The present disclosure relates generally to a door hinge mechanism for a vehicle, and more particularly, to a vehicle door hinge mechanism for improved control and aesthetics.
Vehicles require the synthesis of aesthetic design and functionality. The exterior of a vehicle is typically determined by the shapes and surfaces of the vehicle designed to enhance aerodynamics and aesthetic appeal. Designers are largely responsible for the arrangement and shapes of the windows, the doors, and the panels of the exterior of the vehicle. Recently, designers have been attempting to provide an especially sleek design by reducing the door seams and customizing the vehicle cut lines. The designers typically render the exterior design into a computer aided design (CAD) drawing, and engineers implement the drawing into a functioning vehicle.
Accordingly, engineers are responsible for determining how the vehicle design can be manufactured with structural components (e.g., door hinges) to ensure that the vehicle functions properly. Engineers are also responsible for providing features to the vehicle to optimize functionality and ensuring that the vehicle components provide structural and packaging feasibility. At times, it may be difficult to combine the demands of the design with the demands of the functionality.
The disclosed door hinge mechanism is directed to mitigating or overcoming one or more of the problems set forth above and/or other problem in the prior art.
One aspect of the present disclosure is directed to a door hinge mechanism for a vehicle having a frame. The door hinge mechanism may include a door configured to open and close relative to the frame, and a hinge secured between an interior of the door and an exterior of the frame. The hinge may be configured to open the door by sliding the door away from the frame and pivoting the door relative to the frame.
Another aspect of the present disclosure is directed to a vehicle. The vehicle may include a frame and a door hinge mechanism. The door hinge mechanism may include a door configured to open and close relative to the frame, and a hinge secured between an interior of the door and an exterior of the frame. The hinge may be configured to open the door by sliding the door away from the exterior of the frame and pivoting the door relative to the exterior of the frame.
Yet another aspect of the present disclosure is directed to a method of opening a door of a vehicle having a frame using a door hinge mechanism. The method may include sliding the door away from the frame by rotating a first cross member of a hinge relative to a second cross member of the hinge, wherein the hinge is secured between an interior of the door and an exterior of the frame. The method may also include pivoting the door relative to the frame by rotating a pivoting plate around a lead screw of the hinge.
The disclosure is generally directed to a door hinge mechanism. In some embodiments, the door hinge mechanism may be applied to a rear door of a “French door” vehicle design. The contemplated hinge mechanism may provide improved mechanics that enable the door to slide outward from the vehicle prior to pivoting open. Advantageously, this mechanism may minimize or eliminate door gaps and allow cut lines to be customizable, while also eliminating clashes and improving ingress/egress. The mechanism may also provide fine-tuned control of the door while maintaining a compact design to facilitate packaging.
Vehicle 12 may further include a front passenger door 28 and a rear passenger door 30 on each side of frame 12. In a closed configuration, front passenger door 28 may extend between A pillar 16 and B pillar 18, and rear passenger door 30 may extend between B pillar 18 and C pillar 20 in order to substantially enclose cabin 14. Doors 28, 30 may also be configured to open in order to allow ingress/egress of passengers from cabin 14. Doors 28, 30 may be opened and closed by any number of mechanisms. For example, in some embodiments, doors 28, 30 may include a door latch that is manually disabled with the actuation of a door handle. In some embodiments, doors 28, 30 may be automatically opened via one or more motors that may be actuated by a number of different inputs. In some embodiments, as depicted in
In closed configuration 60, rear passenger door 30 may extend between B pillar 18 and C pillar 20 with a minimal seam (or absence thereof) between adjacent components. For example, in some embodiments, door 30 may have closed configuration 60, wherein one or more ends of door 30 may abut an end of adjacent components (e.g., front passenger door 28, rear panel 24, or a center panel separating doors 28, 30). In some embodiments, door 30 may create a seam as small as about 1-10 millimeters between adjacent components. Advantageously, the mechanics of hinge 100 may allow doors 28, 30 to open/close, simultaneously or separately, without adjacent components overlapping (e.g., clashing). This may be facilitated by door 30 (as it transitions from closed configuration 60 to intermediate configuration 62) separating from front passenger door 28 to form a first gap 40 and from rear panel 24 to form a second gap 42.
