This invention relates generally to a hinge and a method of fabricating a hinge with reduced clearance between hinge components.
Residential hinges secure a door to a door frame. Some known hinges maintain or hold the door position as the door opens and closes. Smooth door movements are desirable, especially in residential environments.
Typical hinges include a hinge pin extending through knuckles to pivotably join two hinge halves. The knuckles rotate relative to each other and contact the hinge pin as the door moves, which may result in a concentrated load on the hinge pin. Concentrated loads on the hinge pin can unevenly wear the hinge components. In some hinges, metal hinge pins can rub against metal hinge knuckles as the hinge moves.
Excessive clearance between the hinge components can result in undesirable looseness, sometimes referred to as chuck, as the door moves between open and closed positions. Wearing the hinge surfaces increases clearance between hinge components, which increases looseness and chuck within the hinge assembly. Particulate matter such as dust and dirt often undesirably accumulates within areas of clearance between the hinge components.
An example hinge includes a hinge pin extending along an axis and a first knuckle for receiving the hinge pin. The first knuckle is rotatable about the axis. A second knuckle also receives the hinge pin and is rotatable about the axis. A bearing limits relative rotation between the first knuckle and the hinge pin. The example hinge assembly may include a tolerance ring between the hinge pin and the first knuckle to urge the bearing away from the axis.
An example bearing arrangement for hinge components includes a bearing mountable about a hinge pin that extends along a rotational axis. A tolerance ring is mountable about the bearing that biases the bearing to limit relative rotational movement between the hinge pin and a hinge knuckle about the rotational axis. The bearing arrangement may include a flange extending from the bearing to prevent a hinge knuckle on a first hinge half from contacting a hinge knuckle on the second hinge half.
An example method of moving a hinge includes the steps of permitting a first hinge plate to move relative a hinge pin and limiting movement of a second hinge plate relative a hinge pin. The method biases a bearing adjacent the hinge pin to limit movement of the second hinge plate relative the hinge pin.
These and other features of the application can be best understood from the following specification and drawings, the following of which is a brief description.
Referring to
A first knuckle 26 extends from the first hinge plate 14. A second knuckle 30 extends from the second hinge plate 18. The first knuckle 26 and the second knuckle 30 receive a hinge pin 34, which joins the first hinge plate 14 to the second hinge plate 18. The hinge pin 34 extends along an axis X. When assembled, the first hinge plate 14 moves relative the second hinge plate 18 by rotating about the axis X.
The first knuckle 26 also receives a thrust bearing 38 for limiting radial and axial movement of the hinge pin 34. The second knuckle 30 receives a radial bearing 42. The thrust bearing 38 includes a tolerance ring 46, a type of biasing member, adjacent an inner surface. The radial bearing 42 includes another tolerance ring 50 adjacent an outer surface. A decorative end cap 54 covers an open end of one of the first knuckles 26.
Referring now to
The radial bearing 42 includes an inner surface 58 directly contacting the hinge pin 34. The tolerance ring 50 biases the inner surface 58 of the radial bearing 42 toward the axis X of the hinge pin 34. As the first hinge plate 14 rotates relative the second hinge plate 18 about axis X, the inner surface 58 rotates relative the hinge pin 34. The hinge pin 34 is comprised of a metal material. The inner surface 58 is of a softer material than the example hinge pin 34. The inner surface 58 can be comprised of material such as Delrin, for example. As the radial bearing 42 is softer, relative movement between the inner surface 58 and the hinge pin 34 wears the inner surface 58, but not the hinge pin 34.
Within the first knuckle 26, another tolerance ring 46 directly contacts the hinge pin 34 and biases an outer surface 62 of the thrust bearing 38 toward an inner surface of the first knuckle 26. As the first hinge plate 14 rotates relative the second hinge plate 18, the outer surface 62 of the thrust bearing 38 contacts the first knuckle 26 to limit relative rotation. The portion of the thrust bearing 38 having the outer surface 62 is a softer material than the first knuckle 26. Thus, the outer surface 62 of the thrust bearing 38 wears more than the first knuckle 26.
