The present invention relates generally to the field of door knobs and in particular to a new door knob assembly for allowing for a door to be opened easily without a user being forced to turn a door knob. The prior art contains many different door knobs and latches, most of which require that the door knob or latch be turned in order to achieve their objective.
It is an object of the disclosed door knob assembly to facilitate the opening, closing, locking and unlocking of a door in a way which does not require a user to turn the door knob.
To achieve this objective, the disclosed assembly is used in conjunction with a door which has openings on its side edge, the inside surface and the outside surface. The openings on the inside and outside surface create a cavity through the width of the door. Similarly, the opening on the side edge of the door creates a cavity that extends into the side of the door until it meets up with the cavity created by the openings on the inside and outside surface. Therefore, all three openings in the door communicate with each other
The disclosed door knob assembly further includes a stationery outside door knob which is placed in the opening on the outside surface of the door. When the disclosed door knob is fully assembled, the outside door knob connects and communicates with both an actuating inside door knob, which is placed in the opening on the inside surface of the door, as well as a locking body, which is placed in the opening on the side edge of the door. Covering the holes on both the inside and outside surfaces of the door are concentric escutcheons. The inside escutcheon is provided with two holes to accommodate fasteners used to connect the inside and outside door knobs. The outside door knob further includes two threaded coupling elements attached to the interior surface of the escutcheon. The coupling elements extend toward the opening on the inside surface and line up with the holes provided on the inside escutcheon.
The locking body located in the opening on the side edge of the door includes a hollow casing which has an open front end and a partially enclosed back end. It also includes a locking shaft which slides into the hollow casing. The locking shaft has a front locking head and two complementary engagement arms projecting out from a rear surface opposite the locking head. Also, the engagement arms extend through the partially enclosed back end of the hollow casing. Between the engagement arms is a centered longitudinal space which has at least one obstruction openings. Also, a spring is positioned between the rear surface of the locking shaft and the partially enclosed back end of the hollow casing. The locking body also includes a shaft housing located at the back of the hollow casing. It extends out from the partially enclosed back end and surrounds the engagement arms. The shaft housing also has centered openings which allow the threaded coupling elements to pass through so as to facilitate the attachment of the inside and outside door knobs.
The inside door knob is actuated by moving it between an extended and contracted position. A slidable bar is connected to and protrudes out from the back end of the inside door knob. The slidable bar has a depressible bearing on its outside surface. The inside escutcheon has a concentric bar sleeve at its center. The bar sleeve has a through hole which allows the slidable bar to pass through to the inside of the assembly. Also, the bar sleeve has a complementary divit on the inside surface of the through hole. When slidable bar passes through the hole in the bar sleeve the depressible bearing encounters the divit and thrusts up into it. This functions to hold the knob in the contracted position. Also, a locking rod is attached to the back end of the slidable bar. The locking rod extends through the at least one obstruction openings. A stop washer and a top nut are positioned at the point where the locking rod connects to the slidable bar. The stop washer prevents the slidable bar from sliding out of the bar sleeve when the knob is in the extended position. The top nut secures the stop washer to the back of the slidable bar. An adjustable coaxial locking nut is located further up the locking rod. When the disclosed door knob is fully assembled, the locking nut will be positioned in the obstruction openings of the locking shaft which will prevent the front locking head from sliding into the cylindrical casing and causes the door to be locked. Accordingly, when the inside knob is either extended or contracted, this moves the locking nut out of the obstruction openings and the door can be opened. Further, the inside escutcheon has two fastener holes which are aligned with the two threaded coupling elements.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
In the drawings:
Referring now to the drawings, in which like reference numerals are used to refer to the same or similar elements,
Additionally, the materials that the disclosed assembly (10) is typically made from are common metals and/or metal alloys. A non-exhaustive list of such materials are as follows. Aluminum, brass, copper and steel. However, the present assembly can be made from any material, now known or later developed, which have properties sufficient to allow it to achieve its intended function. An example of such a material is rigid plastic. Furthermore, unless otherwise described, all attachments between elements can be accomplished by a number of known methods. For example, male and female threading can be used. Another example would be when elements are fixed/connected with some form of adhesive. Moreover, elements can be spot welded together. Similarly, two adjacent elements can be unitary as would be the case if elements came out of the same mold.
As shown in
The coupling elements (26) extend toward the opening in the inside surface of the door. They function to meet up and attach to fasteners which extend from the opposite side of the door (see below). Together with the fasteners, the coupling elements (26) hold the components of the assembly (10) to each other and fit it tightly to the front and back surfaces of the door (100)
Additionally, the front of the outside knob (20) can comprise a centered hole (96) in which a key element (98) can be placed to unlock the door (100) from the outside.
Referring now to
The hollow casing (32) shown in
The locking shaft (38) also has two complementary engagement arms (44) extending out from the partially enclosed back end (36) of the hollow casing (32) toward a distal end. The engagement arms (44) comprise a centered longitudinal space (46) which is provided to allow unobstructed linear motion of the locking shaft (38) through the hollow casing and shaft housing (shown in
Additionally, a spring (48) is positioned between the rear surface (42) of the locking shaft (38) and the partially enclosed back end (36) of the hollow casing (32). This keeps the locking head (40) in an extended position and also allows it to retract through the hollow casing (32) into the side edge of the door (100). The spring (48) can be fixedly attached to the rear surface of the locking head (40) or can be placed inside a circular recess and hence frictionally attached to the rear surface of the locking head (40).
