This invention relates to a door latch system for a vehicle in which a latch mechanism is released by an electric driving mechanism so that a door can be opened and closed.
A Japanese Patent Application Publication No. 2004-293038 discloses a conventional door latch system for a vehicle which includes a latch mechanism that is arranged to be engaged with a striker provided to a vehicle body, and thereby to hold a door in a closed state, and an electric driving mechanism including a motor. In this door latch system, a pivot member is pivoted by a power of the electric driving mechanism, so that the latch mechanism is actuated to be released so that the door can be opened. However, in this door latch system, when the release actuation for opening the door is performed by the power of the driving source of the electric driving mechanism, the pivot member may be stopped at a position at which the release actuation is performed due to influence of trouble of an electric system and so on, so that there may be generated a release restriction state in which the latch mechanism is restricted in a state in which the release is actuated. After that, the door cannot be closed.
However, in the above-described door latch system for the vehicle, when the release restriction state is generated, the release restriction state can be canceled by handle operation of the occupant, so that the door can be closed. However, in a case where the occupant does not know the method of canceling the release restriction state, the occupant is forced to look through a manual of the vehicle and so on, so that the door cannot be rapidly closed.
It is, therefore, an object of the present invention to provide a door latch system for a vehicle devised to solve the above mentioned problems, and to cancel a release restriction state without a specific operation of the occupant.
According to one aspect of the present invention, a door latch system for a vehicle comprises: a latch which is provided to one of a door and a vehicle body, and which is arranged to be pivoted between a latch position at which the latch is engaged with a striker provided to the other of the door and the vehicle body when the door is at one of a door closed position and a door open position, and an open position at which the latch is released from the striker; a ratchet arranged to be moved between an engagement position at which the ratchet is engaged with the latch positioned at the latch position so as to restrict a pivot movement of the latch in an open direction, and a release position at which the ratchet is released from the latch so as to allow the pivot movement of the latch in the open direction; an electric driving mechanism arranged to output a power for moving the ratchet from the engagement position to the release position; a latch interlocking mechanism which is arranged to be actuated in a release cancel direction from a neutral position to be interlocked with the pivot movement of the latch in a predetermined direction; and a release cancel mechanism which is arranged to be actuated from a connection state where an operation force transmitting path for transmitting the power of the electric driving mechanism to the ratchet is connected, to a disconnection state where the operation force transmitting path is disconnected, by the actuation of the latch interlocking mechanism in the release cancel direction from the neutral position, the release cancel mechanism being arranged to be actuated from the connection state to the disconnection state when the ratchet is in a release restriction state where the ratchet is restricted to the release position so as to enable the ratchet to return to the engagement position.
Hereinafter, door latch systems according to embodiments of the present invention will be illustrated with reference to the accompanying drawings.
In
In the door latch system according to the embodiments of the present invention, the door latch 1 and the operation relay device 100 are provided to the door D. However, the present invention is not limited to the embodiments. The door latch 1 and the operation relay device 100 may be provided to the vehicle body. In this case, a striker S (described later) arranged to be engaged with the door latch 1 is provided to the door D.
The operation relay device 100 includes a lock/unlock mechanism 101 which includes a plurality of levers that are arranged to switch an unlock state to enable the operation of the outside handle OH and the operation of the inside handle IH so that an open operation of the door D can be performed, and a lock state to disable the operation of the outside handle OH and the operation of the inside handle IH so that the open operation of the door D cannot be performed, based on the lock operation and the unlock operation of the lock operation knob KN by the manual operation by the occupant, and an electric operation of a lock/unlock electric actuator (not shown); a handle interlocking lever 102 which is arranged to be constantly interlocked with the operation of the outside handle OH and the inside handle IH regardless of the state of the lock/unlock mechanism 101; and an output lever 103 which is arranged to be actuated based on the operation of the outside handle OH and the operation of the inside handle IH only when the lock/unlock mechanism 101 is in the unlock state.
