The present invention refers to a door closing device, namely an automatic closing device for doors, windows, etc. More specifically, it is a device designed to be applied to hinged doors preferably, but also to shutters, cabinet doors, hatches and the like, wherever there is a hinged door, in order to achieve the automatic closing of the door leaf.
As is general knowledge there are door closing devices designed to automatically close hinged doors. They are, in fact, commonly used as door closing devices with moveable arms, such as in aircraft or aerodynamic door closers; push door closers are also used, or devices recessed into the profile of the door, also known as concealed door closers, or devices that, for their application and function, must be planted in the ground near the door, given the considerable complexity and proportions of the elements they contain.
These devices are therefore bulky and unsightly, as in the case of mobile arm devices, and are impractical and problematic in terms of installation; in the case of concealed or planted devices, it is clear that the inconvenience is created by having to prepare an area that is suitable to contain such closing devices.
The purpose of this invention is to offer a door closing device that is practical to assemble and easy to use.
A further purpose of the invention is to achieve a door closer that is not bulky and unsightly.
Yet another purpose of the invention is to achieve a door closer that is not particularly subject to wear.
These aims and advantages are achieved, according to the invention, by a door closing device for the automatic closing of a hinged door that is coupled so as to rotate to a floor and/or a doorpost around which the hinged door may rotate, comprising a fixed unit that is fixed to the floor and/or the doorpost, a translating unit coupled to the fixed unit so as to move, and a rotating unit which the door leaf is attached to. The translating unit comprises elastic means and at least one wheel connected to the translating unit so as to rotate, with the axis of rotation being perpendicular to the direction of translation of the translating unit. The rotating unit comprises a fixed element that is integral to the rotating unit, and at least one body having an inclined surface in respect to the direction of the translating unit.
In particular, the rotating unit is coupled to the translating unit so that the wheel can run along the inclined surface of the body, so that, in a first sense of rotation the rotating unit, meaning in the direction that the door opens, the movement of the wheel causes a translation of the translating unit in a first direction, with a subsequent compression of the elastic means against the fixed element. When the door leaf is released the expansion of the elastic means causes a translation in an opposite direction of the translating group, causing a reverse rotation in respect to the first sense of rotation of the rotating unit and the door leaf fixed thereon, causing it to close.
Thanks to the door closing device according to this invention, all one needs to do therefore is open the door leaf, thus acting on the elastic means and causing the closure of the door leaf itself, once it has been released.
Advantageously the door closing according to this invention may include a rotating unit comprising a first cam having an inclined surface and fixed on at least one body, through a hole, and wherein the translating unit comprises a pin which passes through the through-hole and to which the wheel is connected so as to rotate; a second cam having an inclined surface is fixed on said pin, the direction of inclination of said cam being the same as the first cam, so that the inclined surface of the first cam can stop against the inclined surface of the second cam. The interaction between the first and second cam creates a braking effect during the closing phase of the door.
In addition, the elastic means may comprise a spring winded up on the pin, making the door closing device more compact. One end of said spring may be fixed on said pin and the opposite end of said spring stopping against the fixed element of the fixed unit.
Advantageously, the coupling between the fixed unit and the translating unit and the movement of said translating unit is achieved without causing any particular friction. In fact, the fixed unit can comprise a shaft in which at least a first vertical seat is obtained and wherein the pin is fixed under a cylindrical body in which a blind hole is obtained; at least a second seat is obtained in the surface forming said blind hole. The shaft is received, at least partially, in the blind hole so that at least a first seat is arranged so as to correspond with at least a second seat and at least a ball is received in said first seat and in said seat at least a second seat, said seats corresponding with each other, so that the cylindrical body can translate and can not rotate in respect to said shaft.
