The present invention relates to a door latch device comprising a childproof locking mechanism.
Some door latch devices provided on a rear door of a vehicle have a childproof locking mechanism shifting between a childproof lock state in which a door opening operation by an inside handle provided on an inner side of the vehicle is not transmitted to an engagement mechanism, and a childproof unlock state in which this door opening operation is transmitted, wherein this shift is manually operated by a childproof lever (for example, please refer to Patent Literature 1).
Patent Literature 1: JP 4,422,747 B
The childproof lever described in the above Patent Literature 1 is supported by a support shaft extending in a transverse direction of a vehicle so that this lever moves through a slide groove in a direction perpendicular to the support shaft, that is, in a longitudinal direction of the vehicle, and an end portion of the childproof lever is perpendicularly bent to the inner side of the vehicle as a manual operation part such that this manual operation part passes through an inner panel of the door and projects to the inner side of the vehicle.
However, in such a formation that the childproof lever is supported so as to move in the direction perpendicular to the support shaft, when the childproof lever is operated to shift between the childproof lock state and the childproof unlock state by holding the manual operation part, there is a risk that the childproof lever does not move swiftly and smoothly due to a bending load affecting the lever shaft.
In view of the above disadvantages, an object of the present invention is to provide a door latch device preventing a support shaft of a childproof lever from suffering a bending load so as to operate the childproof lever swiftly and smoothly.
The above problems are solved by the present invention as follows.
A first invention comprises
an engagement unit which has a box-like body housing an engagement mechanism engaging with a striker of a vehicle body and a cover member covering an opening of the body, the engagement unit being fixed to an inner side of an inner panel of a door;
a casing connected to the engagement unit; and
a childproof locking mechanism housed in the casing, which is shifted between a childproof unlock state and a childproof lock state,
A second invention according to the above first invention, wherein a guide hole for guiding and operating the manual operation part is formed on a part of the cover member through which the manual operation part is inserted.
A third invention according to the above first or second invention, wherein an inertia lever is provided below the engagement mechanism in the body, the inertia lever keeping the engagement state between the engagement mechanism and the striker by pivoting to the engagement mechanism side when a collision load affects the engagement unit, and wherein the manual operation part of the childproof lever is made to project from the cover member below the inertia lever.
A fourth invention according to any one of the above first to third inventions, wherein in addition to the childproof lever, the childproof locking mechanism further comprises
a releasing lever pivotally supported on the casing by a shaft extending in the transverse direction of the vehicle to transmit a release operation of the inside lever to the engagement mechanism, and
a connecting lever of which a lower connecting part formed on a lower portion is connected to an end portion of the childproof lever opposite to the manual operation part, and of which an upper connecting part formed on an upper portion is inserted into a long hole extending in the vertical direction disposed on the releasing lever, and thereby moving in the vertical direction in conjunction with the pivoting of the childproof lever, and
wherein the inside lever has a fitting hole to which the upper connecting part inserted to the long hole is fit, the fitting hole having a shape such that when the childproof lever is in the childproof unlock state, a release operation of the inside lever is transmitted to the engagement transmit mechanism via the upper connecting part and the releasing lever, and that when the childproof lever is in the childproof lock state, the release operation of the inside lever is not transmitted to the engagement transmit mechanism by making the inside lever swing idly to the upper connecting part and the releasing lever.
A fifth invention according to any one of the above first to fourth inventions, wherein a set of holding unit stopping and holding the childproof lever at said each state is provided on a pair of opposite faces of the childproof lever and the casing.
A sixth invention according to the above fifth invention, wherein the holding unit comprises a mound-like projection formed on any one of the opposite faces of the childproof lever and the casing, and an elastic part formed on the other opposite face of them, and wherein the elastic part is elastically deformable in the transverse direction of the vehicle and has a projection passing over the mound-like projection and stopping when the childproof lever is shifted between the childproof unlock state and the childproof lock state.
According to the present invention, a childproof lever of a childproof locking mechanism is supported on a casing by a support shaft extending in a transverse direction of a vehicle, a manual operation part is formed at an end portion of the childproof lever extending in a longitudinal direction of a vehicle perpendicular to the support shaft, and the manual operation part is made to pass through the cover member so as to project from this member. Therefore, it is prevented that a bending load affects the support shaft when the childproof lever is turned from the childproof unlock state to the childproof lock state or is turned reversely by operating the manual operation part. Accordingly, the childproof lever can be smoothly operated to pivot around the support shaft.