In some embodiments, door 30 may open/close in one or more phases. For example, as depicted in
In intermediate configuration 62, gaps 40, 42 may be sufficiently large in order to allow door 30 to transition into a second phase. For example, as depicted in
Door 30 may also include a cutline 32 positioned between fore end 35 and aft end 36. Cutline 32 may extend through an exterior surface and an interior surface of door 30. Cutline 32 may also extend between top end 37 and bottom end 38, for example, the entire vertical length of door 30. Since gaps 40, 42 may be minimized or eliminated in closed configuration 60, cutline 32 may aesthetically replace the seam between the components (e.g., gaps 40, 42). Cutline 32 may be placed anywhere along the width of door 30 and in any configuration. For example, cutline 32 may be positioned in a vertical configuration on door 30 and positioned at least 85 millimeters from ends 35, 36. Cutline 32 may also have other configurations to provide unique aesthetics. For example, outline 32 may include a zig-zag, sinusoidal, or arcuate configuration along door 30.
First and second cross members 102, 104 may extend between frame 12 and door 30. First and second cross members 102, 104 may be embodied as two pairs of plates on each side of hinge 100. Each pair of plates may be mirrored relative to a central plane of hinge 100. First and second cross members 102, 104 may be configured to rotate about a central pivot point 103 in order to expand and contract hinge 100, for example, in a scissoring mechanism. Central pivot point 103 may be embodied as a pin that secures first and second cross members 80, 82 together in a pivoting configuration. First and second cross members 102, 104 may also be secured together with a truss bearing 105 (e.g., as depicted in
First and second cross members 102, 104 may each include a first end 106, 106′ secured to lead screw 110. For example, first end 106 of first member 102 may be pivotably attached to a traveler 118 that is configured to translate along lead screw 110. Traveler 118 may include a threaded interior that mates with exterior threads of lead screw 110, such that rotational movement of lead screw 110 is converted to translational movement of traveler 118 along lead screw 110. First end 106′ of second member 102 may be pivotably attached to a fixed member 120 of lead screw 110. Therefore, as traveler 118 translates along lead screw 110, hinge 100 may expand/contract, thus opening/closing door 30. The pitch of each of lead screw 110 and traveler 114 may allow fine-tuned control of door 30 along its entire range of motion. For example, due to the threaded configuration of lead screw 110 and traveler 118, door 30 may be readily stopped at any position between closed configuration 60 (e.g., illustrated in
In addition to expanding and contracting hinge 100, relative rotational movement of first and second members 102, 104 may be configured to actuate pivoting plate 122. The actuation of pivoting plate 122 may include rotation around lead screw 110 in order to pivot door 30 open/closed. For example, pivoting plate 122 may include a top surface 124 rotatably secured to a top surface of lead screw 110, and a bottom surface 126 rotatably secured to a bottom surface of lead screw 110. Pivoting plate 122 may also include a flat surface 136 fixed to a lateral interior surface of door 30. For example, an upper portion of flat surface 136 may be fixed to a protruding portion 34 extending laterally on door 30 via bolts through mounting holes. Pivoting plate 122 may also include an arcuate surface 138 that includes a slot 142. As hinge 100 expands and contracts, pivoting plate 122 may be configured to selectively maintain a lateral configuration as door 30 slides substantially transverse to frame 12 during a first phase of motion (e.g., as illustrated in
Motor 116 may be positioned inside door 30 and configured to actuate belt 114 in order to rotate lead screw 110, via pulley 112. Motor 116 may include a driving pulley (not shown) which provides a rotational force to belt 114, which in turn rotates pulley 112. Motor 116 may be hydraulically or rotary driven and may be controlled by command signals from a variety of different mechanisms. For example, motor 116 may be controlled by wired or wireless command signals generated by an interface or handle (not shown) positioned on an interior and/or exterior surface of door 30. Motor 116 may also be controlled by command signals generated, for example, by other components within cabin 14 and/or from a remote radiofrequency fob (not shown).