The handle interlocking lever 102 is connected with the full open latch OD and the door latch 1 through operation force transmitting members 501, 502, and 503 which are constituted by a rod, Bowden cable, and so on. Moreover, the output lever 103 is connected to the front door latch FD and the door latch 1 through operation force transmitting members 504 and 505 which are constituted by a rod, Bowden cable and so on.
As shown in
A top cover 60 made from a synthetic resin covers upper portions of the latch unit 2 and the closer/release unit 3 for keeping the rainwater, the dust and so on out. An under cover 61 made from the synthetic resin covers a lower portion of the closer/release unit 3 for keeping the rainwater, the dust and so on out. A side wall 601 of the top cover 60 and a side wall 611 of the under cover 61 cover a side surface of a planetary gear mechanism 33 (described later) of the closer/release unit 3 which directs the outside of the vehicle.
As shown in
The cover plate 4 and the housing 5 of the latch unit 2 include, respectively, striker insertion holes 41 and 51 which extend in the inside and outside directions of the vehicle (in the lateral direction of the vehicle), and each of which includes an opening which is on the inside of the vehicle so that the striker S can enter from the inside of the vehicle when the door D is closed.
The latch 7 is arranged to be pivoted in a closing direction (in a counterclockwise direction of
The latch 7 includes the full latch engagement portion 71, the half latch engagement portion 72, and an arm portion 73 extending in the radial direction. The arm portion 73 is arranged to actuate a latch interlocking mechanism 80 (described later) to perform a release cancel actuation at a predetermined pivot position of the latch 7 when the latch 7 is pivoted from the open position toward the full latch position, so that a release cancel lever 303 (described later) can perform a release cancel actuation.
As shown in
The latch lever 11 is pivoted as a unit with the latch 7. With this, the latch lever 11 directs in the downward direction as shown in
A connection shaft 13 directing in the rearward direction is fixed to rotation surfaces of the sensing lever 10 and the latch lever 11. The connection shaft 13 penetrates through an arc hole 52 which is formed in the housing 5, and which is formed around the latch shaft 6. The connection shaft 13 is fixed to the arm portion 73 of the latch 7, so that the sensing lever 10, the latch lever 11, and the latch 7 are pivoted as a unit with one another.
The open lever 12 includes a first arm portion 121 which directs in the rearward direction, and which penetrates though an arc hole 53 that is formed in the housing 5, and that is formed around the ratchet shaft 8. The first arm portion 121 of the open lever 12 is mounted in the ratchet 9, so that the open lever 12 is pivoted as a unit with the ratchet 9.
A half latch sensing switch 14 and a full latch sensing switch 15 are provided on a front surface side of the housing 5, as shown in
The ratchet 9 is constantly urged together with the open lever 12 in the engagement direction (in the counterclockwise direction of
In a case in which the ratchet 9 is positioned at the engagement position at which the ratchet 9 is engaged with the full latch engagement portion 71 or the half latch engagement portion 72 of the latch 7 and the lock/unlock mechanism 101 of the operation relay device 100 is in the unlock state, when the outside handle OH or the inside handle IH is operated to open the door, the ratchet 9 is pivoted in a release direction (for example, in the clockwise direction in
The latch interlocking mechanism 80 is provided at the lower portion of the housing 5. The latch interlocking mechanism 80 is interlocked with the pivot movement of the latch 7. The latch interlocking mechanism 80 includes a first lever 801 which is provided at the lower portion of the housing 5, and which is pivotally supported by a supporting shaft 81 that extends in the forward and rearward directions; and a second lever 802 which is provided at one end portion of the first lever 801, and which is pivotally supported by a connection shaft 82 extending in the forward and rearward directions.
The first lever 801 is urged in the clockwise direction by a spring 83 including an upper end portion mounted to the first lever 801, and a lower end mounted to the housing 5. With this, the first lever 801 is held at a neutral position at which the first lever 801 is abutted on a stopper 54 provided to the housing 5.