The locking body (30) further comprises a shaft housing (52) which extends out from the partially enclosed back end (36) of the hollow casing (32) and surrounds the engagement arms (44). In addition, the shaft housing (52) has centered openings (54) to accept the threaded coupling elements (26) and allows them to pass though the shaft housing and the locking shaft's (38) longitudinal space (46) toward the opening on the opposite side of the door (100).
The complementary engagement arms have two sections. The first section is proximate the hollow casing (32). The second section is distal to the hollow casing (32) and is slightly thicker. Each of the two sections of the engagement arms (44) have a constant thickness. Thus, where the two sections of the engagement arms (44) meet (i.e., half way between the front and back end of the engagement arms) is a step on the outside edge of each engagement arm (44). The step is created by the immediate change in thickness of the two sections of the engagement arms (44). See
The partially enclosed back end (36) of the hollow casing (32) comprises a main rectangular opening which is just large enough to allow the engagement arms (44) to slide through and protrude out the back end (36) of the hollow casing (32). The main rectangular opening has bumped out notches provided on its edges which are positioned to accept the turned up flaps on each of the two pieces of the shaft housing (52) and are sized so that when the pieces of the shaft housing (52) are folded together, the shaft housing (52) becomes locked to the back end (36) of the hollow casing (32).
Also, the shaft housing (52) is made up of two pieces. Each of the two pieces have turned up flaps positioned where the shaft housing (52) attaches to the hollow casing (32). When the turned up flaps are placed in complementary holes in the back end of the hollow casing, it causes a strong yet manually removable attachment it to the casing (32). Also, each of the two pieces of the shaft housing (52) fold around the locking shaft (38) and lock together to create the functioning shaft housing (52). Adjacent the turned up flaps, there are two short side walls that tightly surround the thinner section of the engagement arms (44) and allow the thinner section to slide front and back within the shaft housing (52). However, the side walls are not far enough apart to allow the thicker portion of the engagement arms (44) to slide through. Thus, as the locking shaft (38) is pushed outward from the hollow casing (32) by the spring (48), It causes the engagement arms (44) to slide through the shaft housing (52) until the short side walls but up against the notch where the engagement arms (44) increase in thickness.
Referring now to
Additionally, connected to the back end (64) of the inside door knob (60) is a slidable bar (68). The slidable bar (68) has a front end and a back end (70). The front end of the bar (68) is fixed to the back end (64) of the inside door knob (60). It has a depressible bearing (72) which can retract into the bar when pressure is applied to it. Otherwise, constant upward force provided by an internal spring causes the bearing (72) to stay protruded.
A concentric bar sleeve (84) is fixedly attached to and concentrically positioned on the inside escutcheon (66). The sleeve (84) has a through hole which is sized slightly larger than the slidable bar (68) so that the bar (68) can pass through. The bar sleeve (84) has an inside surface (86). On the inside surface (86), and located in line with the depressible bearing (72), is a complementary divit (not shown in figures) for slidably accepting the depressible bearing (72).
A locking rod (74) is attached to the back end (70) of the slidable bar (68). It has a proximate end and a distal end (75). The locking rod (74) extends through the at least two obstruction openings (50) in the locking shaft (38). The locking rod (74) has a diameter which is smaller than the longitudinal space on the locking shaft (38). The locking rod (74) comprises male threading at the proximate end, its distal end (75) as well as on the portion of the rod (74) which extends through the obstruction openings (50). Alternatively, the locking rod (74) can be fully threaded.
As mentioned above and as shown in
A stop washer (76) is positioned at the proximate end of the locking rod (74). This is the point at which the locking rod (74) attaches to the slidable bar (68). Adjacent and distal to the stop washer (76) is a top nut (78) which functions to keep the stop washer (76) tight against the back end (70) of the slidable bar (68). The stop washer (76) prevents the slidable bar (68) from sliding out of the bar sleeve (84) when the inside knob (60) is pulled into an extended position. Accordingly, the stop washer (76) must be larger than the through hole in the bar sleeve (84).
The locking rod (74) further comprises an adjustable coaxial locking nut (80) distal to the top nut (78). It is sized small enough to fit through the obstruction openings (50) but too large to fit through the centered longitudinal space (46). The locking nut (80) is adjustable and can be positioned at different points along the locking rod (74). That is, it can be positioned so that it is either in front (i.e., closer to the outside surface of the door) or in back (i.e., closer to the inside surface of the door) of the locking shaft (38). When the locking nut (80) is moved into one of the obstruction openings (50) the locking shaft cannot slide and hence the locking head (40) cannot retract into the side edge of the door (100). At this point, the door (100) is locked.
Furthermore, as shown in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Name | Date | Kind |
---|---|---|---|
568653 | Ambs | Sep 1896 | A |
776073 | Levy | Nov 1904 | A |
1021864 | Denzler | Apr 1912 | A |
1207123 | Arsneau | Dec 1916 | A |
2038907 | Schlage | Apr 1936 | A |
2497328 | Smith | Feb 1950 | A |
2497329 | Smith | Feb 1950 | A |
2604346 | Allen | Jul 1952 | A |
2807492 | Jakeway | Sep 1957 | A |
3057649 | Check | Oct 1962 | A |
3374019 | Sanowskis | Mar 1968 | A |
4296956 | Colombo | Oct 1981 | A |
4711477 | Fann | Dec 1987 | A |
4746154 | Fang | May 1988 | A |
6234547 | Ruffino | May 2001 | B1 |
Number | Date | Country |
---|---|---|
326872 | Oct 1920 | DE |
805012 | May 1951 | DE |
839328 | Jun 1960 | GB |
Number | Date | Country | |
---|---|---|---|
20160362910 A1 | Dec 2016 | US |