This application claims priority from Japanese Patent Application Serial No. 2005-354593, filed on Dec. 8, 2005, which is incorporated herein in its entirety by reference.
The present invention relates to a door lever, to an opening and closing control apparatus capable of automatically opening and closing a door provided on a vehicle and to a method for opening and closing the door.
An opening and closing control apparatus that automatically opens and closes a sliding door provided on a side of vehicle body has been disclosed in Japanese Patent Provisional Publication No. 2003-020859. In this reference, the opening and closing control apparatus includes a sliding door slidable along a side portion of the vehicle body, an opening and closing driving mechanism equipped with a cable, etc., to transfer driving force from a motor to the sliding door and a control system that controls an operation of the opening and closing driving mechanism. Thereby, the sliding door is automatically opened and closed.
An outside handle and an inside handle are provided on the sliding door, each of which manually releases a latch that holds the sliding door at its fully closed position. Each of the outside and inside handles is provided with an opening switch that is switched on at the handle operation to open the sliding door and a closing switch that is switched on at the handle operation to close the sliding door.
The control system is connected to the opening and closing switches. The control system is also connected to a manual operation selection switch that switches between manual open/close mode and automatic open/close mode, a switch for opening, and a switch for closure, all set by the driver's seat.
When the manual operation selection switch is set to the automatic open/close mode, the control system automatically slides and opens/closes the sliding door by the opening and closing driving mechanism. When the opening switch provided at both of the outside and inside handles, or the switch for opening provided at the driver's seat, is switched on the opening and closing driving mechanism operates in a direction that opens the sliding door, and the sliding door automatically slides to its fully open position. When the closing switch provided at both of the outside and inside handles, or the switch for closure provided at the driver's seat, is switched on the opening and closing driving mechanism operates in a direction that closes the sliding door, and the sliding door automatically slides to its fully closed position.
According to one example of an opening and closing control apparatus for a door taught herein, the apparatus comprises a door lever positioned on the door for manually opening or closing the door, an operation output unit positioned at the door lever, the operation output unit outputting an operating signal responsive to a predetermined operation of the door lever different from an opening or closing operation on the door lever for manually opening or closing the door and a driving unit operable to open or close the door based on the operating signal.
Another opening and closing control apparatus for a door taught herein includes manual means, disposed at the door, for manually opening or closing the door, operation outputting means positioned at the manual means for outputting an operating signal responsive to a predetermined operation of the manual means different from an opening or closing operation of the manual means for manually opening or closing the door and driving means for opening or closing the door based on the operating signal.
A door lever for a door of a vehicle body is also taught herein. One such door lever comprises a pivotable attachment attaching the door lever to the door located at a first end of the door lever, wherein a pivoting operation of the door handle indicates at least one of a manual opening and closing operation of the door, and a signaling device for signaling at least one of an automatic opening and an automatic closing of the door by a different operation from the pivoting operation, the signaling device positioned proximate to the pivotable attachment or at an opposed end of the door lever.
In yet another example of the teachings herein, a method for opening and closing a door of a vehicle body can comprise detecting an operation condition of a door lever for unlatching the door and determining whether the operation condition is a request for manual operation or for automatic operation.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
In Japanese Patent Provisional Publication No. 2003-020859 described above, when the manual operation selection switch is set to the manual open/close mode, an operation of the opening and closing driving mechanism is not made. Thus, even if the switch for opening or the switch for closure is switched on, the opening and closing driving mechanism does not operate. The sliding door can then be manually slid by operation of the outside handle or the inside handle.
In contrast, disclosed herein is a system that provides an opening and closing control apparatus, an opening and closing determination method and a door lever operable to provide the convenience of requesting the automatic opening and closing operation and the manual opening and closing operation.
More particularly, and referring to
The opening and closing control apparatus further includes an operation outputting unit 11 provided at the door lever 5 or proximate to the door lever 5 and outputs an operating signal by a predetermined operation that is different from the manual opening and closing operation of door lever 5. The controller 10 determines whether a request is a manual operating request or an automatic operating request on the basis of the signal from operation outputting unit 11. Further, in the case of the automatic operating request, an automatic opening and closing determination process is made in which the controller 10 determines whether a request is an opening request or a closing request based on the detection of the door state detection section 15. An opening and closing process is made in which controller 10 operates the opening and closing driving mechanism 6 based on the determination result.