The other end portion of the first lever 801 is connected to the release cancel input lever 303 of the release cancel mechanism (described later), through an operation force transmitting member 506 constituted by a Bowden cable and so on.
The second lever 802 is urged in the clockwise direction by a spring 84 which is wound around the connection shaft 82, and which includes one end mounted to the first lever 801, and the other end mounted to the second lever 802. The second lever 802 is held at a neutral position at which a lower portion of the second lever 802 is abutted on a stopper portion 801a provided to the first lever 801 from the clockwise direction.
A cam portion 802a is provided to an upper edge of the second lever 802. A tip end of the arm portion 73 pivoted in accordance with the pivot movement of the latch 7 is arranged to be abutted on and slid on the cam portion 802a of the second lever 802.
When the latch 7 is positioned at the open position as shown in
When the latch 7 passes through the predetermined pivot position, and furthermore moves toward the full latch position, the arm portion 73 is detached from the cam portion 802a immediately before the latch 7 is moved to the half latch position. With this, the first and second levers 801 and 802 are returned to the neutral positions by the urging force of the spring 83 as shown in
When the latch 7 is positioned at the full latch position as shown in
As described above, the latch interlocking mechanism 80 performs the release cancel operation when the latch 7 is positioned at the predetermined pivot position, that is, when the latch 7 is positioned between the open position and the half latch position. With this, in a structure in which the latch interlocking mechanism 80 performs the release cancel operation when the latch 7 is pivoted from the open position to the full latch position, the ratchet 9 can be surely engaged with the half latch engagement portion 72 and the full latch engagement portion 71 after the latch 7 passes through the predetermined pivot position.
As shown in
The release input lever 19 includes a connection portion 191 which is provided at a lower portion of the release input lever 19, and which is connected to a rear end portion of the operation force transmitting member 505 extending within the door D in the forward and rearward directions. A front end portion of the operation force transmitting member 505 is connected to the output lever 103 of the operation relay device 100. Accordingly, in a case where one of the outside handle OH and the inside handle IH is operated to open the door, the release input lever 19 is swung against an urging force of a spring 23 in the release direction (in the counterclockwise direction in
Besides, the release input lever 19 is connected to the output lever 103 of the operation relay device 100. Accordingly, when the lock/unlock mechanism 101 is in the unlock state, the release input lever 19 is pivoted in the release direction by the door open operation of the outside handle OH or the inside handle IH. On the other hand, when the lock/unlock mechanism 101 is in the lock state, the release input lever 19 is continued to be located at the neutral position even when the outside handle OH or the inside handle IH is operated to open the door, so that the release input lever 19 is not moved in the release direction.
The block lever 20 is held by the urging force of the spring 23 at a block position (positions shown in
When the block lever 20 is held at the block position (positions shown in
The emergency lever 21 includes a connection portion 211 which is provided at a lower portion of the emergency lever 21, and which is connected to a rear end portion of the operation force transmitting member 502 extending within the door D in the forward and rearward directions. A front end portion of the operation force transmitting member 502 is connected with the handle interlocking lever 102 of the operation relay device 100. With this, the operation of the handle interlocking lever 102 is transmitted through the operation force transmitting member 502 to the emergency lever 21. Accordingly, the emergency lever 21 is pivoted in the release direction (in the counterclockwise direction in
When the emergency lever 21 is pivoted in the release direction, an abutment portion 212 provided at an upper end of the emergency lever 21 is abutted on the bending portion 202 of the block lever 20 from the downward direction. With this, the block lever 20 is pivoted in the release direction against the urging force of the spring 23. Besides, in this case, the release input lever 19 is continued to be held at the neutral position. Accordingly, the ratchet 9 is not pivoted in the release direction. With this, the block lever 20 can be pivoted to the cancel position by the door open operation of the outside handle OH or the inside handle IH, irrespective of the state of the lock/unlock mechanism 101. With this, the close operation of the closer/release unit 3 can be interrupted as described below.
