This disclosure relates to a door latch for a door of a motor vehicle, and a corresponding method. The door latch includes a clutch selectively engaged by a magnetic field.
Motor vehicles are known to include doors with handles, which are pulled in order to manually open the door. Typically, the handles are coupled to a cable or rod, which is in turn coupled to a door latch. The door latch is configured to cooperate with a striker pin, which is typically mounted to a vehicle body. When the handle is pulled, the cable or rod actuates the door latch, causing the door latch to release the striker pin, thereby allowing a user to open the door.
A door latch for a motor vehicle according to an exemplary aspect of the present disclosure includes, among other things, a pawl, a release lever, and a clutch selectively engaged by a magnetic field. Further, when the clutch is engaged, motion of the release lever is transmitted to the pawl via the clutch.
In a further non-limiting embodiment of the foregoing door latch, when the clutch is disengaged, motion of the release lever is not transmitted to the pawl.
In a further non-limiting embodiment of any of the foregoing door latches, the clutch includes a coupling wheel and a pawl lifter, the coupling wheel is configured to contact the release lever, the pawl lifter is configured to contact the pawl, and when the clutch is engaged, motion of the coupling wheel is transmitted to the pawl lifter.
In a further non-limiting embodiment of any of the foregoing door latches, when the clutch is disengaged, motion of the coupling wheel is not transmitted to the pawl lifter.
In a further non-limiting embodiment of any of the foregoing door latches, the door latch includes a magnetic field generator configured to selectively generate the magnetic field.
In a further non-limiting embodiment of any of the foregoing door latches, the magnetic field generator includes an electromagnet at least partially within the pawl lifter.
In a further non-limiting embodiment of any of the foregoing door latches, the coupling wheel includes a material attracted to the magnetic field such that, when the magnetic field is present, rotation of the coupling wheel results in rotation of the pawl lifter.
In a further non-limiting embodiment of any of the foregoing door latches, the release lever includes an arm and a tooth, the coupling wheel includes a tooth configured to contact the arm of the release lever, and the pawl lifter includes a tooth configured to contact with the tooth of the release lever.
In a further non-limiting embodiment of any of the foregoing door latches, the arm of the release lever is longer than the tooth of the release lever, and the arm of the release lever is circumferentially and axially spaced-apart from the tooth of the release lever.
In a further non-limiting embodiment of any of the foregoing door latches, when the clutch is engaged the arm of the release lever contacts the tooth of the coupling wheel as the release lever rotates from a home position to a first rotational position, and the tooth of the release lever contacts the tooth of the pawl lifter as the release lever rotates from the first rotational position to a second rotational position.
In a further non-limiting embodiment of any of the foregoing door latches, when the clutch is engaged, the arm of the release lever releases from the tooth of the coupling wheel at a point between the first rotational position and the second rotational position.
In a further non-limiting embodiment of any of the foregoing door latches, when the clutch is engaged, rotation of the release lever to the second rotational position causes the pawl lifter to contact the pawl such that the pawl releases a fork bolt.
In a further non-limiting embodiment of any of the foregoing door latches, the pawl lifter includes an arm configured to contact the pawl.
In a further non-limiting embodiment of any of the foregoing door latches, when the clutch is disengaged the arm of the release lever contacts the tooth of the coupling wheel as the release lever rotates, and the tooth of the release lever bypasses the tooth of the pawl lifter as the release lever rotates.
A motor vehicle according to an exemplary aspect of the present disclosure includes, among other things, a body including a striker pin, and a door configured to open and close relative to the body. The door including a door latch, which includes a fork bolt configured to receive the striker pin when the door is closed, a pawl configured to hold the fork bolt to keep the door closed, a release lever, and a clutch selectively engaged by a magnetic field. Further, when the clutch is engaged, motion of the release lever is transmitted to the pawl via the clutch such that the pawl releases the fork bolt, thereby allowing the door to open.
In a further non-limiting embodiment of the foregoing motor vehicle, the door includes a door handle, and wherein the release lever is coupled to the door handle.
A method according to an exemplary aspect of the present disclosure includes, among other things, engaging a clutch by generating a magnetic field, and transmitting motion of a release lever to a pawl via the clutch, the pawl configured to release a fork bolt, thereby allowing a door to open.
In a further non-limiting embodiment of the foregoing method, the clutch includes a coupling wheel and a pawl lifter, and the step of transmitting motion includes rotating the release lever from a home position to a first rotational position, the release lever contacting the coupling wheel between the home position and the first rotational position, and rotating the release lever from the first rotational position to a second rotational position, the release lever contacting the pawl lifter between the first rotational position and the second rotational position.
In a further non-limiting embodiment of any of the foregoing methods, the method includes releasing the release lever from the coupling wheel at a point between the first rotational position and the second rotational position.