As mentioned, the opening and closing control apparatus according to the first example is an apparatus that slides a sliding door 2 provided on the side of a vehicle body 1 of a vehicle MB as shown in
A fore and aft opening and closing sliding movement of sliding door 2 is available in two ways, including manual and automatic operations. That is, an outside handle 5 is provided on an outer side of the sliding door 2, and the door lever is capable of manually releasing a latch of a locking mechanism 4 that holds the sliding door 2 at its fully closed position. By grasping the outside handle 5 and exerting an operating physical force, it is possible to manually open and close the sliding door 2 (see
Meanwhile, the automatic operation of sliding door 2 is provided by means 1a of vehicle body 1. The opening and closing driving mechanism 6 has a drive transfer member (not shown) such as an endless loop cable or chain linked to the sliding door 2. A sliding door motor 6a (see
A clutch 6b (see
With respect to the outside handle 5, as shown in
The door outer panel 2b includes a recessed portion 2c that is formed into a substantially round shape and is recessed in an inward direction of the vehicle (in a direction indicated by an arrow “IN” in
A normal position of the outside handle 5 is set to a neutral position, which is the middle position of the pivotable range as shown in
An input lever 4a of the locking mechanism 4 (see
The operation outputting unit is shown as press switch 11 provided at a position facing the operation transmission piece 5b inside the door outer panel 2b. That is, as shown in
An inside handle 7 is provided on an inner side of the sliding door 2 in the interior of the vehicle as shown in
The locking mechanism 4 has a door lock motor 4b as a driving unit (or driving means) as shown in
The door lock motor 4b of the locking mechanism 4, the sliding door motor 6a of the opening and closing driving mechanism 6 and the press switch 11, among other elements to be discussed, are connected to the automatic sliding door controller 10. The automatic sliding door controller 10 includes a control section 10a having a central processing unit (CPU) that runs the programming as discussed herein and memory (a ROM or RAM or both) used for storing programs and operation results. The processing parts (e.g., programming instructions) described hereinafter are generally stored in memory, and the functions of each of the parts is performed by the logic of the CPU. The controller 10 can be a dedicated microcontroller, but the functions performed by this controller could also be performed by a standard engine microcontroller that includes a CPU, random access memory, read only memory and input/output ports receiving input signals and sending the output signals as discussed in more detail below, or could be a microprocessor using external memory. The load driving section 10b of the controller 10 drives the opening and closing driving mechanism 6. A speaker 9 performs the function of informing the driver of a status of the door 2.
More specifically, the control section 10a receives input signals from the press switch 11, a main switch 12, a driver's seat opening and closing operation switch 13, a door lock state detection switch 14 and the door position detection device 15.
The main switch 12 and the driver's seat opening and closing operation switch 13 are disposed on a switch unit 8a that is set on an inner surface of a front side door 8 beside the driver's seat as seen in
The door position detection device 15 is a device capable of detecting three states of the door including a fully open state, a fully closed state and a middle state between the fully open and closed states. The door position detection device 15 can be formed by a switch that detects the positions of only the fully open and closed states. Or, the door position detection device can also detect every position between the fully open and closed positions by a signal from a member of the opening and closing driving mechanism 6, which rotates in synchronization with the slide of sliding door 2.
The automatic sliding door controller 10 is configured to output an unlock-request signal and a lock-request signal to an intelligent key controller 20, also called a lock controller.