Next, the closer/release unit 3 will be illustrated. As shown in
The release cancel mechanism is arranged to be switched between a connection state (a state shown in
The first release output lever 301 is pivotally supported on the base plate 31 by a support shaft 304 extending in the inside and outside directions of the vehicle (in the lateral direction of the vehicle), and arranged to be pivoted in the forward direction and in the rearward direction. The first release output lever 301 includes a release portion 301a extending in the downward direction, and an elongated hole 301b which extends in the upward and downward directions, and with which a floating pin 308 extending in the inside and outside directions of the vehicle (in the lateral direction of the vehicle) is engaged to be slid in the upward and downward directions. The first release output lever 301 is urged in the clockwise direction in
The second release output lever 302 is pivotally supported on the base plate 31 to be coaxial with the first release output lever 301. The second release output lever 302 includes a bending portion 302a which is provided at an upper portion of the second release output lever 302. The bending portion 302a of the second release lever 302 is arranged to be abutted on the first release output lever 301 (a right side surface of the first release output lever 301 in
An upper end portion of the second release output lever 302 is connected to a rear end portion of the operation force transmitting member 503 which extends in the forward and rearward directions, and which is arranged to transmit the actuation of the second release output lever 302 in the release direction (in the counterclockwise direction of
The release cancel input lever 303 is pivotally supported on the base plate 31 by a support shaft 303c extending in the inside and outside directions of the vehicle (in the lateral direction of the vehicle), and arranged to be pivoted in the forward and rearward directions. The release/cancel input lever 303 is usually held at the connection position (cf.
An upper portion of the release cancel input lever 303 is connected with one end portion of the operation force transmitting member 506 arranged to transmit the release cancel actuation of the first lever 801 of the latch interlocking mechanism 80, to the release cancel input lever 303. With this, the release cancel input lever 303 is usually held at the connection position at which the release cancel mechanism is brought to the connection state.
However, when the latch interlocking mechanism 80 performs the release cancel actuation, the release cancel input lever 303 is pivoted a predetermined angle in the disconnection direction (in the clockwise direction in
The floating pin 308 follows the release cancel lever 303. When the release cancel input lever 303 is positioned at the connection position, the floating pin 308 is positioned at a lower portion (for example, a position shown in
When the release cancel input lever 303 and the floating pin 308 are positioned at the connection positions and the release cancel mechanism is in the connection state as shown in
When the release cancel input lever 303 and the floating pin 308 are moved to the release cancel positions so that the release cancel mechanism is brought to the release cancel state as shown in
The planetary gear mechanism 33 has the close function to move the latch mechanism of the latch unit 2 from the half latch state to the full latch state, that is, to move the latch 7 from the half latch position to the full latch position, and the release function to actuate the ratchet 9 to perform the release operation so that the door can be opened.
As shown in
As shown in
The abutment portion 352 of the sun gear 35 is arranged to be abutted on the block portion 203 of the block lever 20 with respect to the pivot movement of the sun gear 35 in the counterclockwise direction so as to prevent the pivot movement of the sun gear 35 in the counterclockwise direction. Moreover, the sun gear 35 is arranged to be pivoted in the clockwise direction so as to be abutted on the release portion 301a of the first release output lever 301, so that the first release output lever 301 is actuated in the release direction. That is, in the normal state (in a state in which the block lever 20 is positioned at the neutral position), the sun gear 35 can be pivoted in the clockwise direction from a sun gear neutral position (for example, a position shown in
When the block lever 20 is positioned at the block position (the positions shown in
In a state where the planetary gear mechanism 33 is not actuated, that is, in the neutral state (for example, in the state shown in
As shown mainly in
In the neutral state of the planetary gear mechanism 33 (for example, in the state shown in
As shown in
In the neutral state of the planetary gear mechanism 33, the sector gear 39 is set at a ring gear neutral position at which the externally toothed gear 391 directs in the forward direction, that is, in a direction opposite to the direction in which the latch 7 of the latch unit 2 is disposed. Besides, the ring gear neutral position of the sector gear 39 is sensed by a sensing switch 62 (cf.