In a further non-limiting embodiment of any of the foregoing methods, the method includes disengaging the clutch by ceasing to generate a magnetic field, thereby preventing transmission of motion of the release lever to the pawl.
This disclosure relates to a door latch for a door of a motor vehicle, and a corresponding method. An example door latch includes a pawl, a release lever, and a clutch selectively engaged by a magnetic field. When the clutch is engaged, motion of the release lever is transmitted to the pawl via the clutch. In turn, the pawl releases a fork bolt, thereby allowing the door to open. This disclosure provides a number of benefits over the prior art. Namely, the disclosed door latch is simpler, more compact, and includes fewer component parts than prior door latches. Thus, the disclosed door latch is less expensive and easier to manufacture than prior door latches. Additional benefits will be appreciated from the below.
Referring to the drawings,
When the door 12 is closed, the door latch 16 is configured to cooperate with a striker pin 20 to hold the door 12 closed. Upon activation of the handle 14, the door latch 16 is configured to release the striker pin 20 to allow the door 12 to open. The striker pin 20 is mounted to a vehicle body 22, and in particular is mounted to a pillar, such as a B-pillar.
The door latch 16 includes a clutch 24 (
In this example, the magnetic field is generated by a magnetic field generator, which will be discussed below. One example magnetic field generator is an electromagnet, which produces a magnetic field using electric current. In this disclosure, the vehicle 10 includes a current source 26 electrically coupled to the door latch 16. The current source 26, in one example, is a circuit configured to deliver electric current to the door latch 16 in response to commands from a controller 28. The current source 26 and controller 28 are shown schematically in
The controller 28 could be part of an overall vehicle control module, such as a vehicle system controller (VSC), or could alternatively be a stand-alone controller separate from the VSC. Further, the controller 28 may be programmed with executable instructions for interfacing with and operating the various components of the vehicle 10. The controller 28 additionally includes a combination of hardware and software, and specifically includes a processing unit and non-transitory memory for executing the various control strategies and modes of the vehicle system. While shown separately in
While a sedan is shown in
With joint reference to
Turning first to the release lever 30, the release lever 30 includes a main body 38, which in this example is a substantially circular plate. The main body 38 is disposed about a first axis A1, and the release lever 30 is rotatable about the first axis A1. The main body 38 includes an opening, which may receive a shaft about which the release lever 30 rotates.
The release lever 30 includes a first arm 40 projecting radially outward (relative to the first axis A1) from the main body 38. The first arm 40 is mechanically coupled to the handle 14 via the mechanism 18. The first arm 40 includes an opening near a free end thereof to couple to the mechanism 18. The opening in the first arm 40 is not required in all examples, however.
The mechanism 18 is configured to impart a force on the first arm 40, which causes the first arm 40, and in turn the release lever 30, to rotate in either a first rotational direction R1 or a second rotational direction R2. The first and second rotational directions R1, R2 are illustrated in the figures for explanation purposes. The first rotational direction R1 is a clockwise direction relative to
The release lever 30 also includes a second arm 42. The second arm 42 includes a first leg 44 projecting substantially parallel to the axis A1. The first leg 44 projects in a direction opposite the pawl 32 and the fork bolt 34. The second arm 42 includes a second leg 46 projecting radially (relative to the axis A1) from the first leg 44. Generally opposite the first leg 44, the second leg 46 includes a surface 48 adjacent a free end thereof. The surface 48 is configured to contact a tooth of the clutch 24, as explained below. The surface 48 has a profile shape of an involute, in this example.
The release lever 30 also includes a tooth 50 projecting radially outward from the main body 38. Like the surface 48, the tooth 50 may include a surface having an involute profile shape. The tooth 50 is perhaps best seen in
The release lever 30 is configured to contact the clutch 24. When the clutch 24 is engaged, motion of the release lever 30 is transmitted to the pawl 32 via the clutch 24. On the other hand, when the clutch 24 is not engaged, motion of the release lever 30 is not transmitted to the pawl 32.
In this disclosure, the clutch 24 includes a coupling wheel 52 and a pawl lifter 54. The coupling wheel 52 includes a main body 56, which is a substantially circular plate in this example. The coupling wheel 52 is rotatable about a second axis A2. The second axis A2 is spaced-apart from and substantially parallel to the first axis A1. The coupling wheel 52 includes an opening concentric with the second axis A2, and may receive a shaft therethrough. The coupling wheel 52 may be rotatable about the shaft.
The coupling wheel 52 further includes a circumferential rim 58 projecting from the main body 56 in a direction parallel to the second axis A2. The circumferential rim 58 extends about the second axis A2. The coupling wheel 52 includes a tooth 60 projecting radially from the circumferential rim 58. The tooth 60 is configured to contact the second arm 42 of the release lever 30. Like the surface 48, the tooth 60 may have an involute profile shape.
