The present disclosure generally relates to door closers, and more particularly but not exclusively relates to hydraulic door closers.
Door closers are commonly installed to swinging doors to bias the door towards a closed position. Many such door closers include a piston that reciprocates within a housing, which is filled with a hydraulic fluid that resists the movement of the piston. The housing defines a flow passage through which the fluid flows as the piston reciprocates, and an adjustable regulation valve controls the rate of fluid flow through the passage to modulate the speed of the piston. The valve is typically screwed into the housing, and can be rotated in opposite directions to advance and withdraw the screw valve. However, it has been found that certain closers of this type suffer from drawbacks and limitations, such as those related to ease of adjustment. For example, if the screw valve is backed out too far, the hydraulic fluid will begin to leak from the passage, thereby causing the closer to fail. For these reasons among others, there remains a need for further improvements in this technological field.
An exemplary door closer includes a housing defining a hydraulic chamber having a hydraulic fluid disposed therein. A pinion is rotatably mounted to the housing and extends into the hydraulic chamber. A piston is mounted for reciprocal movement within the housing, and defines a rack engaged with the pinion. The housing further defines an aperture in fluid communication with the hydraulic chamber. A regulating screw is rotatably mounted within the aperture such that rotation of the regulating screw in a first direction advances the regulating screw into the hydraulic chamber and such that rotation of the regulating screw in an opposite second direction withdraws the regulating screw away from the hydraulic chamber. A stop member is mounted in the aperture such that the stop member limits withdrawing movement of the regulating screw to thereby prevent leaking of the hydraulic fluid from the hydraulic chamber via the aperture. Further embodiments, forms, features, and aspects of the present application shall become apparent from the description and figures provided herewith.
Although the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described herein in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives consistent with the present disclosure and the appended claims.
References in the specification to “one embodiment,” “an embodiment,” “an illustrative embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may or may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. It should further be appreciated that although reference to a “preferred” component or feature may indicate the desirability of a particular component or feature with respect to an embodiment, the disclosure is not so limiting with respect to other embodiments, which may omit such a component or feature. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to implement such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Additionally, it should be appreciated that items included in a list in the form of “at least one of A, B, and C” can mean (A); (B); (C); (A and B); (B and C); (A and C); or (A, B, and C). Similarly, items listed in the form of “at least one of A, B, or C” can mean (A); (B); (C); (A and B); (B and C); (A and C); or (A, B, and C). Further, with respect to the claims, the use of words and phrases such as “a,” “an,” “at least one,” and/or “at least one portion” should not be interpreted so as to be limiting to only one such element unless specifically stated to the contrary, and the use of phrases such as “at least a portion” and/or “a portion” should be interpreted as encompassing both embodiments including only a portion of such element and embodiments including the entirety of such element unless specifically stated to the contrary.
In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures unless indicated to the contrary. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may be omitted or may be combined with other features.
With reference to
The housing 110 defines the hydraulic chamber 140, and is filled with the hydraulic fluid 102. The housing 110 includes a proximal end cap 112 enclosing a proximal end of the hydraulic chamber 140 and a distal end cap 114 enclosing a distal end of the hydraulic chamber 140. Also disposed in the housing 110 is a spring 104, which is engaged with the piston 120 and biases the piston 120 in the proximal direction. The housing 110 further defines a plurality of apertures 116, each of which is in fluid communication with one of the passages 150 and houses a corresponding and respective one of the valves 170.
The piston 120 is mounted for reciprocal movement within the hydraulic chamber 140, and generally includes a proximal wall 122, a distal wall 124, and a body portion 126 extending between and connecting the proximal wall 122 and the distal wall 124. As described herein, the proximal wall 122 and the distal wall 124 are closely engaged with the inner wall of the housing 110 and separate the hydraulic chamber 140 into three sub-chambers. The proximal wall 122 includes a check valve 123, and the body portion 126 defines a rack gear 127 that is engaged with the pinion 130.
The pinion 130 is rotatably mounted to the housing 110 and is engaged with the rack gear 127 such that rotation of the pinion 130 is correlated with the reciprocal movement of the piston 120. A door control arm is mounted to the pinion 130 and is engaged with either the door or the doorframe such that swinging movement of the door is correlated with rotation of the pinion 130, linear movement of the piston 120, and compression/extension of the spring 104. For example, opening movement of the door is correlated with rotation of the pinion 130 in a door-opening direction (counter-clockwise in
The hydraulic chamber 140 is divided into three portions or sub-chambers by the piston 120. More particularly, a proximal chamber 142 is defined between the proximal wall 122 and the proximal end cap 112, a distal chamber 144 is defined between the distal wall 124 and the distal end cap 114, and an intermediate chamber 146 is defined between the proximal wall 122 and the distal wall 124. As will be appreciated, the reciprocal movement of the piston 120 causes expansion and contraction of the proximal and distal chambers 142, 144, while the intermediate chamber 146 remains of a substantially constant volume. In certain forms, the hydraulic chamber 140 may be considered to include the passages 150.
