The present application is a 35 U.S.C.§371 National Phase conversion of PCT/JP2008/060598, filed Jun. 10, 2008, which claims benefit of Japanese Application No. 2007-242812, filed Sep. 19, 2007, the disclosure of which is incorporated herein by reference. The PCT International Application was published in the Japanese language.
The present invention relates to a door latch device for a motor vehicle comprising an engagement section and an operating section for operating the engagement section.
A door latch device for a motor vehicle comprises an engagement section which engages with a striker on the car body and an operating section for controlling the engagement section. The operating section comprises a locking lever driven by a motor with a remote control switch and a key cylinder outside a door; an interconnecting lever connected to the locking lever and driven by a handle on the door; and other levers. The locking lever and the interconnecting lever are movable between an unlocking position for opening the door with the handle and a locking position in which the door cannot be opened with the handle as disclosed in Japanese Patent No. 3736267.
However, in the conventional door latch device for a motor vehicle, the worm wheel for transmitting motor power to the locking lever is disposed to align with the locking lever along its thickness. The operating section becomes thicker. With increase in the number of other parts, there are a lot of parts for coupling each element to each other at an operating-force transmitting path between the motor and the interconnecting lever, thereby making its structure more complicated.
In view of the disadvantages, it is an object of the invention to provide a door latch device for a motor vehicle in which an operating section is made smaller, the number of connections at operating force transmitting path between a motor and an interconnecting lever being as small as possible to simplify the structure of the operating section.
A door latch device 1 is disposed on the inside of a front door (hereinafter referred to “door”) at the rear end and comprises an engagement section 2 for holding the door in a closed position and an operating section 3 for operating the engagement section 2.
The door latch device 1 is provided on the inside of the door, is used in a door having no manually locking knob and is in an unlocking state, a locked state and a double-locking state. In the unlocking state, the door can be opened with either an outer handle (not shown) on the outside of the door or an inner handle (not shown) on the inside of the door. In the locked state, the door cannot be opened with the outer handle, but can be opened with the inner handle by double actions for changing the locked state to the unlocking state first and opening the door second. In the double locking state, the door cannot be opened by the outer or inner handle even if the double action of the inner handle is invalidated.
The engagement section 2 comprises a body 4 fixed to the rear end of the inside of the door with a plurality of bolts (not shown); a latch 5 pivotally coupled in the body 4 with a pivot shaft 51 to engage with a striker (not shown) fixed to a vehicle body; a ratchet (not shown) pivotally coupled in the body 4 with a pivot shaft 61; and an opening lever 6 that can turn together on the pivot shaft 61 with the ratchet. When the door is closed, the striker engages with the latch 5, and the ratchet engages with the latch 5 so that the latch 5 does not turn. With the outer or inner handle, the opening lever 6 turns in a releasing direction or in a counterclockwise direction as shown by an arrow in
The front face of the body 4 is covered and fixed with a synthetic resin cover 7. In the cover 7, the operating section 3 is disposed. The operating section 3 comprises the outer lever 8 connected to a rod of the outer handle via an operating force transmitting member (not shown); an inner lever 10 connected to the inner handle via a cable 9 for transmitting an operating force; first and second key levers 11,16 that follow operation of a key cylinder (not shown) outside the door; a locking lever 12; a subsidiary locking lever 13 for carrying out double-locking; first and second interconnecting levers 14,15 following the outer lever 8; a locking motor 17; a sliding block 19 following a double-locking motor 18; and a sliding lever 20 driven by the double-locking motor 18.
In
To the first interconnecting lever 14, the lower part of the second interconnecting lever 15 is coupled to turn with a connecting shaft.
The first key lever 11 is pivotally coupled to the upper part of the cover 7 and turns from a neutral position such as a position in
The second key lever 16 is coupled at the upper end to the first key lever 11 with a connecting shaft 111, moves up from the neutral position in
In
In the space 191 of a sliding block 19, a coil spring 24 is compressed in the space 191 of the sliding block 19 and held in a groove 72 in the middle of the guide portion 71 to urge the sliding block 19 toward a neutral position in
The double-locking motor 18 rotates in a locking or unlocking direction with a remote control switch (not shown).
