This invention pertains to prefabricated and otherwise assembled aluminum door frames.
When installing a door frame into a door opening in a building, it is desirable to have a strong, durable, rot and decay resistant, frame which is either prefabricated or easily assembled on the construction site. Preferably, the frame can be assembled at an off-site manufacturing location. In the alternative, it is desirable to have frame elements which are easily assembled at the construction site.
In a typical construction project involving doors, door frames are fabricated by a frame fabricator, and are thence shipped to a door assembler. The door assembler receives the frames as fabricated, and assembles e.g. the frames to respective door slabs. The slabs are also commonly purchased separately from slab manufacturers. The door assembler adds the desired glass inset, if any, to the door slab, assembles the door slab to a selected door frame, and ships the thus assembled door, including frame and slab, to the construction site for installation on the building.
In the known art, the basic frame of the door is commonly wood. The door assembler can up-grade the quality and value of the frame, and thus the quality and value of the door assembly, to some extent, by installing e.g. aluminum cladding to the left, right, and top frame wood substrate members, thus to provide maintenance free, tough, and durable exterior surfaces to the frame.
However, even where the jamb substrate is up-graded with aluminum cladding, the properties of the wood substrate still have substantial affect on the use life, and ongoing properties of the door frame. Such wood substrate can be subject to attack by rot, insects, and other invasive organisms which cause the properties of the wood to deteriorate.
For example, the bottom of the wood frame commonly is supported directly by an underlying surface such as concrete, dirt, or the like. Where the door frame is mounted as an exterior entrance to a building, the outwardly-disposed side of the door frame is subjected the weather, including rain, snow, changes in temperature, changes in humidity, and the like. Such environmental conditions are detrimental to the long-term stability of the wood substrate. As a first example, the wood readily absorbs and holds water. So any rain can be a source of moisture which is absorbed by that portion of the wood which interfaces with the underlying ground or concrete.
The moisture, as absorbed, can be wicked upwardly into a few inches of the wood. While present in the wood, the moisture supports bacteria or other life forms which feed on the substances of the wood, causing loss of strength in the wood. Over a period of time, and with repeated such exposures to water, the wood eventually decays to a form commonly known as rotten wood. Rotten wood does not have the structural qualities of wood which has not been so decayed, whereby the resulting door frame does not provide the desired degree of support for the door, and the frame fails.
Wood is also subject to attack by insects, which also causes structural deterioration of the wood, and thus deterioration of support for the door.
Certainly, the door frame can be replaced or repaired. However, it would be preferable to avoid the deterioration which accompanies wood structures at the doorway.
Thus, it is an object of the invention to provide door jambs and door frames which are not subject to deleterious affects such as those which are visited on wood by weather and/or insects.
It is another object to provide door jambs and door frames which are made with materials all of which withstand weather and insects for substantially longer periods of time than wood which is subjected to the same conditions.
This invention provides a door frame which employs jambs or jamb assemblies which are essentially devoid of wood and other materials which are susceptible to being damaged by the affects of weather, in those areas of the frame which will be subjected to substantial affects of weather. Thus, the side jambs are fabricated of e.g. extruded aluminum moldings which extend from e.g. the floor, concrete, or other underlying substrate, to the header, which can be fabricated from a common-profile extruded aluminum molding. A nosing can be provided with the aluminum molding, either integral with the aluminum molding or snap assemblable to the aluminum molding. The molding can include a nail fin kerf at or adjacent an outer panel of the jamb, or on the nosing, whereby the door frame can include a nailing fin. Such nailing fin can be a rigid e.g. aluminum molding nailing fin, or can be a flexible e.g. polymeric nailing fin. An e.g. polymeric insert can be provided, assembled to the aluminum molding, which can receive nails or screws, optionally without pre-drilling, much in the same manner as wood receives nails or screws. Nails and/or screws can thus be driven through the insert and into adjacent framing members of the building, thus to mount the door, door frame to the building.