The sector gear 39 includes upper and lower bridge portions 396 which connect the support portion 394 and the circumference portion in which the externally toothed gear 391 and the internally toothed gear 392 are formed. Moreover, the sector gear 39 includes stepped portions 397 which are formed on the upper and lower bridge portions 396 so that the circumference portion is positioned closer to the surface of the base plate 31 than the support portion 394. With this, in a state where the close lever 38, the sun gear 35, and the sector gear 39 are overlapped on the base plate 31 in the axial direction of the support shaft 34, all of the externally toothed gear 351 of the sun gear 35, the planetary gear 36, the externally toothed gear 391 and the internally toothed gear 392 of the sector gear 39, and the output gear 322 are substantially aligned in the same plane. With this, it is possible to decrease the size of the planetary gear mechanism 33 in the axial direction of the support shaft 34, and to attain the smooth actuation.
In a case where the block lever 20 is positioned at the block position and the planetary gear mechanism 33 is in the neutral state as shown in
Moreover, in a case where the block lever 20 is positioned at the block position and the planetary gear mechanism 33 is in the neutral state as shown in
When the release cancel input lever 303 is positioned at the connection position, the release actuation of the first release output lever 301 is transmitted to the floating pin 308, the second release output lever 302, the operation force transmitting member 503, and the handle interlocking lever 102 of the operation relay device 100. Moreover, when the lock/unlock mechanism 101 of the operation relay device 100 is in the unlock state, the release actuation of the handle interlocking lever 102 is transmitted to the ratchet 9 through the output lever 103, the operation force transmitting member 505, the release input lever 19, and the open lever 12. With this, the ratchet 9 performs the release actuation so as to release the engagement with the latch 7, so that the door D can be opened. After the release actuation of the latch mechanism is finished, the motor 321 is controlled to be rotated in the reverse direction, so that the planetary gear mechanism is returned to the neutral state.
Besides, the electric driving mechanism in the door latch system according to this embodiment of the present invention is constituted by the motor 321, the output gear 322, and the planetary gear mechanism 33 which serves as the speed reduction mechanism. However, the present invention is not limited to this structure. As long as the electric driving mechanism includes at least the motor, the speed reduction mechanism may be omitted, or the speed reduction mechanism may be constituted by a worm gear, a spur gear and so on.
Next, an operation of the door latch system is illustrated with reference to
(Closing Operation)
When the door D is closed to the half-shut position in a state in which the door D is opened, that is, in a state in which the latch unit 2 is in the open state and all of the elements of the closer/release unit 3 are in the neutral state as shown in
When the half latch sensing switch 14 senses that the latch 7 is pivoted to the half latch position, the motor 321 is controlled to rotate in the positive direction by the control circuit device. With this, in the half latch state shown in
The closing lever 38 is swung in the close direction (in the clockwise direction) shown by an arrow against the urging force of the spring 40 in accordance with the pivot movement of the planetary gear 36 around the sun gear 35 in the clockwise direction. The closing portion 381 of the closing lever 38 is moved in the upward direction so as to move the actuation portion 111 of the latch lever 11 in the upward direction, so that the latch lever 11 is swung in the counterclockwise direction. With this, the latch 7 is swung from the half latch position to the full latch position, as shown in
When the motor 321 is controlled to be rotated in the reverse direction, the sector gear 39 is reversed to be rotated in the counterclockwise direction, so that the planetary gear 36 is pivoted around the sun gear 35 in the counterclockwise direction while rotating on its axis in the counterclockwise direction. The closing lever 38 is reversed to be pivoted by the urging force of the sprig 40 in the counterclockwise direction and also the pivot movement of the planetary gear 36 around the sun gear 35, and returned to the neutral position as shown in
(Canceling Operation for Interrupting Closing Operation)
During a process from the half latch state shown in