The intelligent key controller 20 operates the locking mechanism 4 and automatically changes the locking and unlocking of the locking mechanism 4 on the basis of an exchange of signals between the intelligent key controller 20 and a portable instrument (or intelligent key) 21, which a vehicle's occupant carries. That is, when the unlock-request signal or the lock-request signal is output from the automatic sliding door controller 10, the intelligent key controller 20 outputs a transmission request signal from an antenna 20a to a portable instrument 21. When the portable instrument 21 receives the transmission request signal, the portable instrument 21 outputs a preprogrammed ID signal. If the programmed ID signal received through the antenna 20a matches a previously stored ID signal, the intelligent key controller 20 operates the locking mechanism 4 and changes the locking and unlocking status.
One method of control by the automatic sliding door controller 10 is now explained. In a first example, when the main switch 12 is switched on, the opening and closing control is made according to the operations of driver's seat opening and closing operation switch 13 and press switch 11 provided for the outside handle 5. The door sliding control of sliding door 2 of driver's seat opening and closing operation switch 13 is a control already known, and therefore its explanation is omitted. The control according to the operation of press switch 11 will now be explained.
The steps of the opening and closing control by the sliding door controller 10 will be explained hereinafter by using the flow charts in
At step S1 a query is made to determine whether or not press switch 11 changes from “OFF” to “ON”, that is, whether or not press switch 11 changes to an on-state by being pushed on by way of the press-on operation of outside handle 5. If press switch 11 changes to “ON”, the routine proceeds to the next step S2. If press switch 11 remains unchanged, step S1 is repeated until the status of press switch 11 changes.
At step S2 a query is made to determine, based on the detection of door position detection device 15, whether or not the sliding door 2 is in an automatic opening operation. If sliding door 2 is in the automatic opening operation, the routine proceeds to step S5. If the sliding door 2 is not in the automatic opening operation, the routine proceeds to step S3.
At step S3 a query is made to determine whether or not a current position of sliding door 2 is a middle position or some position between the fully open and closed positions. If the current position is the middle position, the routine proceeds to step S14 (in
At step S4 a query is made to determine whether or not the current position of sliding door 2 is the fully closed position. If the current position is the fully closed position, the routine proceeds to step S18 (in
At step S5 a query is made to determine whether or not a switched-ON period of the press switch 11 is longer than or equal to a specified time period. If the switched-ON period is longer than or equal to the specified time period, the routine proceeds to step S6. If the switched-ON period is shorter than the specified time period, the routine proceeds to step S22.
At step S6 a process is executed in which the lock-request signal that requests the locking operation is output to the intelligent key controller 20. Additionally, a counting of a lock-wait-timer is started.
At the following step S7, a check is made to determine, based on the status the door lock state detection switch 14, whether or not the sliding door 2 is in a locked state. If the sliding door 2 is in the locked state (or conversely the locking mechanism 4 is in a locking state), the routine proceeds to step S9 (in
At step S8 a query is made to determine whether or not the lock-wait-timer continues to count up. If the lock-wait-timer is finished counting, the routine returns to step S1. If the lock-wait-timer is still counting, the routine returns to step S7.
On the other hand, if the sliding door 2 is in a locked state in response to the query of step S7, at step S9 (in
At the following step S10, a warning or informing notice is issued through speaker 9 that the sliding door 2 is going into the locked state after the automatic closing operation that slides and closes the sliding door 2. This warning is made or announced by either one or both of voices and beep tones.
At the following step S11, a query is made to determine whether or not the press switch 11 changes from “OFF” to “ON.” That is, whether or not the press-on operation of outside handle 5 is made. If the press switch 11 is switched on, the routine returns to step S1. If the press switch 11 is not switched on, the routine proceeds to step S12.
At step S12 a query is made to determine whether or not the sliding door 2 reaches the fully closed position. If the sliding door 2 does not reach the fully closed position, the routine returns to step S10. If the sliding door 2 reaches the fully closed position the routine proceeds to step S13, and the automatic closing operation is terminated. In the termination of the automatic closing operation the drive of sliding door motor 6a is stopped, and clutch 6b is released.
Returning to step S3, as mentioned above if the response to the query is “YES”, the routine proceeds to step S14 (
At the following step S15, a check is made to determine whether or not the press switch 11 changes from “OFF” to “ON”. If press switch 11 changes to “ON”, the routine returns to step S1. If the press switch 11 remains unchanged, the routine proceeds to step S16. At step S16, a check is made to determine whether or not the sliding door 2 reaches the fully open position. This routine repeats steps S15 and S16 until sliding door 2 reaches the fully open position.