In a first family of embodiments, the invention comprehends a door jamb, having a length, and being adapted to be received into a rough opening in a building, the door jamb comprising an aluminum molding, the aluminum molding comprising (a) an aluminum jamb element having a length, and comprising (i) a first side panel facing toward such rough opening, (ii) a second side panel facing away from such rough opening, (iii) an outer panel facing outwardly of such building, and (iv) an inner panel facing inwardly into such building; and (b) an aluminum nosing element, integral with the aluminum jamb element and extending outwardly of such building from the outer panel of the jamb element, along a substantial portion of the length of the aluminum jamb element.
In some embodiments, the nosing having a first side facing toward such rough opening, the first side of the nosing being located away from such rough opening relative to the first side panel of the jamb element.
In some embodiments, the doorjamb further comprising at least one of (1) a nailing fin kerf, (2) a casing-receiving recess extending along the length of the door jamb, and (3) a cavity in the aluminum jamb element adapted to receive a durable nail-receptive and/or screw-receptive insert along at least a substantial portion of the length of the jamb element.
In some embodiments, the aluminum molding comprising a cavity adapted to receive an insert thereinto, and further comprising an insert in the cavity, the insert being defined by a durable, rot and decay resistant, material.
In some embodiments, the insert extends along a substantial portion of the length of the aluminum molding.
In some embodiments, the insert extends along substantially the full length of the aluminum molding.
In some embodiments, the insert is made from a material which is receptive to nails and/or screws, as fasteners fastening the insert to a building.
In some embodiments, a portion of the insert abuts against an edge or surface of the aluminum molding.
In some embodiments, the aluminum molding extends along substantially the full length of the door jamb.
In some embodiments the nosing comprising a mounting fin kerf.
In some embodiments, the door jamb further comprising a mounting fin in the mounting fin kerf.
In some embodiments, the aluminum molding defining a casing-receiving recess extending along the length thereof, further comprising a casing received in the recess.
In some embodiments, the casing comprising one of (i) a brick mold casing and (ii) a flat casing.
In some embodiments, the casing comprising a flat casing, an outer surface of the casing, which faces outwardly away from such building, being substantially co-planar with an outer surface of the nosing.
In some embodiments, the nosing defining a closed cross-section of the nosing.
In some embodiments, the aluminum jamb element defining a closed cross-section of the jamb element.
In some embodiments, the aluminum jamb element comprising longitudinally spaced mounting holes in the first and second side panels, the mounting holes in the first and second side panels being registered with each other so as to enable fasteners to pass through both of the first and second side panels along straight line paths.
In some embodiments, the insert is made of hydrophobic material which does not readily absorb a substantial quantity of water, and wherein the hydrophobic material is selected from the group consisting of (i) polymeric resin, and (ii) polymeric resin in combination with filler material which is compatible with the polymeric resin, wherein the polymeric resin is sufficiently continuous in the combination to prevent substantial absorption of water into the combination.
In some embodiments, the filler material is selected from the group consisting of wood particles, other cellulosic material, fibrous material, other organic and/or inorganic fillers, and combinations thereof.
In some embodiments, the aluminum jamb element further having a rear defining a closed cross-section of the jamb element, the insert extending, along the length of the jamb element, rearwardly of the rear, whereby the insert can be fastened to such building by driving fasteners through the insert at locations disposed rearwardly of the rear of the jamb element.
In a second family of embodiments, the invention comprehends a door jamb adapted to be received into a rough opening in a building, the door jamb having a length, a rough opening side, and an opposing side, and comprising: (a) an aluminum molding, the aluminum molding defining an aluminum jamb element having a length, and comprising (i) a first side panel facing toward such rough opening, (ii) a second side panel facing away from such rough opening, (iii) an outer panel facing outwardly of such building, (iv) a rear opposing the outer panel, and (v) a cavity extending along the length of the aluminum jamb element, the cavity being adapted to receive an insert thereinto; and (b) an insert in the cavity, the insert extending along the length of the aluminum jamb element, the insert having a front disposed toward the outer panel and a back disposed relatively toward the rear, the insert being defined by a durable, rot and decay resistant, material which is receptive to nails and/or screws, as fasteners adapted to fasten the insert to such building, the combination of the aluminum jamb element and the insert providing straight-line paths from the rough opening side of the door jamb to the opposing side of the door jamb, by which nails and/or screws can be driven through the insert without having to create new holes in either the first side panel or the second side panel of the aluminum jamb element, the straight-line paths being located between the back of the insert and a mid-point between the outer panel and the rear of the aluminum molding.