An embodiment according to the present invention is described with the drawings as follows.
As shown in
As shown in
a box-like synthetic-resin body 9 having an opening on its rear surface;
a metal cover member 11 (not shown in
a latch 13 held in an internal space between the body 9 and the cover member 11 while supported by a latch shaft 12 extending in a longitudinal direction of the vehicle, the latch 13 having an engagement groove 13a with which a striker S of a vehicle body can engage;
a ratchet 15 also held in the internal space between the body 9 and the cover member 11 while supported by a ratchet shaft 14 extending in the longitudinal direction of the vehicle, wherein the ratchet 15 prevents the latch 13 from turning in an opening direction (direction for releasing an engagement with the striker S) by engaging with the latch 13;
an opening lever 16 (see
a metal inertia lever 17 held below the ratchet 15 in the internal space between the body 9 and the cover member 11 while pivotally supported by a shaft 33 extending in the longitudinal direction of the vehicle, the shaft 33 also supporting an outside lever 34 described below.
The engagement mechanism is composed by the above latch 13 and ratchet 15.
The inertia lever 17 prevents the door from unexpected opening by keeping the engagement state of the latch 13 and the ratchet 15 even if a crash load affects the door latch device inward by a lateral crash, etc., and acts as follows.
The inertia lever 17 is formed such that its center of gravity is positioned at a center of the shaft 33, and is perpetually biased clockwise in
When an inside lever 30 and the outside lever 34 described below are released, the opening lever 16 and the ratchet 15 are turned in a releasing direction by an opening link 28 described below. Then, the door can be opened. At this moment, because the inertia lever 17 is turned counterclockwise against the spring 18 by the opening lever 16 as indicated by an arrow in
Because the inertia lever 17 is formed such that its center of gravity is positioned at a center of the shaft 33, it does not turn even if a crash load affects the door latch device externally. Therefore, even if the ratchet 15 is about to turn in the releasing direction (counterclockwise in
As shown in
the above described synthetic-resin casing 7 fixed to the body 9 of the engagement unit 2;
a locking/unlocking motor 19 housed in a front upper portion of the casing 7 such that its rotation shaft is tilted in an oblique front lower direction, wherein the motor 19 bidirectionally rotates by operation of a remote control switch, etc. (not shown);
a worm 20 fixed to the rotation shaft of the locking/unlocking motor 19;
a worm wheel 22 engaging with the worm 20 and pivotally supported by a shaft 21 extending in a transverse direction of the vehicle;
a locking/unlocking lever 24 pivotally supported by a shaft 23 extending in the transverse direction of the vehicle in the casing 7 to pivot between an unlock position in which the door opening operation is possible and a lock position in which this operation is impossible;
a knob lever 27 pivotally supported by a shaft 25 (see
the opening link 28 pivoting between an unlock position and a lock position in conjunction with the locking/unlocking lever 24
the inside lever 30 of which a lower end portion is pivotally supported by a shaft 29 extending in the transverse direction of the vehicle on the casing 7, and of which an upper end portion is connected to an inside handle (not shown) provided on the inner side of the door for door opening operation by a motion transmission member D2 such as a Bowden cable;
the outside lever 34 pivotally supported by a shaft 33 (see
a childproof locking mechanism 35 switching between a childproof unlock state in which the release operation of the inside lever 30 actuated by the door opening operation with the inside handle is transmitted to the opening link 28 and the ratchet 15 of the engagement unit 2 and a childproof lock state in which this transmission is impossible;
a double locking mechanism 36 preventing the unlock state due to a wrong operation of the locking knob in the vehicle interior side; and
a switch member 37 electrically conductive to the locking/unlocking motor 19 and a double locking motor 44 described below, etc.
An operation mechanism comprises the locking/unlocking motor 19, the worm wheel 22, the locking/unlocking lever 24, the knob lever 27, the opening link 28, the inside lever 30, the childproof locking mechanism 35, and the double locking mechanism 36 including a double locking motor 44 described below, etc. The knob lever 27 and the inside lever 30 are operation levers.
As shown in
As shown in
As shown in
The worm wheel 22 bidirectionally rotates from a neutral position against a biasing force of the spring 38 depending on a bidirectional rotation of the locking/unlocking motor 19. When the locking/unlocking motor 19 stops its rotation, the worm wheel 22 automatically returns to the neutral position from a rotated position by the biasing force of the spring 38.