When the sliding door 2 reaches the fully open position at step S16 the routine proceeds to step S17, where the automatic opening operation is terminated.
Returning to step S4, as mentioned above if the current position of sliding door 2 is in the fully closed position, the routine proceeds to step S18 (
At step S19 the unlock-request signal that requests the unlocking operation is output to the intelligent key controller 20. Additionally, counting using the unlock-wait-timer is started.
At the following step S20, a query is again made to determine whether or not the sliding door 2 is in the locked state. If the sliding door 2 is in the unlocked state the routine proceeds to step S14, which has been discussed previously. If the sliding door 2 is in the locked state the routine proceeds to step S21.
At step S21 a query is made to determine whether or not the count of the unlock-wait-timer is finished. If the count of the unlock-wait-timer is not finished the routine returns to step S20. If the unlock-wait-timer is finished at step S21, the routine returns to step S1.
Returning to step S5, when the switched-ON period of the press switch 11 is shorter than the specified time period, processing advances to step S22. At step S22 the automatic closing operation is initiated. At following step S23, a query is made to determine whether or not press switch 11 changes from “OFF” to “ON”. If press switch 11 changes to “ON”, the routine returns to step S1. If press switch 11 remains unchanged, the routine proceeds to step S24.
At step S24 a query is made to determine whether or not the sliding door 2 reaches the fully closed position. If the sliding door 2 does not reach the fully closed position the routine returns to step S23. If the sliding door 2 reaches the fully closed position the routine proceeds to step S25, where the automatic closing operation is terminated.
Next, an operation of the opening and closing control apparatus is explained. The following is an explanation of a mode capable of automatic opening and closing operation under a condition when the main switch 12 is “ON.”
In a case where the user manually opens or closes the sliding door 2, the user pulls the outside handle 5 provided on the outer side of sliding door 2 and releases the latch of the locking mechanism 4, which holds the sliding door 2. The user then opens or closes the sliding door 2.
As shown in
However, when pulling outside handle 5, press switch 11, which is capable of working with outside handle 5, can not be pressed on. The automatic sliding door controller 10 never executes the operation.
Thus, even in a case where the main switch 12 remains “ON” when the user pulls the outside handle 5 to manually slide and open and close the sliding door 2, the automatic sliding door controller 10 judges that the user intends to manually open or close sliding door 2, and does not execute the automatic operation.
For example, in a case of bad weather, or in a case where the user wants to partially open or close the sliding door 2 instead of fully opening sliding door 2, or in a case where the user wants to open or close sliding door 2 quickly, it is possible to manually open and close the sliding door 2 without a mode change operation, namely without changing the main switch 12.
Next, the automatic operation by the opening and closing driving mechanism 6, executed when the user wants to receive the convenience by the automatic operation, is explained.
When the user wants to execute the automatic operation, as shown in
When the press switch 11 is pressed on by the press-on operation of the outside handle 5, the automatic sliding door controller 10 determines that the user has requested the automatic operation. Further, at the time it is determined that this request for the automatic operation has been made, the automatic sliding door controller 10 performs the automatic opening and closing determination process that judges, based on the detection of door position detection device 15, etc., whether the execution is for an opening operation or closing operation. After that, the opening and closing process is executed in which the automatic sliding door controller 10 operates the opening and closing driving mechanism 6.
More specifically, in the example shown, at step S1 when the press switch 11 is pressed on (i.e., changes from “OFF” to “ON”), the automatic sliding door controller 10 determines that the user requests the automatic operation and then executes the subsequent processes after step S2.
On the basis of the responses to the queries of steps S2 to S5, the automatic opening and closing determination process is executed. In this automatic operation, the automatic sliding door controller 10 determines whether the user requests the automatic opening operation or the automatic closing operation.