The speed of rotation of the rotating unit and therefore the translation speed of the translation unit may be adjusted thanks to the use of a piston. A hollow cylindrical structural closed on the upper and lower parts is fixed on the rotating unit, in which cylindrical structural the translating unit can translate and with which the fixed unit is coupled so as to rotate. The piston may be arranged in said cylindrical structural so that the inner volume of the cylindrical structural is divided into a lower chamber and an upper chamber for the containment of a fluid. In particular, in said piston and/or cylindrical structural a duct can be obtained for the exchange of fluid between the lower chamber and the upper chamber; and said piston is coupled with said translating unit so that a translation of the translating unit causes a corresponding translation of the piston.
In this way, the translation of the group is also controlled by the rate of flow between the upper and lower chamber.
Advantageously, the top part of the piston can be connected through elastic means with the upper end of the cylindrical structural, and the bottom part of the piston beats against the upper end of the pin. In this way the piston is not connected to the pin and its movement can be led by the spring without particular wear and without problems related to thermal excursions of the fluid inside the chambers.
A further advantage of the invention is the fact that at least one duct for the exchange of fluid between the lower chamber and the upper chamber comprises an adjustable valve to vary the flow of fluid between the lower chamber and the upper chamber. It is possible to adjust the flow rate of the fluid and thus adjust the speed of rotation of the door leaf, particularly in the closing phase.
At least one cross duct can be obtained in the piston and comprises a non-return valve so as to allow the passage of fluid only from the lower chamber to the upper chamber, and wherein at least one vertical duct is obtained in the cylindrical structural for the passage of fluid from the upper chamber to the lower chamber; in particular, the adjustable valve can be disposed in said vertical duct to regulate the speed of translation of the translating unit during the closing phase of the door leaf.
Advantageously, the closing speed of the door leaf can be adjusted according to the position of the door leaf. In fact, a first vertical duct and a second vertical duct are obtained in the cylindrical structural for the passage of fluid from the upper chamber to the lower chamber. The first vertical duct being connected through a first horizontal duct with the lower chamber, the second vertical duct being connected through a second horizontal duct with the lower chamber, in particular the first horizontal duct can be obtained in the cylindrical structural at a lower height than the second horizontal duct obtained in the cylindrical structural; the presence of two connecting ducts at different heights allows the flow of fluid to vary according to the position of the piston and therefore according to the position of the rotating unit.
In addition, the ducts inside the piston and the cylindrical structural can be arranged differently, with the implementation of a single control valve. In fact, a vertical duct can be obtained in the cylindrical structural for the passage of fluid between the upper chamber and the lower chamber, having at least one ball provided in said cylindrical structural at least one vertical duct acting as a non-return valve so as to allow the passage of fluid only from the lower chamber to the upper chamber. An elusion duct can be obtained in the upper portion of the cylindrical structural to connect the upper chamber with at least one vertical duct so as to elude ball and to allow the passage of fluid only from the upper chamber to the lower chamber. An adjustable valve can be included in said elusion duct to obstruct, in a controlled way, the flow of fluid in the elusion duct, and subsequently the rotation speed of the rotating unit during the closing phase of the door leaf.
Further features and details of the invention may be better understood from the following description, provided by way of example without limitation, and from the attached design drawings in which:
With reference to the attached figures, in particular to
As shown in
The rotating unit 16, shown individually in
At the top of the rotating cylindrical body 51 a top through-hole 59 has been obtained, and at the bottom of said body also a bottom through-hole 58, whose diameter is less than that of the top hole 59.
Inside the top through-hole 59 and fixed to the bottom of said hole is an internally perforated rotating camshaft 54 having an inclined top surface.
The cylindrical rotating body 51 is accordingly fixed to an outer cylindrical structural 20 which is closed at the top with a cap 50. In the outer cylindrical structural 20 and the rotating cylindrical body 51 an orthogonal threaded hole 56 is obtained to accommodate a fixing screw for the rotating unit 16 and the rotating cylindrical body 51 to secure the rotating cylindrical body 51 and the rotating unit 16 to the outer cylindrical structural 20. Furthermore, the outer cylindrical structural 20 includes a groove 22 which connects said outer cylindrical structural 20 to door leaf B, via a plate 23 shown in
The fixed unit 12, shown individually in
As shown in
The translating unit 14, shown individually in
The top of the cylindrical translating body 31 is an inclined surface so as to form a translating cam 32, having substantially the same inclination as that of the inclined surface of the rotating cam 52.