The locking/unlocking lever 24 has teeth 241 engaging with teeth 221 formed at the center portion of the worm wheel 22. When the worm wheel 22 is bidirectionally rotated depending on the rotation of the locking/unlocking motor 19, the locking/unlocking lever 24 is turned between the unlock position in which the door opening operation by the outside handle and inside handle is possible and the lock position n in which this operation is impossible.
The knob lever 27 pivots between an unlock position and a lock position depending on an unlock operation and a lock operation of the locking knob. When the locking knob is operated to lock, the knob lever 27 is turned counterclockwise at a predetermined angle from the unlock position shown in
The inside lever 30 pivots counterclockwise in
A substantially L-shaped fitting hole 301 is formed at the lower portion of the inside lever 30, and an upper connecting shaft 421b formed on an upper portion of a connecting lever 42 described below is fit to this fitting hole 301. When the childproof locking mechanism 35 is in the childproof unlock state, the upper connecting shaft 421b fits to a vertically long hole 301a extending in a vertical direction of an upper portion of the fitting hole 301 so as to move vertically. Therefore, when the door is operated to open, an operation force in a door opening direction of the inside lever 30 is transmitted to a releasing lever 39 described below by the upper connecting shaft 421b. When the childproof locking mechanism 35 is in the childproof lock state, the upper connecting shaft 421b moves downward to a wide backward hole 301b which is continuing from the vertically long hole 301a and is extending in a backward direction (opposite direction to the door opening operation direction of the inside lever) in a lower portion of the fitting hole 301. Thus, when the door is operated to open, the inside lever 30 is made to swing idly such that the operation force in the door opening direction of the inside lever 30 is not transmitted to a releasing lever 39 by the tipper connecting shaft 421b (described below in detail).
The lower portion of the opening link 28 is connected to a connecting end part 341 in the vehicle-interior-side of the outside lever 34 so as to pivot at a predetermined angle in the longitudinal direction of the vehicle, and the upper portion of the opening link. 28 is connected to the locking/unlocking lever 24 so as to move in the vertical direction. The opening link 28 pivots counterclockwise at a predetermined angle from the unlock position shown in
When the door is fully closed, and the locking/unlocking lever 24 and the opening link 28 are at the unlock position, the opening link 28 is moved upward to turn the opening lever 16 in the releasing direction by releasing the outside lever 34 depending on an opening operation of the outside handle. Then, the engagement state between the ratchet 15 pivoting with the opening lever 16 and the latch 13 is released, thereby opening the door.
When the door is fully closed, and the locking/unlocking lever 24 and the opening link 28 are at the lock position, the releasing part 281 swings idly to the released part 161 of the opening lever 16 even if the opening link 28 moves upward by releasing the outside lever 34, and therefore the door cannot be opened.
As shown in
the releasing lever 39 of which an intermediate portion is pivotally supported outside the inside lever 30 by the shaft 29 of the inside lever 30, wherein the releasing lever 39 has a long hole 391 extending in the vertical direction and formed in a portion upper than the shaft 29;
a synthetic-resin childproof lever 41 which is housed in a lower end portion rather closer to the rear in the casing 7, and of which an intermediate portion in the longitudinal direction of the vehicle is pivotally supported by a support shaft 40 in the transverse direction of the vehicle, wherein the childproof lever 41 is extending in the longitudinal direction of the vehicle perpendicular to the support shaft 40; and
a connecting lever 42 extending in the vertical direction which is provided outside the releasing lever 39 so as to move in the vertical direction, wherein a lower connecting shaft 421a and an upper connecting shaft 421b extending in the inward direction are respectively formed on a lower portion and an upper portion of the connecting lever 42.
An inner side end portion and an outside end portion of the support shaft 40 are respectively supported on the inner face of the cover 4 and on the inner face of the casing 7.
A releasing part 392 extending in the outward direction is integrally formed at the rear end portion of the releasing lever 39, which moves the opening link 28 upward (releasing direction) by coming into contact with the lower end of the opening link 28.
The upper connecting shaft 421b of the connecting lever 42 passes through the long hole 391 of the releasing lever 39 so as to slide, and engages with the fitting hole 301 of the inside lever 30. The lower connecting shaft 421a of the connecting lever 42 engages with an arc-shaped connecting hole 411 long in the longitudinal direction of the vehicle so as to slide, wherein the connecting hole 411 is formed at a front end portion of the childproof lever 41 centered at the support shaft 40.