In the automatic opening and closing determination process of the first example, when the sliding door 2 is fully closed or is halfway open by a hand operation, the automatic sliding door controller 10 determines that the request is a request for the automatic opening operation.
When the sliding door 2 is fully open or the sliding door 2 is in sliding motion for the automatic opening, the automatic sliding door controller 10 determines that the request is a request for the automatic closing operation.
Next, the automatic opening and closing operations are explained.
As mentioned above, in the first example the automatic opening operation is the operation that is executed when the sliding door 2 is fully closed or the sliding door 2 is in the half-opened state (that is, the sliding door 2 is at the middle position between the fully open and closed positions). These operations will be explained respectively.
First, an explanation will be made of when the automatic opening operation is executed when the sliding door 2 is halfway open by manual operation.
In a case where the press switch 11 is pressed under the condition where the sliding door 2 is halfway open by a manual operation, in the flow charts in
If the press switch 11 is not pressed while the automatic opening operation is being executed, namely, if the user does not perform the press-on operation of the outside handle 5 while this automatic opening operation is in progress, the automatic opening operation is executed on the basis of steps S15, S16 and S17 until sliding door 2 reaches the fully open position. When terminating the automatic opening operation after the sliding door 2 reaches the fully open position the drive of the sliding door motor 6a is stopped, and the clutch 6b is released. In a state where the sliding door 2 reaches the fully open position the latch holds the sliding door 2, and then movement of the sliding door 2 in the direction to close the sliding door 2 is restrained or controlled. The automatic opening operation is terminated, and the routine returns to a standby state that repeats step S1.
On the other hand, if the press-on operation of the outside handle 5 is done during the progress of the automatic opening operation, the automatic sliding door controller 10 determines that the answer is “YES” at step S15 and step S1. Then, the automatic sliding door switches over to the automatic closing operation. The details of its operation are described hereinafter. With respect to the determinations at steps S15 and S1, the steps are made at or near the same time, i.e., substantially simultaneously, and thus the automatic sliding door controller 10 determines that the answer is “YES” at both the steps S15 and S1 by one operation of the pressing on of press switch 11.
As explained above, when the press switch 11 is pressed on by the press-on operation of the outside handle 5 under the condition where the sliding door 2 is halfway open by a hand operation, the automatic opening operation is executed. The sliding door 2 slides to the fully open position.
A case where the automatic opening operation is executed from the state where sliding door 2 is fully closed and locked by the locking mechanism 4 (or conversely, locking mechanism 4 is in the locking state) is now explained.
In this case, as in the automatic opening operation from a half-opened position, the user performs the press-on operation of the outside handle 5. Thereby the press switch 11 is pressed on.
When the press switch 11 is pressed on, and when the sliding door 2 is fully closed and is in the door-locked state, the routine proceeds according to steps S1→S2→S3→S4 in the flow charts in
The intelligent key controller 20, having received the unlock-request, outputs radio waves containing the transmission request signal. Meanwhile, if a portable instrument 21 exists in a communication area, the portable instrument 21 returns the radio waves containing the ID signal.
The intelligent key controller 20 checks the received ID signal against the previously stored ID signal. If the received and stored ID signals match, the door lock motor 4b is driven and rotates in a direction that releases the lock.
With respect to the unlock-wait-timer, a timer counts a time required for a release of the lock of a locking mechanism 4 according to the control of the intelligent key controller 20.
When the lock of locking mechanism 4 is released, the routine proceeds from step S20 to step S14. Then, the unlock-wait-timer is stopped, and the automatic opening operation is initiated. Further, on the basis of the processes at steps S14 to S17, the sliding door 2 is slid to the fully open position. The automatic opening operation is terminated, and the routine returns to a standby state that repeats step S1.
If the lock of the locking mechanism 4 is not released despite the fact that the counting of the unlock-wait-timer is completed, the routine returns to step S1 based on the processes at steps S20 and S21. In such cases, the automatic sliding door controller 10 determines that the press-on operation of the outside handle 5 is not the operation performed by the user carrying the portable instrument 21 capable of the unlocking operation, and consequently does not execute the automatic opening operation. In other words, if the sliding door controller 10 cannot identify the existence of the previously registered portable instrument 21 within a predetermined time period and also within the communication area, the release of the lock and the automatic opening operation are forbidden.