In some embodiments, the cavity extends along the length of the aluminum jamb element, and wherein the cavity is defined by first and second cavity side panels defined inwardly of the rough opening side of the door jamb and the opposing side of the door jamb, and wherein the cavity is further defined by a front cavity panel disposed between the outer panel and the rear of the aluminum jamb element, an elongate opening extending along a substantial portion of the length of the aluminum jamb element and into the cavity, between the first and second side panels at the rear of the aluminum jamb element.
In some embodiments, the straight-line paths are defined between the rear and the outer panel, and further comprising fastener holes spaced longitudinally along the aluminum jamb element and through the first and second side panels.
In some embodiments, the door jamb further comprising locking structure on the aluminum jamb element, extending outwardly of such building from the outer panel and, as a separate element, a nosing mounted to the aluminum jamb element at the outer panel by the locking structure.
In some embodiments, the aluminum jamb element extends along a substantial portion of the length of the doorjamb.
In some embodiments, the aluminum jamb element extends along substantially all of the length of the door jamb.
In some embodiments, the door jamb further comprising a nosing extending outwardly from the outer panel and away from such building.
In some embodiments, the nosing and the jamb element being defined in a common unitary body.
In some embodiments, the nosing comprising a mounting fin receptacle.
In some embodiments, the doorjamb further comprising a mounting fin in the mounting fin receptacle.
In a third family of embodiments, the invention comprehends a door frame adapted to be mounted in a rough opening in a building, the door frame comprising first and second side jamb assemblies, and a header jamb assembly extending between the first and second side jamb assemblies, at least one side jamb assembly having an upper member and a lower member, the upper member having a length, and defining at least one cavity extending along the length thereof, the lower member defining an insert portion received into the cavity and an extension portion extending downwardly from the lower edge of the upper member a distance sufficient to substantially avoid travel of liquid water, by surface tension, from a lower edge of the lower member to a lower edge of the upper member, the extension portion being defined by a durable rot and decay resistant material.
In a fourth family of embodiments, the invention comprehends a door frame adapted to be mounted in a rough opening in a building, the door frame comprising: (a) first and second side jamb assemblies, at least one of the side jamb assemblies comprising an aluminum jamb element having a length, and comprising (i) a first side panel facing toward such rough opening, (ii) a second side panel facing away from such rough opening, (iii) an outer panel facing outwardly of such building, and (iv) an inner panel facing inwardly into such building at or proximate a rear of the aluminum jamb element, the aluminum jamb element extending substantially the entirety of the length of the jamb assembly such that the at least one side jamb assembly is supported, by the aluminum extrusion, from an underlying support, within a distance of such underlying support to enable travel of liquid water, by surface tension, from a lower edge of the side jamb assembly to the aluminum jamb element; and (b) a header extending between the first and second side jamb assemblies.
The invention is not limited in its application to the details of construction or the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in other various ways. Also, it is to be understood that the terminology and phraseology employed herein is for purpose of description and illustration and should not be regarded as limiting. Like reference numerals are used to indicate like components.
Turning now to the drawings,
Jamb 24 further includes a cavity 28 adapted to receive an insert 30. A nailing fin 32 is shown mounted in a nailing fin receptacle, namely fin kerf 34, in the nosing. Jamb 24 is generally defined by left 36A and right 36B side panels, outer panel 38, and inner panel 40. In the assembled, installed, jamb 24, the left side panel 36A faces into the doorway opening and right side 36B faces the building framing members which define the rough opening. Outer panel 38 faces outwardly of the building and inner panel 40 faces inwardly toward the inside of the building.