A radial rotating roller 44 is also connected to the translating cam 32 so as to rotate, having an axis of rotation that is perpendicular to the axis of the translating pin 30.
A translating camshaft 40, the bottom surface of which is inclined, is fixed half way up the translating pin 30.
The top portion of the translating pin 30 is fixed to a locking disk 36, the bottom of which is in turn fixed to a spring 38.
As shown in
In particular, in addition to the coupling between the fixed unit 12 and the rotating unit 16 via bearings 24, so that the rotating unit 16 can rotate with respect to the fixed unit 12, the translating unit 14 is connected to the fixed unit 12 so as to translate: the top portion of the fixed pin 18 fits into the cylindrical hollow 33 of the same shape so that the vertical seats 26 of the fixed pin 18 are positioned in correspondence with the vertical seats 34 of the cylindrical hollow 33 of the translating cylindrical body 31, and at the same time the balls 28 can be received in the vertical seats 34 and in the vertical seats 26.
Due to the configuration of this coupling between the fixed unit 12 and the translating unit 14, said translating unit 14 can only translate and not rotate with respect to the fixed unit 12.
The rotating unit 16 is also coupled with the translating unit 14, the former acting as a cam and the latter acting as the conveyor, so that each rotation of the rotating unit 16 corresponds to a translation of the translating unit 14.
In particular, the rotating cylindrical body 51 is positioned above the translating cylindrical body 31 so that the rotating cam 52 is adjacent to the translating cam 32, and that the radial roller 44 can move through the radial path 70.
In addition, the translating cam bushing 40 fits into the top through-hole 59 so that the inclined surface thereof is adjacent to the inclined surface of the rotating cam bushing 54, so that the two bushings 40, 54 can interact, acting as the brake and end stop.
Above the translating cam bushing 40, around the translating pin 30, a bearing 60 and balls 62 are arranged so as to make the rotating movement of the rotating unit 16 smooth with respect to the translating unit. The bottom of the spring 38 stops against the bearing 60.
Moreover, a fixed disk 64 is fixed inside the top portion of the outer cylindrical structural 20, and in the centre of said disk a through-hole is obtained to receive the translating pin 30.
Above the translating pin 30, inside the outer cylindrical structural 20, there is a piston 46. A spring 48 is disposed between the cap 50 and the piston 46 which also translates while the door closing device 10 is in use.
Between the fixed disk 64 and the piston 46 a lower chamber is created 66, while between the piston 46 and the cap 50 an upper chamber is defined 68. The two chambers 66, 68 are filled with oil which upon the translation of the piston 46 in the outer cylindrical structural 20 is exchanged between said chambers 66, 68 through ducts obtained in said piston 46 and in the upper portion of the outer cylindrical structural 20, as described below.
As in
The rotation of the translating cam 32, and the entire translating unit 14, is prevented by the coupling, described above, disposed between said translating unit 14 and the fixed unit 12.
The downward movement of the translating cam 32 and the translating cylindrical body 31 causes the analogous downward movement, according to the direction indicated by G in
At the same time the piston 46 can translate downwards urged by the spring 48 which stops against the cap 50.
When the door leaf B, once it is rotated by the user, is released, the compressed spring 38, being an elastic means, urges the locking disk 36 upwards and, hence the translating pin 30 and all elements connected to it. As shown in
In addition, the rotating cam bushing 54 stops against the translating cam bushing 40 which acts as a brake during the closing of the door leaf B.
The closing speed of door leaf B, that is to say the rotational speed of the rotating unit 16 in the sense of returning to its resting position, is controlled by the flow of oil from the upper chamber 68 to the lower chamber 66.