As explained above, under conditions where the sliding door 2 is fully closed, the locking mechanism 4 is in the locking state, and portable instrument 21 exists in the communication area, when the user performs the press-on operation of outside handle 5, the automatic opening operation is executed. The sliding door 2 is slid to the fully open position.
Next, the execution of the automatic closing operation is explained. As mentioned above, in the first example the automatic closing operation is executed in the cases where the sliding door 2 is fully open or the sliding door 2 is in the sliding motion of the automatic opening (that is, during the automatic opening operation).
In the first example, the sliding door controller 10 is configured to determine whether the request is a request for the automatic closing operation or a request for the lock of the locking mechanism 4 along with the automatic closing operation according to a switch-on time period of the press switch 11. The determination of the automatic operation, in sum, is based on a length of pressing-on time of the outside handle 5. In the first example when the switch-on time period of press switch 11 is short, for example, substantially shorter than 0.3 second, the sliding door controller 10 determines that the request is only the request for the automatic closing operation. On the other hand, when the switch-on time period of the press switch 11 is long, for example substantially longer than or equal to 0.3 second, the sliding door controller 10 determines that the lock of the locking mechanism 4 is requested in addition to the automatic closing operation.
The automatic closing operation without the lock of locking mechanism 4 in the state where sliding door 2 is fully open is now explained in more detail. When the user performs the automatic closing operation from the sliding door-fully-opened state, the user performs the press on operation of the outside handle 5 for the short time period. By this operation, in the flow chart in
After step 22, and on the basis of the processes at steps S23 to S25, when the press-on operation of the outside handle 5 is not performed while the automatic closing operation is in progress, the automatic closing operation is executed until the sliding door 2 reaches the fully closed position.
If the press-on operation of the outside handle 5 is performed while the automatic closing operation is in progress, the routine proceeds according to steps S23→S1→S2→S3→S14. The operation is then switched over to the automatic opening operation, the sliding door 2 is slid until the sliding door 2 fully opens. The determinations at steps S23 and S1 are made at or near the same time (i.e., substantially simultaneously). Thus, the automatic sliding door controller 10 determines that the answer is “YES” at both steps S23 and S1 in one operation of the pressing on of press switch 11.
As explained above, when the user performs the press-on operation of outside handle 5 for the short time period where the sliding door 2 is fully open, the automatic closing operation is executed.
Next, a case where the locking operation of the locking mechanism 4 is made in addition to the automatic closing operation from the sliding door-fully-opened state is explained.
In this case, the user performs the press-on operation of the outside handle 5, and also performs the press-on operation for a longer time period than the specified time period (for example, the switched-ON period of press switch 11 is longer than or equal to 0.3 seconds). In this operation, the routine proceeds according to steps S1→S2→S3→S4→S5→S6 as shown in the flow charts in
The intelligent key controller 20 receives the locking-operation-request, and outputs radio waves containing the transmission request signal from the antenna 20a. Then, if a portable instrument 21 exists in the communication area, the portable instrument 21 returns radio waves containing the ID signal.
The intelligent key controller 20 checks the received ID signal against the previously stored ID signal. If the received and stored ID signals match, the intelligent key controller 20 outputs an output signal that operates and rotates the door lock motor 4b in a direction that locks the sliding door 2. The locking mechanism 4 therefore goes into the locking state in which the locking mechanism 4 does not accept a manual operation of the outside and inside handles 5, 7.
Further, if the locking mechanism 4 goes into the locking state while the lock-wait-timer counts, the routine proceeds according to steps S7→S9. The sliding door controller 10 initiates the automatic closing operation. The count of the lock-wait-timer is the time required for a certain lock of locking mechanism 4 after the lock-request signal is output to intelligent key controller 20. For example, the time can be about 1 second.