When the double-locking motor 18 rotates in the locking direction, the sliding block 19 moves down from the neutral position to the double-locking position against a force of the coil spring 24 owing to engagement with the worm gear 181. Thereafter, when electricity into the double-locking motor 18 stops, the sliding block 19 returns to the neutral position owing to force of the coil spring while the worm gear 181 is reversed. When the double-locking motor 18 turns toward the unlocking direction, the sliding block 19 moves up from the neutral position to the double-unlocking position 19B as shown by the broken line in
A projection 202 at the upper end of a slide lever 20 is in sliding fit with an elongate opening 161 of the second key lever 16, and an elongate opening 203 at the lower end is in sliding fit with a projection of the sliding block 19. Thus, following the sliding block 19, the slide lever 20 moves to a double-unlocking position in
When the sliding block 19 and the slide lever 20 are in the neutral position and in the double-unlocking position respectively, the projection 192 of the sliding block 19 is positioned at the lower end of the elongate opening 203 of the slide lever 20. When the sliding block 19 and the slide lever 20 are in the neutral position and the double-locking position, the projection 192 of the sliding block 19 is positioned at the upper end of the elongate opening 203 of the slide lever 20. Thus, when the slide lever 20 is in the double-unlocking position, the sliding block 19 moves from the neutral position to the double-locking position to allow the projection 192 to engage with the lower end of the elongate opening 203 enabling the slide lever 20 to move from the double-unlocking position to the double-locking position. Meanwhile, when the slide lever 20 is in the double-locking position, the sliding block 19 moves from the neutral position to the double-unlocking position to allow the projection 192 to engage with the upper end of the elongate opening 203 enabling the slide lever 20 to move from the double-locking position to the double unlocking position.
A spring 25 supported at the lower end of the cover 7 elastically engages with a projection 204 of the slide lever 20 to hold the slide lever 20 at a position.
In
The locking lever 12 is pivotally mounted on a pivot shaft 21 to the cover 7 and can be rotated by the locking motor 17 and key cylinder to the unlocking position in
In the front of the locking lever 12, there are formed teeth 121 meshing with the worm gear 171 of the locking motor 17. At the rear part remote from the teeth 121, in
As mentioned above, the locking lever 12 comprises the teeth 121 which rotate with the locking motor 17; the key-operation input portion 122 connected to the second key lever 16; and the operation transmitting portion 123 connected to the second interconnecting lever 15, thereby reducing the number of parts and simplifying the structure. Between the worm gear 171 and the second interconnecting lever 15, the meshing portion of the worm gear 171 with the teeth 121 and the engagement section of the operation transmitting portion 123 with the elongate opening 152 exist thereby simplifying the structure and transmitting the rotation of the locking motor 17 to the second interconnecting lever 15 more securely. The key-operation input portion 122 and operation transmitting portion 123 of the locking lever 12 are provided at the end remote from the teeth 121 with respect to the pivot shaft 21. Thus, force which exerts to the locking lever is dispersed to each end, stabilizing the support of the locking lever 12 and transmitting the rotation of the locking motor 17 to the second interconnecting lever 15 more securely. Furthermore, the key-operation input portion 122 is higher than the operation transmitting portion 123, so that the second key lever 16 does not overlap with the second interconnecting lever 15, making the operating section 3 thinner and connecting the second interconnecting lever 15 to the locking lever 12 more simply.
When the remote control switch is operated for locking or unlocking, the locking motor 7 rotates in the locking or unlocking direction. The rotation is transmitted to the locking lever 12 via the worm gear 171 and the teeth 121, so that the locking lever 12 rotates in the unlocking or locking position. When the key cylinder is operated for locking or unlocking, the second key lever 16 moves down or up via the first key lever 11, and the projection 162 of the second key lever 16 gets in touch with the lower or upper edge of the key-operation input portion 122 of the locking lever 12 to enable the locking lever 12 to turn to the locking or unlocking position. When the locking lever 12 is in the unlocking or locking position, the upper projection 124 elastically gets in touch with the spring 22 on the cover 7, so that the locking lever 12 is elastically held in the unlocking or locking position.