Nosing 26 is defined by outer wall 42, inner wall 44, and sides 46, 48. In the embodiment of
Cavity 28 defines an elongate opening 50 open to the rear of the extrusion/molding and extending along a substantial portion of the length of the jamb, optionally along substantially the full length of the jamb, optionally along the entirety of the length of the jamb. Cavity 28 is in general defined by left and right side walls 52, which are extensions of side panels 36A and 36B, by front wall 54 which corresponds to inner panel 40 of the jamb, as well as by opening 50. Thus, left and right side walls 52 at least partially define a rearmost portion, e.g. rear of the aluminum extrusion/molding jamb element, at or adjacent, for example their terminal ends which are distal the remaining components of jamb 24.
Protuberances 56, project into the cavity from side walls 52. Protuberances 56 are designed with abutting surfaces which face toward nosing 26 and which are designed to interface with corresponding rearwardly-facing surfaces of insert 30, which can be parts of channels, grooves, chamfers, bevels, or other inward projections and/or other structure, formed into or extending from (as will be explained in greater detail elsewhere herein), insert 30 which mechanically corresponds to protuberances 56 thereby to impede withdrawal of the insert from the cavity toward the rear of the jamb, namely toward the interior of the building.
An elongate recess 58, e.g. a casing-receiving recess, extends along the length of the nosing, proximate the outer surface of the nosing, and is adapted to receive thereinto, and hold, an elongate casing such as a brick mold 60 or a generally flat casing, e.g. extended-width casing 62.
Referring now to
A durable, rot and decay resistant, and insect resistant, insert 30 can be mounted in the jamb to serve as a stiffening member, and/or to serve as an attachment structure, whereby the jamb assembly can be nailed or screwed to one or more building framing members. Insert 30 has a jamb facing portion “JFP” and a building facing portion “BFP”. Jamb facing portion “JFP” of insert 30 generally faces and communicates with jamb 24, and building facing portion “BFP” of insert 30 generally faces “into” the building (in the installed product). As exemplarily illustrated, a terminal end surface of jamb facing portion “JFP” interfaces with, abuts, and/or otherwise communicates with, an edge or surface of the aluminum extrusion/molding, e.g. cavity front wall 54 or other edges and/or surfaces of jamb 24.
In the exemplary embodiment illustrated in
Thus, when insert 30 is housed in cavity 28, the outer surface of left side panel 36A and the portion of the outer surface of the left side of insert 30 which extends beyond the cavity side wall 52 generally collectively define a generally planar surface e.g. with no substantial step-change in surface profile height along at least a major portion of the collective surface thereof. Likewise, when insert 30 is housed in cavity 28, the outer surface of right side panel 36B and the portion of the outer surface of the right side of insert 30 which extends beyond the cavity side wall 52 generally collectively define a generally planar surface e.g. with no substantial step-change in surface profile height along at least a major portion of the collective surface thereof.
Also as exemplarily illustrated, the jamb facing portion “JFP” has at least one interfacing structure which is adapted and configured to interface with the protuberances of the cavity sidewalls 52. In the illustrated embodiments, each of the interfacing structures is a “V-type” groove, which has first and 'second terminally intersecting groove walls. One of the groove walls extends generally perpendicularly into insert 30 and the other of the groove walls extends angularly into insert 30. Other interfacing structures are contemplated and are well within the scope of the invention, including, but not limited to, channels, grooves, chamfers, bevels, or other inward projections and/or other structure, formed into or extending from, insert 30.
Insert 30 can be disposed in a location generally toward the interior of the building such as inwardly of front wall 54 of the cavity, and generally to the rear of jamb 24. In such instance, and as illustrated in
Depending on the material composition of insert 30, and the structure of the respective nails or screws, mounting holes 78 may or may not be pre-drilled or punched, as round or slotted holes in insert 30. Where a softer material such as polyethylene, nylon or the like is used, pre-drilled holes are generally not required. Where a harder material such as polycarbonate or an acrylic is used in fabricating insert, pre-drilled holes may be desirable.
