The present invention relates to a door driving mechanism for moving a door leaf. More preferably the present invention relates to a door driving mechanism for automatic swing doors and a doors assembly having said door driving mechanism.
The use of automatic opening and closing of swing doors is commonly known to facilitate entrance and exit to buildings, rooms and other areas. Proper functioning of such automatic opening and closing is particularly important for fire doors. Fire doors are often comparatively heavy in order to be able to sufficiently withstand fire and automatic operation, i.e. opening and/or closing is thus beneficial.
Automatic operation of swing doors is typically controlled by means of a door operator. The door operator is normally provided at the door frame and including an electrical motor being connected to the door leaf via some kind of transmission. The transmission is constructed to apply the required amount of torque to the door leaf. Importantly, this opening or closing torque must be very accurate and it must conform to certain standards, such as SS-EN 1154. According to this standard, the required torque is varying through the opening and closing action and is thus dependent on the angular position of the door leaf. As is evident from such requirements the transmission is rather complex. According to well-known prior art door operator transmissions accurate control of the operation torque can be achieved by providing the transmission with cam curves and dedicated springs.
Except for complex design, existing door operators also needs to be strong and large in size, especially for concealed applications of which the door operator needs to be arranged close to the pivot axis of the door leaf. It would therefore be beneficial to provide a solution allowing for a reduction of the size of the door operator while maintaining, or even increasing, the performance of prior art system.
An object of the present invention is therefore to provide a solution to the above-mentioned problem, reducing the disadvantages of prior art solutions.
An idea of the present invention is to provide a door driving mechanism for connecting a door operator to a door leaf. The door driving mechanism not only allows for concealed mounting of the door operator, which means that the door operator can be incorporated into the door frame, but also allows for a reduction of the complexity of the associated door operator.
According to a first aspect, a door driving mechanism for connecting a door operator to a swing door leaf is provided. The door driving mechanism comprises a guiding member fixedly arranged to the door leaf; and a driving arm at one end being rotationally driven by the door operator directly at said one rotationally driven end being the pivot point, wherein said driving arm is slidably connected to the guiding member at a fixed position in relation to the door leaf.
According to an embodiment the guiding member is arranged at the upper end of the door leaf and protrudes upwards from the door leaf. This allows the associated door operator to be concealed, i.e. incorporated into the upper part of the door frame.
The driving arm may comprise a track configured to receive the guiding member. This allows for a very simple and robust connection of the driving arm to the guiding member.
The track may be provided with horizontal shoulders for preventing vertical displacement of the guiding member relative the driving arm. Robust operation of the door driving mechanism is thereby ensured.
In an embodiment, rotation of the driving arm causes a longitudinal displacement of the guiding member relative the driven end of said driving arm. The door operator may thus be fixedly attached to the door frame, and the door operator may further be positioned at a distance from the pivot axis of the door leaf whereby a reduction gearing is effectuated.
According to a second aspect, a door operating system is provided. The door operating system comprises a door operator being fixedly attached to a door frame, a door leaf being pivotally connected to said door frame, and a door driving mechanism according to the first aspect connecting the door operator to said door leaf.
The driven end of the driving arm may be arranged at a first distance from the pivot axis of the door leaf, the guiding member may be arranged at a second distance from the pivot axis of the door leaf. The second distance may be greater than the first distance. Preferably, the first distance is between 200 and 220 mm, and the second distance is between 300 and 320 mm.
According to a third aspect, a method for providing a door driving mechanism for a swing door leaf is provided. The method comprises providing an upper end of the door lead with a guiding member, connecting a driving arm to a door operator, and slidably connecting the driving arm to the guiding member such that said driving arm (24) is slidably connected to the guiding member (22) at a fixed position in relation to the door leaf.
Embodiments of the invention will be described in the following; reference being made to the appended drawings which illustrate non-limiting examples of how the inventive concept can be reduced into practice.
An example of a door driving mechanism will be described in the following. With reference to
The door leaf 14 is connected to the door frame 12 via the door hinges 16, whereby the door is pivotable. The door leaf 14 is thus movably arranged relative to the door frame 12 between an open position and a closed position. In
As seen in
In prior art system, the door operators 30 normally comprises a helical compression spring 34 combined with a linkage system including a pressure roller that acts on a cam curve that is attached to an output shaft. During opening of the door, the compression spring is tensioned by the rotation of the output shaft. During the closing cycle, the accumulated spring force is transferred to the output shaft by means of the cam curve and the pressure roller and the transferred spring force is acting in the closing direction. The cam curve is preferably configured to provide the varying torque during the opening or closing sequence of the door leaf 14.
However, due to the inventive concept of having a fixed guiding member 22 in the door leaf 14 together with a door driving arm 24 being guided thereon, as will be further described herein, the need for a cam curve in the door operator 30 is eliminated.
In
During opening of the door leaf 14, the spring 34 is tensioned by activation of the electrical motor 36 and a corresponding rotation of the output shaft 32. During the closing cycle, the accumulated spring force is transferred to the output shaft 32 and the transferred spring force is acting in the closing direction. It is possible to increase the closing force by using the motor 36 in combination with the spring and thereby increase the door closing force, a so called powered close.
The door operator 30, and thus the opening and/or closing of the door may e.g. be controlled by a button (not shown).
The door operator 30 is in operative connection with the driving arm 24, which will now be described further with reference to
In one embodiment the door driving arm 24 is a sliding rail arm 24. An embodiment of the sliding rail arm 24 is shown in
Turning back to
The guiding member 22 may be a button-like structure protruding upwards from the door leaf 14. The guiding member 22 may have an exterior contour which fits the track 25 of the driving arm 24. The guiding member 22 may, at corresponding lateral surface facing the track 25 of the driving arm 24, have radial protrusions. This is shown in
The guiding member 22 is arranged such that the driving arm 24 is guided along the guiding member 22 in a translational manner. The driving arm 24 is thus movable along the top surface of the door leaf 14 while the guiding member 22 is fixated in relation to the door leaf 14.
Hence, the driving arm 24 is at one end rotationally driven by the door operator 30. The driving arm 24 is driven directly at that end, which end can be seen as the pivot point generated by the rotation. In other words, the driving arm is directly, at one end, rotationally driven by the door operator 30 at the rotationally driven end. The inventive concept of having a fixated guiding member 22 in the door leaf 14 together with a sliding driving arm 24 has several benefits. First of all the arrangement makes the use of a cam in the door operator 30 unnecessary. Having a cam inside a door operator 30 is expensive due to its complex structure and it is thus beneficial to be able to remove the complexity will still being able to fulfill safety standards. For example, the safety standard BS EN 1154 relating to controlled door driving devices is fulfilled by the door driving mechanism 20 disclosed herein. Furthermore, having a sliding driving arm 24, attached to the door frame 12, arranged to be guided by a fixated guiding member 22 in the door leaf 14 creates an off-set driving. Since the system is not driving direct at the pivot axis PA of the door leaf 14, reduction outside the driving mechanism is achieved and the size of the driving mechanism can be reduced.
A schematic illustration of the characteristics of the door driving mechanism 20 is presented in
It should be appreciated that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the description is only illustrative and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the scope of the invention to the full extent indicated by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1630271-3 | Nov 2016 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/079559 | 11/17/2017 | WO | 00 |