That is, when the lock/unlock mechanism 101 of the operation relay device 100 is in the unlock state, the motor 321 is controlled to be stopped by the door open operation of the outside handle OH or the inside handle IH. Moreover, at the same time, the release lever 19 is actuated in the release direction as shown in
When the block lever 20 is moved to the cancel position, the block portion 203 is moved out of the path (trajectory) of the movement of the abutment portion 352 of the sun gear 35, so as to allow the free pivot movement of the sun gear 35 in the counterclockwise direction. With this, the transmission of the reduced speed from the sector gear 39 to the planetary gear 36 is disconnected, the closing lever 38 is reversed to be pivoted to the neutral position by the urging force of the spring 40 as shown in
When the open operation of the outside handle OH or the inside handle IH is stopped it is avoided to get the foreign object caught, the motor 321 is controlled to be reversed, so that the sector gear 39 is swung toward the ring gear neutral position, and so that the sun gear 35 is returned to the sun gear neutral position (for example, the positions shown in
Moreover, when the lock/unlock mechanism 101 of the operation relay device 100 is in the lock state, the door open operation of the outside handle OH or the inside handle IH is not transmitted to the release input lever 19, and however transmitted to the emergency lever 21. Accordingly, it is possible to interrupt the closing operation, similarly to the above-described case, by the release actuation of the emergency lever 21.
(Release Operation)
When the operation switch provided to the inside of the vehicle or the wireless operation switch is operated to open the door in a case where the door D is in the fully closed state and the door latch 1 is in the full latch state shown in
When the release cancel input lever 303 is positioned at the connection position, the release actuation of the first release output lever 301 is transmitted through the floating pin 308 to the second release output lever 302. The release actuation of the second release output lever 302 is transmitted through the operation force transmitting member 503 to the handle interlocking lever 102 of the operation relay device 100. When the lock/unlock mechanism 101 of the operation relay device 100 is in the unlock state, the release actuation inputted to the handle interlocking lever 102 is transmitted through the output lever 103 and the operation force transmitting member 505 to the release input lever 19. With this, as shown in
(Release Cancel Operation for Canceling Release Restriction State)
In a state where the sector gear 39 is actuated in the release direction from the ring gear neutral position as shown in
However, in the door latch system according to this embodiment of the present invention, even when the release restriction state is generated, it is possible to cancel the release restriction state by the normal operation of merely closing the door D, and thereby to close the door D.
That is, in a case where the door D is closed in the release restriction state shown in
Moreover, the arm portion 73 of the latch 7 is disengaged from the cam portion 802a of the second lever 802 after the latch 7 passes through the predetermined position, so that the latch interlocking mechanism 80 is returned to the neutral position by the urging force of the spring 83. With this, when the sector gear 39 is returned to the ring gear neutral position by recovery from the electric failure and so on, the release cancel input lever 303 is returned from the disconnection position to the connection position by the urging force of the spring 307.
As described above, it is possible to cancel the release restriction state by the normal operation of merely closing the door D. Accordingly, it is possible to constantly surely close the door D without the special operation of the occupant even when the release restriction state is generated.
In the door latch system according to the second embodiment of the present invention, the release restriction state is canceled by the operation when the door D is opened, that is, the operation when the latch 7 is pivoted in the open direction from the full latch position. The door latch system according to the second embodiment of the present invention is substantially identical to the door latch system according to the first embodiment of the present invention in most aspects as shown by the use of the same reference numerals or reference numerals obtained by adding 0 to the corresponding reference numerals. Accordingly, the repetitive illustrations are omitted.