The subsidiary locking lever 13 is pivotally mounted on the pivot shaft 21 to rotate separately from the locking lever 12 among the unlocking position in
On the subsidiary locking lever 13, there is formed an arcuate cutaway portion 133 engagable with the projection 125 of the locking lever 12 and a recess 134 engagable with the projection 126 of the locking lever 12. The subsidiary locking lever 13 comprises a contact portion 131 which can get in touch with a contact portion 101 (later described) of the inner lever 10, and an elongate opening 132 which is in sliding fit with a projection 201 at the upper part of the sliding lever 20.
When the locking lever 12 moves from the unlocking position to the locking position with the locking motor 17 or key cylinder, the projection 126 engages in the recess 134 of the subsidiary locking lever 13. The subsidiary locking lever 13 follows the locking lever 12 and turns from the unlocking position to the locking position. When the locking lever 12 moves from the locking position to the unlocking position, the projection 125 engages with the lower end of the recess 133, so that the subsidiary locking lever 13 follows the locking lever to turn from the locking position to the unlocking position.
The elongate opening 132 of the subsidiary locking lever 13 is arcuate around the pivot shaft in the left half in
The projection 201 of the sliding lever 20 is positioned at the front end of the elongate opening 132 when the subsidiary locking lever 13 is in the unlocking position, positioned in the middle of the opening 132 when the lever 13 is in the locking position, and positioned at the rear end of the opening 132 when the lever 13 is in the double-locking position. Thus, when the subsidiary locking lever 13 turns between the unlocking and locking positions, the projection 201 moves along the arcuate portion of the elongate opening 132, so that the subsidiary locking lever 13 freely turns between the unlocking and locking positions. When the subsidiary locking lever 13 is in the locking or double-locking position, the sliding lever 20 moves straight vertically with the double-locking motor 18, and the linear motion can be converted into rotational motion with the projection 201 and the elongate opening 132.
When the sliding lever 20 moves from the double-unlocking position to the double-locking position, the projection 201 of the sliding lever 20 contacts the upper edge of the elongate opening 132 of the subsidiary locking lever 13, so that the subsidiary locking lever 13 follows the sliding lever 20 and turns from the locking position to the double-locking position. Between the projection 125 of the locking lever 12 and the recess 133 of the subsidiary locking lever 13, there is formed a play corresponding to stroke between the locking and double-locking positions of the subsidiary locking lever 13, so that motion in which the subsidiary locking lever 13 shifts from the locking position to the double-locking position is not transmitted to the locking lever 12. When the subsidiary locking lever 13 moves from the double-locking position to the double-unlocking position, the projection 201 of the slide lever 20 contacts the lower edge of the elongate opening 132, so that the subsidiary locking lever 13 follows the slide lever 20 and turns from the double-locking position to the locking position. Between the projection 125 of the locking lever 12 and the recess 133 of the subsidiary locking lever 13, there is formed a play corresponding to stroke of the subsidiary locking lever 13 between the double-locking position and the locking position, so that motion in which the subsidiary locking lever 13 shifts from the double-locking position to the locking positions is not transmitted to the locking lever 12.
The contact portion 131 of the subsidiary locking lever 13 faces the contact portion 101 of the inner lever 10 when the subsidiary locking lever 13 is in the locking position, and it goes out of the track of the contact portion 101 when it is in the double-locking position.
The first interconnecting lever 14 is coupled at the lower end to the end 82 of the outer lever 8 to swing back and forth, and comprises the contact portion 141 which contacts the opening lever 6.
The second interconnecting lever 15 is coupled to the first part of the first interconnecting lever 14 with a connecting shaft 151 so that the second interconnecting lever 15 can swing. There is provided an engagement section 153 which can engage counterclockwise with respect to the first interconnecting lever 14 in
The spring 26 exerts into between the first interconnecting lever 14 and the second interconnecting lever 15 and apply a force in a direction in which the first interconnecting lever 14 gets in touch with the engagement section 153 of the second interconnecting lever 15. Thus, the first and second interconnecting levers 14,15 work together within a holding force of the spring 26.