The tolerance rings 46, 50 accommodate some clearances within the hinge assembly 10. As the radial bearing 42 wears, the tolerance rings 50 bias further toward the worn surfaces. The inner surface 58 is forced closer to all sides of the hinge pin 34. The tolerance rings 50 thereby lessen perceived chuck or looseness within the hinge assembly 10 as the first hinge plate 14 rotates relative the second hinge plate 18. The biasing of the tolerance rings 46, 50 also facilitates reduction in point loads or load concentrations on the hinge pin 34 through the first knuckle 26 or the second knuckle 30. Instead, loads are distributed radially about the first knuckle 26, the second knuckle 30, and the hinge pin 34.
As shown in
Referring now to
In this example, the thrust bearing 38 includes a flange portion extending outside of the first knuckle 26. The portion prevents contact between the first knuckle 26 and the second knuckle 30.
Modifying the size and location of a gap 72 within the tolerance ring 50 provides for adjusting or tuning installation efforts of the radial bearing 42 within the second knuckle 30. The radial bearing 42 in this example also includes a flange 82. Adjusting the outer diameter of the flange 82 may similarly help control installation efforts of the radial bearing 42. Further, adjusting the size of the notch 64 (
Although the tolerance rings 46, 50 are described as including a wave form outer surface, those skilled in the art and having the benefit of this disclosure would understand similar biasing members could be used to direct or bias the radial bearing 42 and the thrust bearing 38 in an appropriate direction toward or away from the axis X. Other tolerance rings 46, 50 may include engineering composite bearings for example.
Movements of the hinge assembly 10 can generate undesirable particulate matter, such as dust and dirt. A notch 64 facilitates adapting the thrust bearing 38 to variations in hinge knuckle 26 size. A plurality of grooves 78 arranged in a helical fashion relative the axis X communicate particulate matter from the hinge assembly 10. Adjusting the depth and overall size of the grooves 78 provides control of installation efforts of the radial bearing 42 around the hinge pin 34. Grooves could also be substantially aligned with axis X.
Referring again to
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine their true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
111515 | Clark | Feb 1871 | A |
112978 | St. John | Mar 1871 | A |
698884 | Wheeler | Apr 1902 | A |
1738015 | Parsons | Dec 1929 | A |
1936769 | Olivet | Nov 1933 | A |
2000856 | Lyons | May 1935 | A |
2010659 | Ferris | Aug 1935 | A |
2154860 | Morse | Apr 1939 | A |
2214348 | Roth | Sep 1940 | A |
2772441 | Riser | Dec 1956 | A |
3013297 | Ferry | Dec 1961 | A |
3015126 | Ahlgren | Jan 1962 | A |
3068508 | Heyer | Dec 1962 | A |
3216053 | Felix | Nov 1965 | A |
3216054 | Cain | Nov 1965 | A |
3499183 | Parsons | Mar 1970 | A |
3921225 | Suska | Nov 1975 | A |
4353146 | Brockhaus | Oct 1982 | A |
4475266 | Suska | Oct 1984 | A |
4675940 | Brockhaus | Jun 1987 | A |
4896188 | Byers | Jan 1990 | A |
4964193 | Rommelfaenger et al. | Oct 1990 | A |
5012555 | Byers | May 1991 | A |
5014087 | Byers | May 1991 | A |
5463795 | Carlson et al. | Nov 1995 | A |
5491874 | Lowry et al. | Feb 1996 | A |
5752293 | Lowry et al. | May 1998 | A |
5930868 | Butler | Aug 1999 | A |
6173475 | Senn et al. | Jan 2001 | B1 |
6808333 | Friesen et al. | Oct 2004 | B2 |
6859980 | Baer | Mar 2005 | B2 |
20040025296 | Wade | Feb 2004 | A1 |
20080104798 | Hoppe et al. | May 2008 | A1 |
20100146734 | Munson et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090151124 A1 | Jun 2009 | US |