Similarly to the first embodiment, a latch interlocking mechanism 800 in the second embodiment includes a first lever 8010 pivotally supported on the housing 5 by the support shaft 81; and a second lever 8020 which is pivotally supported at an end portion of the first lever 8010.
When the latch 7 is positioned at the full latch position as shown in
When the latch 7 passes through the predetermined position and the latch 7 is pivoted in the open direction as shown in
As described above, in the door latch system according to the second embodiment, it is possible to cancel the release restriction state by the pivot movement in the open direction when the latch 7 is pivoted from the full latch position to the open position.
Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Following modifications and variations of the embodiments described above will occur to those skilled in the art within the gist of the invention. Moreover, it is optional to combine these modifications and variations.
(a) The second release output lever 302 may be directly or indirectly connected to the ratchet 9 without through the operation relay device 100.
(b) The first release output lever 301 and the second release output lever 302 are formed into an integral structure. In this case, the integral structure of the first release output lever 301 and the second release output lever 302 serves as the release output lever. Accordingly, a disconnecting portion of the operation force transmitting path which transits the power of the electric driving mechanism to the ratchet 9 is provided at a path connecting the release output lever and the ratchet 9.
(c) The latch interlocking mechanism 80 and 800 may be constituted by an integral structure of the first lever 801 and the second lever 802.
(d) The latch interlocking mechanism may be arranged to perform the release cancel operation when the latch 7 is pivoted both in the close direction and in the open direction.
(e) The latch interlocking mechanism 80 and 800 may be provided to the front door latch FD in place of providing to the door latch 1, or in addition to providing to the door latch 1. The latch interlocking mechanism 80 and 800 may be arranged to be interlocked with the pivot movement of the latch of the front door latch FD. In this case, the front door latch ED includes a latch which is arranged to be engaged with a striker of the vehicle body in the fully closed state of the door D, and a ratchet which is arranged to be engaged with the latch, similarly to the door latch 1.
(f) The latch interlocking mechanism is arranged to perform the release cancel operation to be interlocked with the actuation of the full open latch OD. In this case, the full open latch includes a latch which is arranged to be engaged with a striker of the vehicle body in the fully open state of the door D, and a ratchet which is arranged to be engaged with the latch. The latch interlocking mechanism is arranged to perform the release cancel actuation by the pivot movement in the close direction when the latch is engaged with the striker, and/or the pivot movement in the open direction when the latch is disengaged from the striker.
The door latch system according to the embodiment of the present invention includes: a latch which is provided to one of a door and a vehicle body, and which is arranged to be pivoted between a latch position at which the latch is engaged with a striker provided to the other of the door and the vehicle body when the door is at one of a door closed position and a door open position, and an open position at which the latch is released from the striker; a ratchet arranged to be moved between an engagement position at which the ratchet is engaged with the latch positioned at the latch position so as to restrict a pivot movement of the latch in an open direction, and a release position at which the ratchet is released from the latch so as to allow the pivot movement of the latch in the open direction; an electric driving mechanism arranged to output a power for moving the ratchet from the engagement position to the release position; a latch interlocking mechanism which is arranged to be actuated in a release cancel direction from a neutral position to be interlocked with the pivot movement of the latch in a predetermined direction; and a release cancel mechanism which is arranged to be actuated from a connection state where an operation force transmitting path for transmitting the power of the electric driving mechanism to the ratchet is connected, to a disconnection state where the operation force transmitting path is disconnected, by the actuation of the latch interlocking mechanism in the release cancel direction from the neutral position, the release cancel mechanism being arranged to be actuated from the connection state to the disconnection state when the ratchet is in a release restriction state where the ratchet is restricted to the release position so as to enable the ratchet to return to the engagement position.
In the door latch system according to the embodiments of the present invention, the latch interlocking mechanism includes a lever arranged to be abutted on the latch when the latch is pivoted in the predetermined direction to a predetermined position, and thereby to be actuated in the release cancel direction from the neutral position against an urging force of a spring, and arranged to return to the neutral position by the urging force of the spring when the latch is further actuated in the predetermined direction to pass through the predetermined position.