The coupling wheel 52 may be made of a metallic material, such as a ferrous metal, which is attracted to a magnetic field. Example materials include iron and iron alloys. Alternatively, the coupling wheel 52 may be made of plastic including a ferrous metal insert.
In this example, the coupling wheel 52 is rotationally biased in the first rotational direction R1. The coupling wheel 52 may be rotationally biased in the first rotational direction R1 by a dedicated spring. During operation, the second arm 42 of the release lever 30 is configured to contact the tooth 60 and impart a force to the coupling wheel 52 that overcomes the bias of the spring, thereby rotating the coupling wheel 52 in the second rotational direction R2.
The pawl lifter 54 is provided by a main body 62, which is substantially cylindrical in this example. Like the coupling wheel 52, the pawl lifter 54 is also arranged about the axis A2. The pawl lifter 54 and the coupling wheel 52 may be rotatable about a common shaft.
Adjacent the coupling wheel 52, the pawl lifter 52 includes a tooth 64 projecting radially from the main body 62. The tooth 64 is configured to contact the tooth 50 of the release lever 30. Like the tooth 50, the tooth 64 of the pawl lifter 54 may have a profile shape of an involute.
Adjacent the pawl 32, the pawl lifter 54 includes an arm 66 configured to contact the pawl 32. The arm 66 includes a first leg 68 projecting radially from the main body 62, and a second leg 70 projecting from the first leg 68 toward the pawl 32 in a direction substantially parallel to the axis A2.
In this example, the pawl lifter 54 is rotationally biased in the first rotational direction R1, like the coupling wheel 52. The pawl lifter 54 may be rotationally biased in the first rotational direction R1 by a dedicated spring, which is separate from the spring biasing the coupling wheel 52. When the clutch 24 is engaged, rotation of the coupling wheel 52 in the second rotational direction R2 overcomes the bias of the spring, thereby rotating the pawl lifter in the first rotational direction R1. When the clutch 24 is disengaged (i.e., not engaged), rotation of the coupling wheel 52 does not result in rotation of the pawl lifter 54.
In one example of this disclosure, the door latch 16 includes a magnetic field generator 74. An example magnetic field generator 74 is shown in
The electromagnet 76 is electrically coupled to the current source 26 and the controller 28. The controller 28 is configured to command the current source 26 to direct electric current through the coil 78, thereby generating a magnetic field 80 adjacent the pawl lifter 54. When present, the magnetic field 80 attracts the coupling wheel 52 to the pawl lifter 54 such that rotation of the coupling wheel 52 results in corresponding rotation of the pawl lifter 54.
While an electromagnet 76 is shown in
Turning back to
The fork bolt 34 is configured for rotation about a third axis A3, which is spaced-apart from and parallel to the first and second axes A1, A2. The fork bolt 34 is rotationally biased in the second rotational direction R2 by a dedicated spring, for example. The pawl 32 is configured to hold the fork bolt 34 in the position of
When the door 12 is locked, a user should not be able to open the door 12 by pulling the handle 14. In
Because the clutch 24 is disengaged, the coupling wheel 52 is not attracted to the pawl lifter 54, and thus rotation of the coupling wheel 52 does not result in any rotation of the pawl lifter 54. Thus, the tooth 50 of the release lever 30 does not contact the tooth 64 of the pawl lifter 54 as the tooth 50 rotates in the first rotational direction R1. In other words, the tooth 50 bypasses (
As the release lever 30 continues to rotate to a full travel position, as shown in
When the door 12 is unlocked, a user should be able to open the door 12 by pulling the handle 14. With reference to
Upon application of force by the mechanism 18, the release lever 30 begins to in the first rotational direction R1 to a first rotational position, shown in
As shown in
While the second arm 42 has released from the tooth 60, it is desirable to prevent the tooth 60 from rotating to the wrong side of the second arm 42. Thus, the free end 88 second arm 42 has a substantially large circumferential dimension (i.e., width). The second arm 42, in this example, continuously increases in dimension such that the free end 88 has the largest circumferential dimension of the entire second arm 42. The increased circumferential dimension will catch the tooth 60, preventing it from rotating beyond the second arm 42 in the rotational direction R1. Thus, the arrangement allows the door latch 16 to properly reset to the home position.
Continued rotation causes the pawl lifter 54 to rotate the pawl 32 in the second rotational direction R2 such that the pawl 32 releases the fork bolt 34, as shown in the second rotational position of
It should be understood that terms such as “about,” “substantially,” and “generally” are not intended to be boundaryless terms, and should be interpreted consistent with the way one skilled in the art would interpret those terms. It should also be understood that terms such as “axial,” “radial,” “circumferential,” etc., are used herein relative to the orientation of the door latch 16 in the figures for purposes of explanation only, and should not be deemed limiting.
Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples. In addition, the various figures accompanying this disclosure are not necessarily to scale, and some features may be exaggerated or minimized to show certain details of a particular component or arrangement.
One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.