The first and second interconnecting levers 14,15 make the operating section of the locking lever 12 and the second interconnecting lever 15 to follow the locking lever 12 via the elongate opening 152. The first and second interconnecting levers 14,15 are rotatable between the locking position in
The release contact portion 141 of the first interconnecting lever 14 faces the opening lever 6 when the first interconnecting lever 14 is in the unlocking position, and moves to a position in which it does not face the opening lever 6.
When the first and second interconnecting levers 14,15 are in the unlocking position, they move upward by releasing of the outer lever 8. The release contact portion 141 of the first interconnecting lever 14 contacts the opening lever 6 to make it possible for the opening lever 6 to turn in the release direction. Thus, the door can be opened. When the first and second interconnecting levers 14,15 are in the locking position, the first and second interconnecting levers 14,15 move upward owing to rotation of the outer lever 8 in the releasing direction, the door cannot be opened since the release contact portion 141 cannot contact the opening lever 6.
The inner lever 10 is pivotally mounted to the lower part of the cover 7 with the pivot shaft 23. At the upper part, the unlocking contact portion 101 which can contact the locking contact portion 131 of the subsidiary locking lever 13 is provided. At the front part, the contact portion 102 which can contact the end 81 of the outer lever 8 is provided and turns in a releasing direction or clockwise from the standby position in
When the inner lever 10 turns in the release direction, the contact portion 102 contacts the end 81 of the outer lever 108 thereby turning the outer lever 8 in the release direction. When the locking lever 12 and the subsidiary locking lever 13 are in the locking position, the subsidiary locking lever 13 is moved in the unlocking position, thereby moving the locking lever 12, and the first and second interconnecting levers 14,15 to the unlocking position.
Embodiments of the present invention will be described.
When the Outer or Inner Handle is Operated in the Locking Condition
In
When the Locking Motor 17 is Rotated in the Locking Direction in the Locking State
Rotation of the locking motor 17 in the locking direction is transmitted to the locking lever 12 via the worm gear 171 and the teeth 121. The locking lever 12 is rotated around the pivot shaft 21 from the unlocking position in
From the above, in this embodiment, the locking lever 12 is integrally formed with the teeth 121 directly engaging with the worm gear 171 of the locking motor 17 and the operation transmitting portion 123 directly joined to the second interconnecting lever 15, thereby enabling rotation of the worm gear 171 to be transmitted to the second interconnecting lever 15 securely via the locking lever 12. Between the worm gear 171 and the second interconnecting lever 15, the operation transmitting portion 123 and the elongate opening 152 only exist, thereby reducing the number of connection and simplifying the structure.
When the Outer Handle or the Inner Handle is Operated in the Locked State
In
In
When the outer handle is operated to open the door, the door cannot be opened since the release contact portion 141 of the first interconnecting lever 14 does not contact the opening lever 6 even if the release contact portion 141 of the first interconnecting lever 14 moves to a position as shown by a two dotted line in a direction of an arrow in
When the inner handle is operated in the double action, the locking lever 12, the subsidiary locking lever 13 and the first and second interconnecting levers 14,15 are moved from the locking position to the unlocking position, and the door can be opened by the second door-opening operation of the inner handle.
In the first door-opening operation of the inner handle, the inner lever 10 rotates in the release direction, and the contact portion 102 of the inner lever 10 contacts the end 81 of the outer lever 8. While the outer lever 8 rotates in the release direction, the unlocking contact portion 101 gets in touch with the unlocked contact portion 131 of the subsidiary locking lever 13. Thus, as shown in
In
When the Double-Locking Motor 18 Rotates in the Double-Locking Direction
With a portable remote control switch, the double locking motor 18 is rotated in a double-locking direction. The rotation is transmitted to the subsidiary locking lever 13 via the worm gear 181, the sliding block 19 and the slide lever 20. The subsidiary locking lever 13 moves from the locking position in
When the Outer Handle or the Inner Handle are Operated in the Double-Locking Condition
Even if the outer lever 8 is rotated in the release direction with the outer handle outside the vehicle, the locking lever 13 and the first and second interconnecting levers 14,15 are in the locking position, and the release contact portion 141 of the first interconnecting lever 141 cannot contact the opening lever 6, so that the door cannot be opened.