In the door latch system according to the embodiments of the present invention, the predetermined direction of the latch is a close direction when the latch is pivoted from the open position to the latch position.
In the door latch system according to the embodiments of the present invention, the predetermined direction of the latch is an open direction when the latch is pivoted from the latch position to the open position.
In the door latch system according to the embodiments of the present invention, the predetermined direction of the latch is a close direction when the latch is pivoted from an open position to the latch position, and the open direction when the latch is pivoted from the latch position to the open position.
In the door latch system according to the embodiments of the present invention, the lever of the latch interlocking mechanism is not actuated in the release cancel direction when the latch is pivoted in an open direction from the latch position to the open position.
In the door latch system according to the embodiment of the present invention, the lever of the latch interlocking mechanism is not actuated in the release cancel direction when the latch is pivoted in a close direction from the open position to the latch position.
In the door latch system according to the embodiments of the present invention, the predetermined position of the latch is between the open position and the latch position.
In the door latch system according to the embodiments of the present invention, the release cancel mechanism includes a release output lever which is arranged to be abutted on a rotation member constituting a part of the electric driving mechanism based on the actuation of the electric driving mechanism, and thereby to be actuated in a release direction to actuate the ratchet to the release position, and a release cancel input lever arranged to be moved from a connection position at which the operation force transmitting path is brought to a connection state, to a disconnection state at which the operation force transmitting path is brought to a disconnection state, to be interlocked with the actuation of the latch interlocking mechanism in the release cancel direction when the release output lever is actuated in the release direction.
In the door latch system according to the embodiments of the present invention, the release output lever includes a first release output lever which is arranged to be abutted on the rotation member of the electric driving mechanism, and thereby to be actuated in the release direction, and a second release output lever which is directly or indirectly connected to the ratchet, and to be actuated with the first release output lever in the release direction when the release cancel input lever is in the connection position; and the release cancel input lever connects the operation force transmitting path between the first release output lever and the second release output lever when the release cancel input lever is positioned at the connection position, and disconnects the operation force transmitting path when the release cancel input lever is positioned at the disconnection position.
In the door latch system according to the embodiments of the present invention, the release cancel input lever is arranged to return from the disconnection position to the connection position when the lever of the latch interlocking mechanism is returned to the neutral position from the position to which the lever of the latch interlocking mechanism is actuated in the release cancel direction.
In the door latch system according to the embodiments of the present invention, it is possible to release the release restriction state only by the door open operation or the door closing operation. Accordingly, it is possible to release the release restriction state without forcing the special operation to the occupant so as to close the door.
The entire contents of Japanese Patent Application No. 2012-201108 filed Sep. 13, 2012 and Japanese Patent Application No. 2012-263206 filed Nov. 30, 2012 are incorporated herein by reference.
Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art in light of the above teachings. The scope of the invention is defined with reference to the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2012-201108 | Sep 2012 | JP | national |
2012-263206 | Nov 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4968074 | Yamagishi | Nov 1990 | A |
5893593 | Dowling | Apr 1999 | A |
6715806 | Arlt | Apr 2004 | B2 |
6932393 | Erices | Aug 2005 | B2 |
7360337 | Yoneyama | Apr 2008 | B2 |
7488014 | Nozawa | Feb 2009 | B2 |
8061742 | Machida | Nov 2011 | B2 |
8333414 | Takayanagi | Dec 2012 | B2 |
8613160 | Matsumoto | Dec 2013 | B2 |
8616594 | Shimura | Dec 2013 | B2 |
8789861 | Takayanagi | Jul 2014 | B2 |
8894103 | Shibayama | Nov 2014 | B2 |
8967680 | Yokomori | Mar 2015 | B2 |
20130249222 | Yokomori | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2004-293038 | Oct 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20140070549 A1 | Mar 2014 | US |