In fact, when the door leaf is opened, the distance between the fixed disk 64 and the piston 46 decreases, and the distance between the piston 46 and the cap 50 increases. The lower chamber 66 decreases in volume, while the upper chamber 68 increases in volume.
The oil is thus forced to move from the lower chamber 66 to the upper chamber 68 through the internal ducts 84, 86, as shown in
The central duct 88, together with the spring 92 and the central closing ball 98, acts as an excess pressure valve: in case of an overload of pressure due to a push during the closing phase, the oil flows through the duct 88 in the lower chamber 66.
During the closing phase, the oil flows from the upper chamber 68 to the lower chamber 66, passing through a first vertical duct 72, while the internal ducts 84, 86 are blocked by the closing balls 94, 96, acting as non-return valves, and are therefore closed.
As shown in
In particular, the first horizontal connection 74 is at a lower height than the second horizontal connection 78, as shown in
A first vertical valve 80 is screwed into the top of the first vertical duct 72. Analogously, a second vertical valve 82 is screwed into the top of the second vertical duct 76.
The two vertical valves 80, 82, accessible from the top of the cap 50, as shown in
The first vertical duct 72 causes the door leaf B to close, controlled by the vertical valve 80, while the second vertical duct 76 causes the final closing movement controlled by the vertical valve 82 over the last degrees of closure.
With this configuration of the top part of the door closing device 10, that is to say of the piston 46, the presence of the spring 92 in the central duct 88 and the vertical ducts 72, 76, the rotation of the rotating unit 16 during the closing phase of the door leaf B is slowed down.
Furthermore, the speed of return of said rotating unit 16, and therefore of door leaf B can be adjusted via the two vertical valves 80, 82.
According to a second mode of implementing the invention, as shown in
The door leaf is fixed to the door closing device 100 also through a pin screwed into an upper seat 201.
The upper portion of the device 100 comprises a first lateral duct 202 and a second lateral duct 204 obtained in the outer cylindrical structural 220. The two lateral ducts 202, 204 connect an upper chamber 168 obtained between the piston 146 and a cap 250 to a lower chamber 167 where the translating unit 114 translates.
The first lateral duct 202 is connected to the upper chamber 168 through a first horizontal duct 214 blocked by a ball 206 acting as a non-return valve. Analogously, the second lateral duct 204 is connected to the upper chamber 168 through a second horizontal duct 208 also blocked by a ball 206 acting as a non-return valve.
Furthermore, the second horizontal duct 208 is connected to the upper chamber 168 through a first duct 210 and a second duct 212 which are interconnected at the top by a horizontal duct. A horizontal valve 200 fits into the horizontal duct 200, and depending on how tight said valve is screwed into said duct, it blocks the flow between the two ducts 210, 212.
When in use, during the opening phase of the door leaf B, as shown in
During the closing phase of door leaf B, as shown in
Similarly, as in the first mode of implementation, the rotational speed during the closing phase is controlled by the horizontal valve 200 so that it can block the flow of oil in the horizontal duct at greater or lesser degrees.
Further variants and modes of implementation are possible, and must be considered within the ambit of protection defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
VR2010A0101 | May 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/052069 | 5/11/2011 | WO | 00 | 11/7/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/141880 | 11/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
424614 | Morris | Apr 1890 | A |
491898 | Lowe | Feb 1893 | A |
1393889 | Franckaerts | Oct 1921 | A |
1423784 | Vuille | Jul 1922 | A |
4358870 | Hong | Nov 1982 | A |
4485522 | Chen | Dec 1984 | A |
5133152 | Grancagnolo | Jul 1992 | A |
7155776 | Park | Jan 2007 | B2 |
7966693 | Choi et al. | Jun 2011 | B2 |
Entry |
---|
International Search Report for PCT/IB2011/052069. |
Number | Date | Country | |
---|---|---|---|
20130047512 A1 | Feb 2013 | US |