer, a first glazing pane having a first exterior surface, a second glazing pane having a second exterior surface that is opposite to the first exterior surface, a substantially sealed IGU cavity, and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective openings between which the insulated glazing unit is provided. The first door skin has a first lip secured directly to the first exterior surface of the first glazing pane of the insulated glazing unit and the second door skin has a second lip secured directly to the second exterior surface of the second glazing pane of the insulated glazing unit. Venting is performed through a gas passage conduit and the channel. The gas passage conduit includes a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with an air pocket within the door assembly. The channel connects the air pocket with atmosphere outside of the door assembly. The gas passage conduit, the air pocket, and the channel provides a gas passageway for gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
A ninth aspect of the invention provides a method of venting a door assembly. The door assembly includes a doorframe having opposite first and second sides, an insulating glazing unit, first and second door skins, and a gas passage conduit. The insulated glazing unit includes a substantially sealed IGU cavity and a first hole communicating with the substantially sealed IGU cavity. The first and second door skins are respectively secured to the first and second sides of the doorframe and have respective first and second openings between which the insulated glazing unit is provided. The gas passage conduit includes a first end communicating with the substantially sealed IGU cavity through the first hole and a second end extending to and communicating with a second hole or an air pocket in the doorframe that communicates with atmosphere outside of the door assembly. Venting is performed through a gas passage conduit and the second hole or the air pocket. The gas passage conduit and the air pocket (or the second hole) provides a gas passageway for gas communication between the sealed IGU cavity and the atmosphere outside the door assembly.
Aspects and exemplary aspects, embodiments and methods described herein are particularly advantageous for and applicable to door packaging, transportation, and installation, especially pre-hung doors.
It should be understood that the various aspects of the invention described above may be combined with one another and that substitutions of components and/or steps of one aspect may be substituted into other aspects.
Other aspects of the invention, including pre-assembled kits, other assemblies, subassemblies, packaged and unpackaged door units, methods and processes, and the like which constitute part of the invention, will become more apparent upon reading the following detailed description of the exemplary embodiments.
The accompanying drawings are incorporated in and constitute a part of the specification. The drawings, together with the summary given above and the detailed description of the exemplary embodiments and methods given below, serve to explain the principles of the invention. In such drawings:
Reference will now be made in detail to the exemplary embodiments and methods as illustrated in the accompanying drawings, in which like reference characters designate like or corresponding parts throughout the drawings. It should be noted, however, that the invention in its broader aspects is not necessarily limited to the specific details, representative materials and methods, and illustrative examples shown and described in connection with the exemplary embodiments and methods.
An exemplary door assembly is generally designated by reference numeral 10 in
As best shown in
The door assembly 10 further includes first and second door skins (also referred to in the art as door facings) 18 and 20, respectively. As best shown in
The door skins 18 and 20 may be molded from an appropriate composite material and typically have a thickness of, for example, about 0.13 mm (0.05 inches) to about 52 mm (0.20 inches), depending on the door application in which they are used and the skin material selected. The selected material of the door skins 18 and 20 can be a sheet molding compound or “SMC” for short. Generally, SMCs include, for example, about 15 to about 30 weight percent of the thermosetting resin composition, about 3 to about 20 weight percent low profile additive, about 10 to about 30 weight percent reinforcement, typically fiberglass, and typically other ingredients, such as filler, fire retardants, mold release agents, shelf inhibitors, wetting agents, homogenizers, UV retardants, pigments, thickening agents, antioxidants, antistatic metals, colorants, and/or other additives. Concentrations may be adjusted as warranted for obtaining desired properties. The above composition is provided by way of example, and is not limiting. Other natural or synthetic materials that may be selected for the door skins 18 and 20 include bulk molding compounds (BMCs), medium density fiberboard, high density fiberboard, reinforced thermoplastics (e.g., polypropylene, polystyrene), and metals such as steel. The door skins 18 and 20 may be made of the same or different materials.
Any suitable molding technique may be employed for making the door skins 18 and 20, including, for example, compression molding, resin transfer molding, injection compression molding, thermoforming, etc. Generally, compression molding involves introducing the SMC onto a lower die, then moving one or both dies towards the other to press the SMC under application of heat and pressure in order to conform the SMC to the contour of the die surfaces defining the closed mold cavity. Sheet molding compounds are often pressed within a temperature range of, for example, about 135° C. (275° F.) to about 177° C. (350° F.). The dies exert a pressure on the composition of, for example, about 1000 to about 2000 psi. The pressing operation often lasts, for example, about 30 seconds to 2 minutes. A method for making a SMC door skin is disclosed in U.S. Pat. Pub. No. 2013/0199694. The procedures and parameters herein provided are by way of example, and are not limiting.