A manual operation part 412 is formed at a rear end portion which is an end portion in the longitudinal direction of the vehicle of the childproof lever 41. This manual operation part 412 projects backward while being inserted to the inward end portion of the cover member 11 of the engagement unit 2 below the above described inertia lever 17. In detail, the manual operation part 412 passes through a guide hole 43 extending in the vertical direction and projects backward from the inner panel P (see
According to such a formation, when the childproof lever 41 is turned in the vertical direction by holding the manual operation part 412, the manual operation part 412 is guided by the guide hole 43, thereby preventing the childproof lever 41 from vacillating in the transverse direction of the vehicle. When the door is closed, the manual operation part 412 is covered with a part of the vehicle body, which is opposite to the rear surface of the door latch device 1. Therefore, the manual operation part 412 can be operated only when the door is open.
An elastic part 413 is formed on a vehicle-interior-side side face rear than the support shaft 40 of the childproof levers 41, wherein the elastic part 413 is elastically deformable in the transverse direction of the vehicle centered at a front base portion of the childproof lever 41. A hemispherical projection 413a projecting inward of the vehicle is formed on a free end portion (rear end portion) of the elastic part 413. On the other hand, a mound-like projection 4d projecting outward is formed on a face of the cover 4 to which the projection 413a is opposite, wherein an apical surface of the projection 413a can pass over the mound-like projection 4d by elastically deforming the elastic part 413 in the outward direction. When the childproof lever 41 is turned from the childproof unlock state (shown in
When the childproof locking mechanism 35 is in the childproof unlock state, that is, the childproof lever 41 is at the childproof unlock position shown in
On the other hand, when the childproof locking mechanism 35 is in the childproof lock state, that is, the manual operation part 412 of the childproof lever 41 is pushed up to turn the childproof lever 41 to the childproof lock direction (counterclockwise) as shown in
As shown in
the double locking motor 44 rotatable bidirectionally being housed in the motor housing part 71 which is open inward of the vehicle in the casing 7 such that its rotation axis is tilted,
a helical gear 45 tilted in an oblique rear lower direction to be rotated by the double locking motor 44,
a cylindrical moving member 46 screwed to the helical gear 45 to move in an axis direction by rotation of the helical gear 45, and
a double locking lever 47 of which a rear lower end portion is pivotally supported by the support shaft 40 (see
The double locking lever 47 is provided outside the opening link 28 such that a part of a vertical directed portion of the double locking lever 47 overlaps with a part of the vehicle-exterior-side side face of the opening link 28. A two-forked connecting part 471 holding the moving member 46 from backward is formed on a front end portion of the double locking lever 47. U-shaped notched grooves 472 formed in this connecting part 471 are fit from backward to a pair of driving pins which are formed on the moving member 46 so as to project in the transverse direction of the vehicle, thereby connecting the double locking lever 47 to the moving member 46.
In the state that the door is locked, when the double locking motor 44 is actuated by a portable remote control switch, etc., the moving member 46 is moved downward according to the rotation of the double locking motor 44. Thus, the double locking lever 47 pivots around the support shaft 40 counterclockwise at a predetermined angle from a double unlock position shown in
When the double locking lever 47 pivots to the double lock position, a vertical direction block rib 473 (see
In the state of the double lock, when the locking knob in a vehicle is operated to unlock, the locking/unlocking lever 24 connected to the knob lever 27 and the opening link 28 connected to the locking/unlocking lever 24 are about to be turned from the lock position to the unlock position (shown in
As shown in
As shown in
a plurality of (five) conductive members 50 electrically conductive to the locking unlocking motor 19, a door opening/closing detection switch 55 described below and a locking/unlocking detection switch 56 described below;
an insert molded resin member 51 shielding the conductive members 50; and
a synthetic-resin female connector 52 which is integrally molded with a front edge face of the resin member 51 so as to project from the casing 7 and is open frontward.