The passages 150 include a proximal passage 151 including branches 152-156, and a distal passage 157 including branches 158, 159. The proximal passage 151 forms a fluid connection between the proximal chamber 142 and the intermediate chamber 156, and the distal passage 157 forms a fluid connection between the intermediate chamber 156 and the distal chamber 146. The branches 152-155, 157, 158 form selective paths of fluid communication between the various portions of the hydraulic chamber 140 based upon the position of the piston 120, and the valve assembly 160 regulates the flow of hydraulic fluid 102 through the passages 150. As described herein, the effective cross-sectional area of the passages 150 depends upon a number of factors, including the state of the valve assembly 160 and which of the branches are connected to which of the chambers.
The valve assembly 160 includes a plurality of regulating valves 170, including a latch speed regulating valve 162, a main speed regulating valve 164, and a backcheck speed regulating valve 168, each of which is mounted in a corresponding and respective aperture 116 and extends into a corresponding and respective one of the branches 152, 154, 158.
With additional reference to
As will be appreciated, the rate of fluid flow through the passages 150 is correlated with the movement speed of the piston 120, and thus with the movement speed of the door. The rate of fluid flow through the passages 150 depends upon a number of factors, including the effective cross-sectional area of the passage. Additionally, the effective cross-sectional area of each passage can be altered by adjustment of the valve assembly 160. For example, advancing the screw 172 of the main speed adjustment valve 164 reduces the effective cross-sectional area of the proximal passage 151 at the branch 154, thereby reducing the closing speed of the door in the main swing zone. As another example, withdrawing the screw 172 of the latch speed adjustment valve 162 increases the effective cross-sectional area of the proximal passage 151 at the branch 152, thereby increasing the closing speed of the door in the latching zone.
Due to the fact that the apertures 116 are connected with the passageways 150, the hydraulic fluid 102 left unchecked would be able to leak from the hydraulic chamber 140 via the apertures 116. When the screw 172 is threaded into the aperture 116, such leakage is prevented by the engagement of the threads 117, 177 and the seal provided by the O-ring 179. If the screw 172 were to be withdrawn beyond the withdrawn position and/or removed from the aperture 116, leakage may occur. However, such an event is discouraged by the stop member 200, which limits withdrawing movement of the screw 172 to thereby prevent leaking of the hydraulic fluid 102 via the aperture 116. Certain illustrative examples of the stop member 200 will now be described with reference to
With reference to
With reference to
With reference to
With reference to
With reference to
As is evident from the foregoing, each of the stop members described herein is operable to prevent withdrawing movement of the screw 172 beyond the withdrawn stop position, and thereby prevents leaking of the hydraulic fluid from the aperture 116. Each of the illustrated stop members also permits a tool to be inserted into the aperture 116 for manipulation of the regulating screw 172 without requiring removal of the stop member. The capped stop member 240 also allows the valve 170 to be obscured to discourage tampering.
Those skilled in the art will readily appreciate that the stop members described herein can be used in combination with each and any of the regulating valves 170, or in combination with door closer regulation screws not specifically described and illustrated herein. Furthermore, while one form of hydraulic door closer 100 has been provided for purposes of illustration, it is to be appreciated that the embodiments described herein may be utilized in door closers of other forms and formats.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected.
It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
1886159 | Brown | Nov 1932 | A |
4048694 | Newman et al. | Sep 1977 | A |
4378612 | Beers | Apr 1983 | A |
4386446 | Zunkel | Jun 1983 | A |
4414703 | Schnarr et al. | Nov 1983 | A |
4573238 | Phillips | Mar 1986 | A |
4660250 | Tillman | Apr 1987 | A |
4847946 | Nam | Jul 1989 | A |
5187835 | Lee | Feb 1993 | A |
5259090 | Fayngersh | Nov 1993 | A |
5301776 | Beck | Apr 1994 | A |
5343593 | Fayngersh | Sep 1994 | A |
5502874 | Lucas | Apr 1996 | A |
5535514 | Lucas | Jul 1996 | A |
5666692 | Toledo | Sep 1997 | A |
6282750 | Bishop | Sep 2001 | B1 |
6493904 | Chiang | Dec 2002 | B1 |
8181311 | Chiang | May 2012 | B2 |
20130086771 | Blockley | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
0467131 | Jan 1992 | EP |
2905407 | Nov 2016 | EP |
888854 | Feb 1962 | GB |
2007298061 | Nov 2007 | JP |
Entry |
---|
International Search Report; International Searching Authority; International Application No. PCT/US2020/017472; dated Aug. 10, 2020; 3 pages. |
Written Opinion of the International Searching Authority, International Searching Authority; International Application No. PCT/US2020/017472; dated Aug. 10, 2020; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20200256108 A1 | Aug 2020 | US |