The exterior surfaces 18a and 20a of the door skins 18 and 20 are illustrated as flush with planar surfaces. Alternatively, one or both of the exterior surfaces 18a and 20a may include contours, such as a contoured portion surrounding and defining an inner molded panel 19, as shown in
The door assembly 10 also includes hardware, such as a door knob 24 and latch 26 on one side of the door assembly 10 and hinges (not shown) on the opposite side of the door assembly 10 for pivotally mounting the door assembly 10 to a wall structure or doorjamb and allowing swinging of the door assembly 10 between open and closed positions. It should be understood that the door assembly 10 may include other hardware, and may be slidable (for example, along tracks) rather than pivotal between open and closed positions.
As best shown in
As best shown in
An insulated glazing unit (IGU) 30 is received between the respective openings 18c and 20c of the first and second door skins 18 and 20. The IGU 30 is illustrated as including first and second panes 34 and 36 secured together by an IGU spacer 32 that separates the panes 34 and 36 from another. It should be understood that the IGU 30 may include one or more additional panes. For example, an additional pane may be secured in face-to-face abutting arrangement with the pane 34 or the pane 36, or the additional pane may be interposed between and spaced apart from both the panes 34 and 36. The panes 34 and 36 may be glass whereas the additional pane may be a polymer material bonded to one of the panes 34 or 36. The IGU may be one that is hurricane rated, such that a polymer film is applied to one or both of the interior surfaces of the panes 34, 36 to minimize breakage due to impact.
An IGU cavity 38 substantially sealed within the IGU frame 32 between the panes 34 and 36 is shown in, for example,
Although not shown, the IGU 30 may include an internal grille or internal grilles within the IGU cavity 38, an external grille on the exterior surface of one of the panes 34 or 36, and/or external grilles on the exterior surfaces of the panes 34 and 36. Similarly, the IGU 30 may include an internal SDL bar or internal SDL bars within the IGU cavity 38, an external SDL bar on the exterior surface of one of the panes 34 or 36, and/or external SDL bars on the exterior surfaces of the panes 34 and 36.
The IGU 30 may have an alternative geometry, such as that of a square, a circle, an oval, a triangle, other polygons, etc. The IGU 30 may possess a combination of linear and curved edges, etc. IGUs are commercially available and often sold as pre-assembled products that can be incorporated into the doors embodied and described herein. The IGU 30 selected may be configured to withstand impact, e.g., to be hurricane rated. Although only a single IGU 30 is shown in each of the illustrated exemplary embodiments, it should be understood that the present invention encompasses a door assembly having two, three, four, or more IGUs. For door assemblies having multiple IGUs, the IGUs may be made of the same or different material from one another, and may have the same or different shapes from one another.
The ribs 44 and 46 of the door skins 18 and 20 contact the exterior surfaces of the panes 34 and 36, respectively, of the glazed unit 30. As best shown in
A door core 28 is situated in a door cavity (unnumbered) defined at opposite sides by the interior surfaces 18b and 20b of the first and second door skins 18 and 20 and at inner and outer peripheries by the IGU spacer 32 and the doorframe 12. Although not shown, there may be a sealant and/or adhesive on the outer surface of the IGU spacer 32. For the purposes of this description, the sealant and/or adhesive is considered part of the IGU spacer 32. The door core 28 can be a foam material, such as a polyurethane foam, and more preferably is formed in situ in the door cavity by introducing a one-component or multiple-component foam precursor into the door cavity of an already assembled door, and allowing foaming to occur in the door cavity so that the core 28 fills the door cavity. Alternatively, one or more pre-formed door core components may be placed into against the interior surface 18b or 20b of the door skins 18 or 20 prior to securing the other door skin 18 or 20 thereto. Adhesive may secure the door component(s) to the interior surfaces 18b and 20b.
As best shown in
The opposite second end 60b of the capillary tube 60 communicates with atmosphere outside of the door assembly 10. As best shown in
The second end 60b of the capillary tube 60 is in a Day Light Opening (DLO) position to permit the exchange of gas (e.g., air) between the IGU cavity 38 and the outside atmosphere. The gas exchange permits pressure balance and alleviates pressure differentials between the outside atmosphere and the IGU cavity 38 due to, for example, changes in temperature and/or altitude (the latter occurring, for example, during transportation of the door assembly 10). In this regard, because of the relatively small diameter of the opening of the capillary tube 60, the capillary tube 60 allows for a limited exchange of gas with the outside atmosphere Thus, the IGU cavity 38 is referred to herein as substantially sealed. Other than gas exchanged through the capillary tube 60, the IGU cavity 38 preferably is otherwise sealed to prevent gas (e.g., air) from escaping from or entering into the IGU cavity 38.