Even if the outer lever 8 is rotated in the release direction by rotating the inner lever 10 in the release direction with the inner handle inside the vehicle, the door cannot be opened as is operated by the outer handle. The unlocked contact portion 131 of the subsidiary locking lever 13 is out of the unlocking contact portion 101 of the inner lever 10, so that it is not possible to move the subsidiary locking lever 13, the locking lever 12, and the first and second interconnecting levers 14,15 to unlocking position since the unlocked contact portion 131 of the subsidiary locking lever 13 is out of the track of the unlocking contact portion 101 of the inner lever. The double-locking state invalidates not only door-opening operation of the outer handle and the inner handle but also double action of the inner handle. Even if the inner handle is operated by unfair action, the door cannot be opened.
When the Double-Locking Motor 18 is Rotated in the Unlocking Direction in the Double Locking
Owing to unlocking operation of the remote control switch, the double-locking motor 18 is rotated in the release direction, and its rotation is transmitted to the sliding block 19 via the worm gear 181. The sliding block 19 moves from a neutral position shown by solid lines to the double-unlocking position 19B against a force of the spring 24, and moves the slide lever 20 from the double locking position to the double unlocking position via the projection 192 and the elongate opening 203. When the slide lever 20 moves to the double-unlocking position, the double-locking motor 18 stops and the sliding block 19 returns to the neutral position by the force of the coil spring 24.
Movement of the slide lever 20 to the double unlocking position is transmitted to the subsidiary locking lever 13 via the projection 201 and the elongate opening 132. The subsidiary locking lever 13 rotates from the double-locking position to the locked position. The double locking is released and the locked state is obtained.
When the Key Cylinder is Unlocked in the Double-Locking Condition
When the key cylinder is unlocked from the outside of the vehicle, the second key lever 16 moves upward from the neutral position in
From the above, in the double locking state, even if the locking motor 17 and the double-locking motor 18 cannot be driven, the key cylinder is operated manually to make the double locking state released to the unlocking state, so that the door can be opened by door-opening operation of the outside handle.
Embodiments of the present invention are described, but the following modifications and changes can be made without departing from the scope of claims.
(i) The first key lever 11 is integrally formed with the second key lever 16.
(ii) The key operation input portion 122 of the locking lever 12 inputted by the second key lever 16 may be an elongate opening in which the projection 162 of the second key lever 16 slidably fits. An elongate opening may be instead of the projection 162 of the second key lever 16, and the key-operation input portion 122 may be a projection which slidably fits in the opening.
(iii) In
(iv) By a single door-opening operation of the inner handle, the locking lever 12, the subsidiary locking lever 13 and the first and second interconnecting levers 14,15 are moved from the locking position to the unlocking position with release of the door latch device 1 which is called “one-motion”. In this case, the unlocking contact portion 101 of the inner lever 10 contacts the unlocked contact portion 131 to allow the subsidiary locking lever 13 to move to the unlocking position. Thereafter, the unlocking contact portion 141 of the first interconnecting lever 14 makes the opening lever 6 rotate in the unlocking direction.
Number | Date | Country | Kind |
---|---|---|---|
2007-242812 | Sep 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/060598 | 6/10/2008 | WO | 00 | 3/18/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/037904 | 3/26/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6019402 | Arabia et al. | Feb 2000 | A |
6053543 | Arabia et al. | Apr 2000 | A |
6102453 | Cetnar | Aug 2000 | A |
6279361 | Baukholt et al. | Aug 2001 | B1 |
6511106 | Perkins et al. | Jan 2003 | B2 |
6733052 | Perkins et al. | May 2004 | B2 |
7827836 | Cetnar | Nov 2010 | B2 |
20080203737 | Tomaszewski et al. | Aug 2008 | A1 |
20100013246 | Tomaszewski et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2001-509222 | Jul 2001 | JP |
2003-184396 | Jul 2003 | JP |
2005-307573 | Nov 2005 | JP |
3736267 | Nov 2005 | JP |
WO 9833998 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100212374 A1 | Aug 2010 | US |