Regarding materials from which insert 30 can be fabricated, there can be mentioned for example and without limitation, various of the polyethylenes, polyamides such as nylon, vinyl, acrylic, polycarbonate, or the like. Typically, a generally hydrophobic thermoplastic material is selected as the base material for use in insert 30. As additional compositional ingredients, there can be mentioned a wide array of additives and fillers which can be used to enhance the properties of the resultant insert, and/or to reduce the cost of the insert. In general, any additive such as a filler must be compatible with the polymeric resin, and the proportion of the ingredients must be such that the polymeric resin is sufficiently continuous in the combination to prevent substantial absorption of water into the finished combination. Suitable fillers include, but are not limited to, wood particles, other cellulosic material, fibrous material, other organic and/or inorganic fillers, combinations thereof, and others.
Thus, in general, the polymeric resin is a continuous phase in the combination, and any hygroscopic filler or other inclusions are discontinuous inclusions in the continuous resin phase. A modest level of foaming, namely voids, is acceptable in insert 30 so long as the hydrophobic properties of the insert are preserved.
In some embodiments, the insert, or a portion of the insert, or a second insert, can be disposed frontwardly of the inner panel 40 of the jamb, which corresponds to the front wall 54 of the cavity, thus between inner panel 40 and outer panel 38. Thus, the rib which extends between the left 36A and right 36B side panels of the jamb serves both as the inner wall of the jamb 24 and as the front wall of cavity 28. Where the insert is disposed frontwardly of the inner panel of the jamb, the insert is desirably, but not necessarily, disposed proximate the inner panel. In such instance, and contrary to the illustration of
Mounting holes 78, shown in dashed outline in
In the embodiments illustrated in
Referring still to
Referring, now to
In the assemblage of jamb assembly 20 and header assembly 22, first and second miter joints are defined at the intersection of jamb assembly 20A and header assembly 22, and at the intersection of jamb assembly 20B and header assembly 22. The mitered portion of jamb assembly 20 and the mitered portion of header assembly 22 interface with each other and are snugly held in such interfacing relationship by ones of spring clips 86. Accordingly, spring clips 86 control movement of respective ends of header jamb assembly 22 and the corresponding side jamb assembly 20 with respect to each other, in a direction toward and/or away from such building, and/or in a direction generally toward and/or away from the rough opening which extends through the building.
Stated another way, the first and second legs of the spring clip resiliently grip the outwardly disposed edges of the respective mitered ends of the extended casing 62 at the corner defined by a side jamb assembly and the header jamb assembly. Since ridges 110 are at a common distance from top wall 104 on both legs, since channels 92 are located a common distance from outer wall 72 of the casing, the ridges gripping the tines at channels 92 positively seat the respective casings on the header jamb and the side jamb relative to each other such that the outside surfaces of the respective casings are located in a common plane which extends generally parallel to the outer surface of the building. Stated another way, the spring clip holds the two mitered ends of the casing flush with each other, at a common distance from the outer surface of the building.
Referring to
As indicated earlier,
As illustrated in
Gusset 116B includes a pair of legs extending from a common corner. Each leg is defined by an inner panel 118B and an outer panel 120B, and one or more bridging panels 122B which extend as reinforcement members between the inner and outer panels.
Each of the inner and outer panels, and the bridging panels, are shown in edge view in
Also as illustrated in
As illustrated in
As in the embodiment of
As illustrated in
Thus,
In general, the embodiments of
Aluminum extrusion/moldings, including but not limited to jamb 24, nosing 26, brick mold casing 60, extended width casing 62, and other extrusion/moldings, are preferably extrusions wherein the respective profile elements of the extrusions have profile thicknesses “T” of about 0.04 inch to about 0.10 inch, with preferred thicknesses of about 0.06 inch. A highly preferred thickness is about 0.062 inch. Those skilled in the art are well aware of suitable aluminum extrusion processes, e.g. mechanical and/or thermal treatments, and corresponding hardware, e.g. presses, dies, and/or others, to achieve the desired temper, shape, and/or other properties of the extruded aluminum product.