The capillary tube 60 (of the first and other exemplary embodiments described herein) may be made of stainless steel. Other materials, particularly other non-corrosive metals or plastics may be selected as the capillary tube 60. An exemplary capillary tube has an inner (hole) diameter of about 0.019 inch (about 0.048 cm) and an outer (tube) diameter of about 0.032 inch (about 0.081 cm). These exemplary measurements may differ, for example ±0.005 inch (±0.013 cm), and often slightly differ from manufacturer to manufacturer. Relatively small internal diameters of capillary tubes limit the rate of gas flow between the IGU cavity 38 and the outside atmosphere. If the gas flow is too high, excessive moisture can enter into the IGU cavity 38, leading to loss of thermal performance as well as condensation on the interior surfaces of the panes 34 and 36. On the other hand, if gas flow is too low, pressure balance can take significant time, and can lead to deflection of the panes 34 and 36 and/or seal breakage before pressure is balanced.
As best shown in
It should be understood that various modifications can be made to the first exemplary embodiment. For example, the door assembly 10 can include two or more of the capillary tubes 60, for example, spaced about different sides of the insulated IGU 30. The shim 62 can be positioned above or below the capillary tube 60. Another modification is shown in
Various methods can be practiced to make the door assembly 10 of the first exemplary embodiment. According to one exemplary method, the first end 60a of the gas passage conduit 60 is positioned in communication with the first hole of the IGU 30, and the second end 60b of the gas passage conduit 60 and the shim 62 are placed on the first lip 43. The interior surface 18b of the first door skin 18 and both surfaces of the shim 62 are coated with an adhesive at least at frame-receiving and IGU-receiving locations. The doorframe 12 and the IGU 30 are then laid on the adhesive-coated first door skin 18. The interior surface 20b of the second door skin 20 is coated with an adhesive at least at frame-receiving and IGU-receiving locations. Additionally or alternatively, areas of the IGU 30 and the doorframe 12 that are to receive the second door skin 20 are coated with adhesive. The second door skin 20 is laid on the IGU 30 and the doorframe 12. The assembly may be pressed to permit curing and hardening of the adhesive. The core 28 is formed in situ by spraying or injecting a precursor into the door cavity, preferably after assembly of the door skins 18 and 20, the doorframe 12, the IGU 30, and the gas passage conduit 60. The method may be accomplished using additional or fewer steps. Also, the steps may be performed in different sequences than described herein. For example, the doorframe 12 and the IGU 30 may be laid on the second door skin 20 instead of the first door skin 18.
In the door assembly 110 of the second exemplary embodiment of
The opposite second end 163b of the capillary tube 163 is received in a first end 165a of the thicker vent tube 165 to connect the capillary tube 163 to the vent tube 165. The second end 163b may be frictionally fit into the first end 165a. Depending on the material for the vent tube, the internal diameter of the vent tube 165 may be larger than the external diameter of the capillary tube 163. This connection is secured by the door core 28, which preferably is formed in situ after assembling the door skins 18 and 20, the IGU 30, and the frame 12 to one another.
The opposite second end 165b of the vent tube 165 extends to and preferably through a second hole (unnumbered) in the stile 14 to communicate with atmosphere outside of the door assembly 110. The second hole may be formed in the stile 14 by drilling, for example. A sealant may be provided at the interface of the vent tube 165 and the second hole of the stile 14 to prevent the foam precursor composition from escaping through the second hole during in situ formation of the core 28.
The gas passage conduit 160 allows for the exchange of gas (e.g., air) between the IGU cavity 38 and the outside atmosphere to balance pressure and alleviate pressure differentials between the outside atmosphere and the IGU cavity 38 due to, for example, changes in temperature and/or altitude (the latter occurring, for example, during transportation of the door assembly 110). Notably, the gas passage conduit 160 of this second exemplary embodiment is arranged so as to not become pinched between interfacing structures of the door assembly 110.