As further illustrated in
Second ends 108, 108′ of first and second cross member 102, 104 may be secured to support 128. For example, second end 108 of first cross member 102 may be pivotably secured to fixed member 130 of support member 128, while second end 108′ of second cross member 102 may be secured to a collar 150. Collar 150 may be configured to slide along a pin 134 which extends between a stop 132 and fixed member 130. This configuration may facilitate hinge 100 to expand/contract by relative rotation of first and second cross members 102, 104, for example, in a scissoring mechanism. Support 128 may also include a support plate 129 secured to an exterior surface of frame 12.
Even though the mechanics of hinge 100 are discussed in relation to opening/closing rear passenger door 30, hinge 100 may, additionally or alternatively, be applied to front passenger door 28 or any other door of vehicle 10. For example, hinge 100 may secure front passenger door 28 to A pillar 16. Hinge 100 may open/close in similar first and second phases and open front passenger door 28 in a substantially 90° range of motion relative to frame 12. Hinge 100 may be configured to remove gaps 40, 42 between front passenger door 28 and adjacent components, as discussed herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed door hinge mechanism. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed door hinge mechanism. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
This application is a National Phase application under 35 U.S.C. § 371 of International Application No. PCT/US2016/057812 filed on Oct. 20, 2016, which claims the benefit of priority from U.S. Provisional Patent Application No. 62/244,723 filed on Oct. 21, 2015, the entire disclosures of which is incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/057812 | 10/20/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/070285 | 4/27/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
116686 | Covert | Jul 1871 | A |
2997336 | Grant | Aug 1961 | A |
3791073 | Baker | Feb 1974 | A |
4945677 | Kramer | Aug 1990 | A |
5040857 | Mandel | Aug 1991 | A |
5244247 | Kuwabara | Sep 1993 | A |
5255876 | Fleming | Oct 1993 | A |
5269048 | Pazmany | Dec 1993 | A |
5632065 | Siladke | May 1997 | A |
6305737 | Corder | Oct 2001 | B1 |
6318824 | LaGrotta | Nov 2001 | B1 |
6959972 | Cude | Nov 2005 | B2 |
6974177 | Castillo | Dec 2005 | B2 |
7396068 | McRobert | Jul 2008 | B1 |
7520028 | Borelis et al. | Apr 2009 | B2 |
8186781 | Coleman | May 2012 | B2 |
8234816 | Heuel et al. | Aug 2012 | B2 |
8646208 | Taracko | Feb 2014 | B2 |
9676256 | Elie | Jun 2017 | B2 |
9752374 | Fu | Sep 2017 | B2 |
9810009 | Balaz | Nov 2017 | B2 |
10363799 | Ma | Jul 2019 | B2 |
10384519 | Brown | Aug 2019 | B1 |
10487553 | Iacovoni | Nov 2019 | B2 |
20070245525 | Hoffman | Oct 2007 | A1 |
20090295187 | Ham | Dec 2009 | A1 |
20120049577 | Thomas | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
3528817 | Feb 1987 | DE |
10121401 | Nov 2002 | DE |
202016004272 | Aug 2016 | DE |
0092692 | Nov 1983 | EP |
2621641 | Apr 1989 | FR |
756873 | Sep 1956 | GB |
Entry |
---|
International Search Report dated Feb. 3, 2017 for International Application No. PCT/US2016/057812. |
Number | Date | Country | |
---|---|---|---|
20180313122 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62244723 | Oct 2015 | US |