Insert 30, 233 is sized and configured for a tight fit in cavity 50, 231. Insert 30, 233 is installed in the cavity by placing the insert alongside the cavity, in the same orientation as shown in e.g.
In the alternative, insert 30, 233 can be slidingly inserted into cavity 50, 231, longitudinally along the length of the cavity. Insert 30, 233 and/or cavity 50, 231 can be lubricated with e.g. wet or dry lubricant as necessary or desired.
In some embodiments, side jamb assembly 20 includes a plurality of jamb components in vertical alignment with each other, e.g. “stacked” on top of each other. Namely, side jamb assembly 20 can include an upper member and a lower member. The upper member has a length, and defines at least one cavity which extends along its length. The lower member defines an insert portion received into the cavity and an extension portion which is made of a durable rot and decay resistant material. The extension portion extends downwardly from the lower edge of the upper member a distance sufficient to substantially avoid travel of liquid water, by surface tension, from a lower edge of said lower member to a lower edge of said upper member. Exemplary lengths of extension of the extension portion include at least about two inches, at least about four inches, at least about six inches, at least about ten inches, at least about twenty inches, at least about thirty inches, and others.
To install the door frame, the rough opening must first be “framed into” the building/structure. This is not typically done by the door installer, rather is typically done by the carpenter, and/or other onsite worker, building the building/structure. Namely, the onsite worker installs appropriate header and trimmer studs, such as framing members 82, sufficiently strong and durable to support the span of the rough opening, and the door to be installed therein.
Next, the onsite worker installs the door and/or corresponding door frame. The onsite worker may install the frame as separate components in sequence, e.g. jamb assemblies 20 (which may or may not include nosing 26), header assembly 22, brick mold casing 60 or extended width casing 62, and/or others. In the alternative, the installer may pre-assemble the frame, on site or at a remote location, and “tip” the assembly into the rough opening and subsequently secure it to e.g. the framing members.
Non-metallic materials suitable for components of, and/or attachment structures and accessories, including but not limited to, jamb 24, nosing 26, nailing fin 32, brick mold casing 60, extended width casing 62, and other extrusion/moldings, fins, and related components, are various polymeric compounds. Such polymeric compounds, as for example and without limitation, include various of the polyolefins, such as a variety of the polyethylenes, e.g. high density polyethylene, or polypropylenes. There can also be mentioned as examples such polymers as polyvinyl chloride and chlorinated polyvinyl chloride copolymers, various of the polyamides, polycarbonates, and others.
For any polymeric material employed in structures of the invention, any conventional additive package can be included such as, for example and without limitation, slip agents, anti-block agents, release agents, anti-oxidants, fillers, and plasticizers, to control e.g. processing of the polymeric material as well as to stabilize and/or otherwise control the properties of the finished processed product, also to control hardness, bending resistance, and the like.
Common industry methods of forming such polymeric compounds will suffice to form non-metallic components disclosed herein. Exemplary, but not limiting, of such processes are the various commonly-known plastics converting processes.
Those skilled in the art will now see that certain modifications can be made to the apparatus and methods herein disclosed with respect to the illustrated embodiments, without departing from the spirit of the instant invention. And while the invention has been described above with respect to the preferred embodiments, it will be understood that the invention is adapted to numerous rearrangements, modifications, and alterations, and all such arrangements, modifications, and alterations are intended to be within the scope of the appended claims.
To the extent the following claims use means plus function language, it is not meant to include there, or in the instant specification, anything not structurally equivalent to what is shown in the embodiments disclosed in the specification.
This application is a Continuation-in-Part of application Ser. No. 10/109,759, filed 03/28/2002, which is herein incorporated by reference in its entirety. Application Ser. No. 10/109,759 is the non-provisional of application Ser. No. 60/355,592. Accordingly, this application claims priority under 35 U.S.C. 120 to application Ser. No. 10/109,759 and to application Ser. No. 60/355,592.
Number | Date | Country | |
---|---|---|---|
60355592 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10109759 | Mar 2002 | US |
Child | 11015237 | Dec 2004 | US |