It should be understood that various modifications can be made to the second exemplary embodiment. For example, the door assembly 110 can include two or more of the gas passage conduits 160, for example, spaced about the perimeter of the IGU 30. As another modification, the capillary tube 163 and the vent tube 165 may be joined end-to-end, rather than overlapping as shown. As still another modification, the vent tube 165 can be omitted so that the capillary tube 163 extends continuously from the substantially sealed IGU cavity 38 to and optionally through the second hole in the stile 14. According to a further modification, the gas passage conduit 160 may extend through one of the rails 16, preferably the lower rail, rather than one of the stiles 14, to better conceal the second opening in the doorframe 12 from view.
Various methods can be practiced to make the door assembly 110 of the second exemplary embodiment. According to one exemplary method, the interior surface 18b of the first door skin 18 is coated with an adhesive at frame-receiving and IGU-receiving locations. The doorframe 12 and the IGU are laid on the adhesive-coated first door skin 18. The first end 163a of the gas passage conduit 160 is positioned in communication with the first hole of the IGU 30, and the second end 165b of the gas passage conduit 160 is positioned in communication with the second hole in the doorframe 12. The interior surface 20b of the second door skin 20 is coated with an adhesive at frame-receiving and IGU-receiving locations. Additionally or alternatively, areas of the IGU 30 and the doorframe 12 that are to receive the second door skin 20 are coated with adhesive. The second door skin 20 is then laid on the IGU 30 and the doorframe 12. The assembly may be pressed to permit curing and hardening of the adhesive. The core 28 is formed in situ by spraying or injecting a precursor composition into the door cavity. The method may be accomplished using additional or fewer steps. Also, the steps may be performed in different sequences than described herein.
In
A gas passage conduit 260 embodied as a capillary tube in
The opposite second end 260b of the capillary tube 260 communicates with the air pocket 270. A channel (unnumbered) in the form of a gap extends between the outer surface of the pane 34 and the interior surface of the lip 43 of the first door skin 18 in the cross-section of
The second end 272b of the vent tube 272 is in a Day Light Opening (DLO) position. The capillary tube 260, the air pocket 270, and the vent tube 272 collectively allow for the flow and exchange of gas (e.g., air) between the IGU cavity 38 and the outside atmosphere to balance pressure and alleviate pressure differentials between the outside atmosphere and the IGU cavity 38 due to, for example changes in temperature and/or altitude (the latter occurring, for example, during transportation of the door assembly 210).
It should be understood that various modifications can be made to the third exemplary embodiment. For example, the door assembly 210 may include two or more of the capillary tubes 260 and/or two or more of the vent tubes 272, for example, spaced about the IGU 30. Although not shown, the vent tube 272 can be placed adjacent to a shim similar to the shim 62 to prevent accidental pinching of the vent tube 272. The vent tube 272 is optional, and may be omitted to provide an empty gap (between the lip 43 and the pane 34) as the channel that places the air pocket 270 in fluid communication with the outside atmosphere. The empty gap can be made by including a temporary component between the lip 43 and the exterior surface of the pane 34 when assembling the door assembly 210, and removing the temporary component subsequent to assembling the door assembly 210.
For example, the capillary tube 260 and vent tube 272 configuration shown in
Various methods can be practiced to make the door assembly 210 of the third exemplary embodiment. According to one exemplary method, the interior surface 20b of the second door skin 20 is coated with an adhesive at frame-receiving and IGU-receiving locations. The doorframe 12 and the IGU 30 are then laid on the adhesive-coated second door skin 20. The first end 260a of the gas passage conduit 260 is positioned in communication with the first hole of the IGU 30, and the second end 260b of the gas passage conduit 260 is placed on the air pocket 270. The dam 268 is set on the interior surface 20b of the second door skin 20 adjacent to and abutting the ridge 42. The interior surface 18b of the first door skin 18 is coated with an adhesive at frame-receiving and IGU-receiving locations. Additionally or alternatively, areas of the IGU 30 and the doorframe 12 that are to receive the first door skin 18 are coated with adhesive. The first door skin 18 is then laid on the IGU 30 and the doorframe 12. The vent tube 272 is inserted into the channel between the pane 34 and the lip 43. The assembly may be pressed to permit curing and hardening of the adhesive. The core 28 is formed in situ by spraying or injecting a precursor composition into the door cavity. The method of this third exemplary embodiment may be accomplished using additional or fewer steps. Also, the steps may be performed in different sequences than described herein.