Connection terminals 501 of the respective conductive members 50 for the locking/unlocking motor 19 are exposed from a vehicle-exterior-side side face of the resin member 51 for the purpose of connecting to the locking/unlocking motor 19 housed in the casing 7. Moreover, connection terminals 502 of the respective conductive members 50 for the door opening/closing detection switch 55 and connection terminals 503 of the respective conductive members 50 for the locking/unlocking detection switch 56 are respectively exposed in switch housing parts 511, 512 which are respectively formed on a vehicle-interior-side side face of a rear end portion of the resin member 51 for the purpose of housing the door opening/closing detection switch 55 and the locking/unlocking detection switch 56. The connection terminals 502, 503 are respectively connected to the door opening/closing detection switch 55 and the locking/unlocking detection switch 56 in each switch housing part 511, 512. Furthermore, pin-shaped connection terminals 504 of the respective conductive members 50 connected to an external male connector respectively project in the female connector 52 so as to follow in a direction (forward) along which the external male connector is connected. A bent portion 513 bent in a thickness direction of the resin member 51, that is, in the outward direction at substantially right angles is on the front end portion of the resin member 51. The female connector 52 is integrally molded with the front face of this bent portion 513. A gap 53 is formed between a pair of opposite faces of the female connector 52 and the bent portion 513, wherein a front lower portion of a top waterproof cover 61 described below is fit to this gap 53 from above.
As shown in
As shown in
As shown n in
The switch pin 561 of the locking/unlocking detection switch 56 comes in contact with a cam face 242 formed on an upper face of the locking/unlocking lever 24 (see
As shown in
A wide motor cover 591 is integrally molded with a lower portion of the resin member 59, wherein this cover 591 has a size for covering the double locking motor 44 from the vehicle interior side and sealing an inner side opening of the motor housing part 71 of the casing 7. The connection terminals 581 of the respective conductive members 58 for the double locking motor 44 project from an upper side of the vehicle-exterior-side side face of the motor cover 591 (see
Each of the switch housing parts 592, 593 has a pair of elastic holding parts 592a, 593a for holding the double locking detection switch 60 and the childproof locking detection switch respectively, wherein these pairs of elastic holding parts 592a, 593a are the same as those provided in the first switch member 371. Connection terminals 582 of some of the conductive members 58 for the double locking detection switch 60 and connection terminals 582 of the other conductive members 58 for the childproof locking detection switch (not shown) are exposed in respective switch housing parts 592, 593.
The connecting part. 372a is molded in a frontward direction integrally with a front upper portion of the resin member 59 of the second switch member 372, wherein the connecting part 372a is fit to the connecting hole 54 formed in the female connector 52 of the first switch member 371 from backward. A plurality of pin-shaped connection terminals 583 of the respective conductive members 58 project frontward from a portion close to the outer side of the connecting part 372a, wherein these connection terminals 583 are connected to an external control circuit device, etc. The connecting part 372a has a complementary cross-sectional shape with the connecting hole 54 of the female connector 52. Hence, when the connecting part 372a is fit to the connecting hole 54, an outer peripheral surface of the connecting part 372a comes into surface contact with an inner circumferential surface of the connecting hole 54, and the connecting part 372a is prevented from coming out from the connecting hole 54 because of their contact frictional force (see
The connecting part 372a of the second switch member 372 is removably fit to the connecting hole 54 of the first switch member 371 in a direction opposite to the female connector 52 (from backward of the female connector 52) to connect the second switch member 372 to the first switch member 371, and thereby forming the switch member 37 (see
When the second switch member 372 is coupled with the first switch member 371, the connection terminals 583 of the second switch member 372 project in the female connector 52 so as to follow the same direction as the connection terminals 504 of the first switch member 371 (connection direction for an external male connector). Hence, when a wire harness male connector connected to an external control circuit device, etc. is inserted to the female connector 52, it is possible to be electrically conductive to both the first switch member 371 and the second switch member 372 with the single female connector 52.
As shown in
Next, the connection region 4a formed on the cover 4 is covered with the auxiliary cover 5. Thus, as shown in
Therefore, because there is no risk that rainwater, etc. which has entered from through holes for the motion transmission members D1, D2 of the casing 7 infiltrates into the terminal insertion parts 441, etc. of the double locking motor 44, it is possible to arrange the double locking motor 44 below the motion transmission members D1, D2, and it is possible to increase flexibility of design and layout of respective components such as the childproof locking mechanism 35, the double locking mechanism 36, etc. The above assembly sequence of the installation of the double locking motor 44 may be carried out reversely: that is, the cover 4, the switch member 37, fitting of the double locking motor 44 to the motor cover 591, and the casing 7 in this order.
