1. Field of the Invention
This invention relates to the field of projectile delivery systems. More specifically, the invention comprises a standoff device configured to detonate the explosives in a projectile before the nose of the projectile strikes a target.
2. Description of the Related Art
Although the present invention can be applied to many different types of projectiles, it was primarily developed as a component of existing 40 mm grenade weapons (such as the U.S. Army's M-433).
The launching of a 40 mm grenade involves the same principles as a conventional rifle cartridge. The main difference, however, is the size and mass of the projectile. A typical shoulder-fired military weapon launches a projectile weighing less than 30 grams at a relatively high velocity (700-1,000 meters per second). In contrast, a 40 mm grenade weapon launches a projectile weighing over 200 grams at a relatively low velocity (70-80 meters per second). Thus, while the operating principles between the two types of weapons are the same, they can be said to operate in different regimes.
The unified 40 mm grenade round 10 is placed in the launching weapon and then fired. Case 12 remains within the weapon. Projectile 14 is propelled down the weapon's bore. Rifling ring 26 engages internal rifling on the firing weapon's bore and spins the projectile in order to stabilize it in flight.
The leading end of the projectile assumes the form of ogive 28. Those skilled in the art will know that the term “ogive” sometime refers to a specific pointed shape used for missile nose cones. However, the term is also more broadly used to mean the nose portion of any flying projectile. In this disclosure, “ogive” is given the latter meaning. The ogive generally contains the arming and detonating mechanisms. The volume between the ogive and the rifling ring typically contains the explosive.
Explosive 34 is contained within casing 36. Fuse assembly 30 is contained within ogive. It activates spitback detonator 32, which ignites the explosive. The casing is preferably scored to form a series of rectangles which will break into relatively small pieces when the explosive detonates.
The propulsion system contained within case 12 is often referred to as a “high-low” system. While a detailed discussion of this system is beyond the scope of this disclosure, a brief description may aid the reader's understanding of the environment in which the present invention operates. The “high” part of the system refers to high pressure chamber 18. This chamber is often created by the insertion of a metallic case filled with propellant into base 16. The open end of the metallic case is closed by burst diaphragm 22. A primer is contained in the opposite end.
A mechanical striker is used to detonate this primer which then causes the propellant within the high pressure chamber to ignite. This action ruptures the burst diaphragm. The expanding propellant gases are then metered through nozzle 24 into low pressure chamber 20. These relatively low pressure gases act against the aft end of aft closure 38, thereby propelling the projectile down the firing weapon's bore. For a more detailed discussion of the propulsion system of the M-433, the reader may wish to review U.S. Pat. No. 7,004,074 to Van Stratum (2006), which is hereby expressly incorporated by reference.
A detailed description of the fuse assembly is likewise beyond the scope of this disclosure. However, a fuse assembly typically contains a number of safety features designed to prevent accidental detonation. For example, in some embodiments, the fuse can only be armed when the projectile first experiences a violent forward acceleration followed by a rotation at a minimum rotational velocity. The presence of these two cues indicates that the projectile has been intentionally and successfully fired from a weapon. The fuse assembly will then arm itself during flight. Once armed, any sudden deceleration (such as the projectile impacting a surface) will ignite spitback detonator 32 and explode the grenade.
A typical fuse assembly is the M-550 fuse used by the U.S. Army. A discussion of the details of the fuse assembly is beyond the scope of this disclosure. However, the reader wishing to know these details is referred to U.S. Pat. No. 5,081,929 to Mertens (1992).
The assembly shown in
It has long been known to use a 40 mm grenade as a door breaching round. However, it is often not optimal in this role. In anti-insurgency operations, soldiers must often penetrate occupied buildings. In many instances, it is not known whether the occupants are hostile. However—hostile or not—the occupants will not voluntarily open the door. Thus, the door mush be breached.
Thus, while the prior art 40 mm grenade round is effective in breaching doors, it may produce unwanted collateral damage. A system which can breach the door without throwing shrapnel into an occupied structure would be preferable.
The present invention is a modified 40 mm grenade round designed to breach doors without throwing a substantial amount of shrapnel into a building's interior. The modified round includes a standoff device located on its forward end. The standoff device detonates the explosive charge within the projectile before the nose of the projectile actually strikes the target. This early detonation throws a pressure wave again the door's exterior, forcing the door inward. Shrapnel produced by the detonation remains primarily outside the door. Thus, the modified projectile is able to blow open a door without throwing a significant amount of shrapnel into a building's interior.
The actual structure of the standoff device can assume many forms, and any particular example should not be viewed as limiting. However, the provision of a few examples will aid the reader's understanding.
The fit of the contactor within the standoff device is preferably configured to minimize the risk of unwanted movement (and consequent premature detonation). The reader will observe that the contactor includes a flange near its forward extreme that laps over the end of the tube. The contactor preferably also includes circumferential or other serrations intended to create sliding resistance between itself and the tube.
In the right hand view of
It is instructive to consider the timing effect of the standoff device. At the time of impact, a 40 mm grenade is typically traveling at about 70 meters per second. The standoff device effectively “projects” the nose of the projectile forward a set distance (which is typically less than the overall length of the standoff device owing to the separation of the tip from the ogive, the crush timing of the tube, etc.), thereby creating an “early” detonation. If the effective distance is 3 cm, then a projectile traveling at 70 m/s (7,000 cm/s) will detonate approximately 3/7,000 or 4.3×10−4 seconds earlier than a prior art projectile.
There is of course a delay in the operation of the fuse mechanism and the spitback detonator but—as those skilled in the art will know—the operation of these devices is typically measured in microseconds. The result of the standoff device is the projectile detonating just outside the door instead of detonating as the ogive is actually penetrating the door.
As discussed previously, a variety of different designs could be used for the contactor.
By studying
The illustrated examples of the standoff device have shown a separate assembly attached to an existing ogive. This need not always be the case. A modified ogive could be fashioned which would incorporate the base as an integral piece. The tube and contactor could also be integrated as a unified piece with each other and possibly the ogive.
However, it is preferable to provide some type of telescoping assembly in the standoff device. This allows the standoff device to detonate the projectile without significantly penetrating the target surface. A completely rigid standoff device—as an example—may penetrate too far into a thin wooden door before detonating.
Finally, the ogive may be modified to allow the selective addition of a standoff device in the field. As an example, the ogive could have a hole in its forward portion designed to receive the tube and contactor. This hole could include female threads sized to receive male threads on the tube. The ogive could also include a threaded boss or other convenient attachment device.
The preceding description contains significant detail, but it should not be construed as limiting the scope of the invention but rather as providing illustrations of the preferred embodiments of the invention. As an example, the physical characteristics of the base could be modified substantially while still providing the basic function of attaching the standoff device to the ogive. Thus, the scope of the invention should be fixed by the following claims, rather than by the examples given.
Number | Name | Date | Kind |
---|---|---|---|
133714 | Mead, Jr. | Dec 1872 | A |
769884 | Baumgart | Sep 1904 | A |
1325758 | Semple | Dec 1919 | A |
1547598 | Lukens et al. | Jul 1925 | A |
1547599 | Lukens | Jul 1925 | A |
1723315 | Teitscheid | Aug 1929 | A |
3486452 | Glowacki | Dec 1969 | A |
Number | Date | Country | |
---|---|---|---|
20110174187 A1 | Jul 2011 | US |