In the fourth exemplary embodiment of
The opposite second end 360b of the capillary tube 360 extends through the door core 28 and to an air pocket 370 formed in the stile 14. The air pocket 370 is in turn in communication with a channel 372 that communicates with atmosphere outside of the door assembly. The air pocket 370 and the channel 372 may be embodied as a kerf in the stile 14. To simplify construction, the gas passage conduit 360 may be inserted through the door cavity prior to formation or insertion of the door core 28.
The gas passage conduit 360, the air pocket 370, and the channel 372 collectively allow for the exchange of gas (e.g., air) between the IGU cavity 38 and the outside atmosphere to balance pressure and alleviate pressure differentials between the outside atmosphere and the IGU cavity 38 due to, for example changes in temperature and/or altitude (the latter occurring, for example, during transportation of the door assembly 310). Notably, the gas passage conduit 360 of this fourth exemplary embodiment is arranged so as to not become pinched between interfacing structures of the door assembly 310.
It should be understood that various modifications can be made to the fourth exemplary embodiment. For example, the door assembly 310 can include two or more of the gas passage conduits 360, for example, spaced about the perimeter of the IGU 30. As another modification, the gas passage conduit 360 can comprise a combination of a capillary tube and a vent tube, similar as discussed above and illustrated in
Various methods can be practiced to make the door assembly 310 of the fourth exemplary embodiment. According to one exemplary method, the channel or kerf 372 is formed in the doorframe 12. The interior surface 18b of the first door skin 18 is coated with an adhesive at least at frame-receiving and IGU-receiving locations. The doorframe 12 and the IGU 30 are then laid on the adhesive-coated first door skin 18. The first end 360a of the gas passage conduit 360 is positioned in communication with the first hole of the IGU 30, and the second end 360b of the gas passage conduit 360 is inserted into communication with the air pocket 370 of the doorframe 12. The interior surface 20b of the second door skin 20 is coated with an adhesive at least at frame-receiving and IGU-receiving locations. Additionally or alternatively, areas of the IGU 30 and the doorframe 12 that are to receive the second door skin 20 are coated with adhesive. The second door skin 20 is then laid on the IGU 30 and the doorframe 12. The assembly may be pressed to permit curing and hardening of the adhesive. The core 28 is formed in situ by spraying or injecting a precursor into the door cavity. The method may be accomplished using additional or fewer steps. Also, the steps may be performed in different sequences than described herein.
The structures, components, steps, and other features of the embodiments described above may be combined with one another, substituted into one another, and modified by persons skilled in the art having reference to this disclosure. Although the above embodiments have been described in connection with “frameless” door assemblies, the various aspects and exemplary embodiments may be practiced with doors having interconnecting frames (that interconnect the IGU to the door skins), for example, such as those described in U.S. Application Publication No. 2008/0245003. In such doors, the gas passage conduits may extend, for example, between an IGU pane and the lip of a frame member of the interconnecting frame and/or through the interconnecting frame to and optionally through the door frame.
An advantage of exemplary embodiments described herein is that the gas passage conduit (alone or in combination with the pocket and channel) allows the IGU to “breathe” and balance pressure between inside and outside of the IGU when a pressure differential arises, e.g., due to change in temperature and/or altitude. Another advantage of exemplary embodiments described herein is that foam precursor introduced into the door cavity does not seal either end of the gas passage conduit. Still another advantage of exemplary embodiments is that door structures, such as between the IGU and a door skin, do not pinch the gas passage conduit. Such advantages may be amplified where the IGU is a full lite, occupying a majority of the door area, with the result that there is a greater length of glazing pane that may be deflected. This invention is not necessarily limited to any one or more of the aforementioned advantages.
Although the above exemplary embodiments have been described in connection with doors, a person of ordinary skill in the art having reference to this disclosure will understand that the principles described herein may be applied to other articles, including building window assemblies, airplane windows, vehicle windows, thermal chambers, etc. Such articles generally include a frame having opposite first and second side, an IGU comprising a substantially sealed IGU cavity and a first hole communicating with the substantially sealed IGU cavity, first and second sheet panels respectively secured to the first and second sides of the frame and having respective first and second openings between which the insulated glazing unit. In one embodiment, the article includes a gas passage conduit comprising a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with atmosphere outside of the article. In another embodiment, the article includes a gas passage conduit comprising a first end communicating with the substantially sealed IGU cavity through the first hole and a second end communicating with an air pocket within the article, and a channel connecting the air pocket with atmosphere outside of the article. The article may be structured, made and used in accordance with any of the aspects and exemplary embodiments described herein.