As shown in
When the top waterproof cover 61 is fit on the upper portion of the cover 4 and the casing 7, the insertion part 613 is inserted from above into a peripheral portion of the gap 53 formed between the female connector 52 and the bent portion 513 of the first switch member 371. Thus, a motion of the top waterproof cover 61 in the longitudinal direction of the vehicle is restricted. Moreover, when the auxiliary cover 5 is attached, an underface of an oriented outward bent portion 5a formed at an upper portion of the auxiliary cover 5 comes into contact with an upper face of the front protrusive part 614, thereby preventing the top waterproof cover 61 from being off upward (see
As described above, in the door latch device of the above embodiment; the childproof lever 41 of the childproof locking mechanism 35 is pivotally supported by a shaft 40 extending in the transverse direction of the vehicle on the casing 7, wherein the childproof lever 41 extends in the longitudinal direction of the vehicle perpendicular to the shaft 40; and the childproof lever 41 is turned from the childproof unlock position to the childproof lock position or is turned reversely around the support shaft 40 by operating the manual operation part 412 projected backward from the rear surface of the cover member 11 of the engagement unit 2. Therefore, it is prevented that a bending load affects the support shaft 40 of the childproof lever 41 as in the past. Accordingly, the childproof lever 41 can be turned smoothly around the support shaft 40, and the whole childproof locking mechanism 35 including the childproof lever 41, that is, the connecting lever 42 and the releasing lever 39 that are connected to the childproof lever 41 can be turned smoothly, too.
Moreover, because the manual operation part 412 is guided by the guide hole 43 disposed on the cover member 11 so that it can be turned stably in the vertical direction, there is no risk that the childproof lever 41 bends or vacillates in the transverse direction of the vehicle (thickness direction) around the support shaft 40. Therefore, the childproof lever 41 can be turned more smoothly.
Because the manual operation part 412 of the childproof lever 41 is formed to project below the latch 13, the ratchet 15 and the inertia lever 17 which compose the engagement mechanism, that is, this portion 412 is formed to project backward through a lowest corner part of the cover member 11, it is possible to secure a sufficient space to house the latch 13, the ratchet 15 and the inertia lever 17 in the body 9, and the manual operation part 412 is not an obstacle for arranging them.
Moreover, holding unit stopping and holding the childproof lever 41 at the childproof unlock/lock positions is composed by the elastic part 413 formed on a vehicle-interior-side side face of the childproof lever 41 to have the projection 413a and by the mound-like projection 4d formed on the cover 4 so that the childproof lever 41 is stopped and held at the childproof unlock/lock positions by making the projection 413a pass over the mound-like projection 4d to move between an upper side and a lower side. Hence, the formation of the holding unit can be simplified.
The foregoing relates to the embodiments of the present invention, but the following various changes and modifications may be added to the present embodiments without departing from the gist of the present invention.
In the above embodiment, although the guide hole 43 for guiding the manual operation part 412 of the childproof lever 41 is formed between the pair of opposite faces which are the vehicle-interior-side side edge of the cover member 11 and the vehicle-exterior-side side edge of the bent portion 4c formed at the rear portion of the cover 4 so as to be bent to the cover member 11 side, the guide hole 43 may be directly formed on the cover member 11 when the bent portion 4c of the cover 4 is not formed and alternatively the cover member 11 is enlarged.
In the above embodiment, although the casing 7 and the cover 4 respectively cover the vehicle-interior/exterior-side side faces of the actuator unit 3, alternatively, the cover and the casing respectively may cover the vehicle-interior/exterior-side side faces of the actuator unit 3. Therefore, contrary to the above embodiment, it may be possible that the mound-like projection 4d is formed on the childproof lever 41 and the elastic part 413 is formed on the cover 4, wherein the mound-like projection 4d is a part of holding unit for stopping and holding the childproof lever 41 at the childproof unlock position and the childproof lock position, and wherein the elastic part 413 has the projection 413a which can pass over the mound-like projection 4d.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/057072 | 3/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/143082 | 9/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6764113 | Cetnar | Jul 2004 | B1 |
8789861 | Takayanagi et al. | Jul 2014 | B2 |
9598884 | Nagaoka et al. | Mar 2017 | B2 |
20020027364 | Trammel, Jr. | Mar 2002 | A1 |
20060261602 | Jankowski | Nov 2006 | A1 |
20110198870 | Nagaoka | Aug 2011 | A1 |
20120098279 | Singh | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
S62-37193 | Aug 1987 | JP |
4422747 | Feb 2009 | JP |
2012-072645 | Apr 2012 | JP |
4953485 | Jun 2012 | JP |
Entry |
---|
International Search Report Corresponding to PCT/JP2015/057072 dated Jun. 2, 2015. |
Written Opinion Corresponding to PCT/JP2015/057072 dated Jun. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20180112441 A1 | Apr 2018 | US |