The foregoing detailed description of the certain exemplary embodiments has been provided for the purpose of explaining the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. This description is not necessarily intended to be exhaustive or to limit the invention to the precise embodiments disclosed. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way.
This application is a continuation of application Ser. No. 15/662,814, filed Jul. 28, 2017, which is related to U.S. Provisional Patent Application No. 62/368,556, filed Jul. 29, 2016, which is incorporated herein by reference in its entirety and to which priority is claimed.
Number | Name | Date | Kind |
---|---|---|---|
2202694 | Haux | May 1940 | A |
2207745 | Lipsett | Jul 1940 | A |
2233952 | Lipsett | Mar 1941 | A |
2933780 | Shinefeld | Apr 1960 | A |
2934801 | Blaszkowski | May 1960 | A |
4327535 | Governale | May 1982 | A |
4374693 | Pitt | Feb 1983 | A |
4496201 | Allgeyer | Jan 1985 | A |
4627206 | Cox | Dec 1986 | A |
4674243 | Schoofs | Jun 1987 | A |
4720951 | Thorn et al. | Jan 1988 | A |
4850168 | Thorn | Jul 1989 | A |
4897975 | Artwick et al. | Feb 1990 | A |
5022206 | Schield et al. | Jun 1991 | A |
5105597 | Wilkening | Apr 1992 | A |
5170602 | Ribic | Dec 1992 | A |
5299399 | Baier et al. | Apr 1994 | A |
5577355 | Leonelli | Nov 1996 | A |
5577363 | Tate et al. | Nov 1996 | A |
6003277 | Graham et al. | Dec 1999 | A |
6151849 | Twigg et al. | Nov 2000 | A |
6161363 | Herbst | Dec 2000 | A |
6434898 | Ward et al. | Aug 2002 | B1 |
6619005 | Chen | Sep 2003 | B1 |
6681541 | Chen | Jan 2004 | B2 |
6886297 | Crandell | May 2005 | B1 |
6916392 | Trpkovski et al. | Jul 2005 | B2 |
7174692 | Vickers | Feb 2007 | B1 |
7241352 | Crandell | Jul 2007 | B2 |
7543416 | Albertelli | Jun 2009 | B2 |
7588653 | Crandell et al. | Sep 2009 | B2 |
7765769 | Rosskamp et al. | Aug 2010 | B2 |
7896056 | Ben-David | Mar 2011 | B2 |
8112860 | Collins | Feb 2012 | B2 |
8782971 | Milburn | Jul 2014 | B2 |
9080380 | Thompson | Jul 2015 | B2 |
9125510 | Fulton et al. | Sep 2015 | B2 |
9255442 | Nicolosi | Feb 2016 | B2 |
9290989 | Lynch | Mar 2016 | B2 |
9458660 | Gouge et al. | Oct 2016 | B2 |
9624714 | Gouge et al. | Apr 2017 | B2 |
10006240 | Gouge et al. | Jun 2018 | B2 |
10145167 | Wang | Dec 2018 | B1 |
10208530 | Gouge et al. | Feb 2019 | B2 |
10214953 | Wang | Feb 2019 | B2 |
20020197422 | Trpkovski et al. | Dec 2002 | A1 |
20030005645 | Chen | Jan 2003 | A1 |
20040206021 | Albertelli | Oct 2004 | A1 |
20050022462 | Crandell | Feb 2005 | A1 |
20050028465 | Horsfall et al. | Feb 2005 | A1 |
20050144863 | Collins | Jul 2005 | A1 |
20050166491 | Hornung et al. | Aug 2005 | A1 |
20080209826 | Hodges et al. | Sep 2008 | A1 |
20080216966 | Ben-David | Sep 2008 | A1 |
20080245003 | Kon et al. | Oct 2008 | A1 |
20120017524 | Milburn | Jan 2012 | A1 |
20140246155 | Nicolosi | Sep 2014 | A1 |
20140345211 | Milburn | Nov 2014 | A1 |
20160010386 | Gouge et al. | Jan 2016 | A1 |
20170022749 | Gouge et al. | Jan 2017 | A1 |
20170218684 | Gouge et al. | Aug 2017 | A1 |
20170260741 | Ackerman | Sep 2017 | A1 |
20180080273 | Wang | Mar 2018 | A1 |
20180305971 | Gouge et al. | Oct 2018 | A1 |
20180340364 | Wang | Nov 2018 | A1 |
20190178023 | Gouge et al. | Jun 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20200263486 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62368556 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15662814 | Jul 2017 | US |
Child | 16867311 | US |