At the time of the automatic closing operation, the engagement of the clutch 6b of the opening and closing driving mechanism 6 is made, and the sliding door motor 6a is driven and rotates in the direction closing the sliding door 2. The sliding door 2 therefore automatically slides in the closing direction. According to the process at step S10, the warning that the sliding door 2 is locked when the sliding door 2 is in the fully closed position is issued by voices and/or beep tones through speaker 9.
The warning and the automatic closing operation are executed until the sliding door 2 reaches the fully closed position unless the press-on operation of the outside handle 5 is made during the automatic closing operation (that is, unless the press switch 11 is depressed).
When the press-on operation of the outside handle 5 is made during the automatic closing operation, the routine proceeds according to steps S11→S1→S2→S3→S14. The operation is then switched over to the automatic opening operation, and the sliding door 2 is slid until the sliding door 2 reaches the fully open position. The determination of switching over to the automatic opening operation at steps S11 and S1 are made at or near the same time (i.e., substantially simultaneously). Thus the automatic sliding door controller 10 determines that the answer is “YES” at both steps S11 and S1 during one operation of the pressing on of press switch 11.
On the other hand, if the locking mechanism 4 is not in the locking state at step S7 despite the fact that a predetermined time to execute the locking operation for locking mechanism 4 elapses (for example, one second) after the lock-request signal is output to the intelligent key controller 20, the count of the lock-wait-timer is completed. The routine then proceeds according to steps S7→S8→S1. The automatic sliding door controller 10 determines that the operation is not the operation performed by the user carrying a portable instrument 21 capable of the locking operation, and consequently does not execute the automatic closing operation.
As described above, when the user performs the press-on operation of outside handle 5 for a relatively long time in the state where the sliding door 2 is fully open, the automatic closing operation is executed, and further the lock of the locking mechanism 4 is made.
When the user performs the press-on operation of outside handle 5 while the automatic opening operation is in progress, the automatic closing operation is executed. That is, the routine proceeds according to steps S1→S2→S5. According to the switch-on time period of the press switch 11 (that is, the length of pressing-on time of the outside handle 5 is the short or longer time), the automatic closing operation is performed or the automatic closing operation plus the locking operation are performed
Thus, when the user wants to execute the automatic closing operation when the sliding door 2 is halfway open by manual operation, the user performs the press-on operation of the outside handle 5. The automatic opening operation is initiated. Then, the user performs the press-on operation of the outside handle 5 again, thereby switching over to the automatic closing operation.
When the main switch 12, which switches between the manual opening and closing and the automatic opening and closing of the sliding door 2, is set to the automatic opening and closing, and when the operation of outside handle 5 is made, the opening and closing control apparatus of the first example is configured to determine whether the user requests the manual opening and closing operation or the automatic opening and closing operation depending on whether the operation of outside handle 5 is the pull operation or the press operation. The automatic operation is then executed only at the time of a request for automatic operation.
Accordingly, the user can obtain the convenience of either the automatic opening and closing operation or the manual operation because the user is able to open sliding door 2 to an arbitrary position or is able to quickly open and close sliding door 2, selectively at will, without having to change the main switch 12 provided at the driver's seat.
Namely, a user pull on the outside handle 5 corresponds to a user's intention to manually operate the outside handle 5. The direction of the pulling of the outside handle 5 matches a direction that mechanically releases the lock of sliding door 2 as well. On the other hand, when the user presses on the outside handle 5, its direction is opposite to a direction of an operation generally performed by the user in order to open the sliding door 2. In the example, the opening and closing control apparatus interprets these respective actions as the user's intention to manually operate the outside handle 5 and the request for automatic operation. These actions match the user's natural actions.
In addition, during the automatic operation the opening and closing control apparatus is configured to determine whether the request is an automatic opening operation or an automatic closing operation according to the state of sliding door 2. As a result, a switch of the user's intention can occur with only one press switch 11. The press switch 11 is provided inside the sliding door 2 and has a high degree of flexibility in design. The switch is easily set close to outside handle 5. Further, the design is convenient since there is no need to perform the handle operation and switch operation at once when the user operates the outside handle 5.
Furthermore, when the sliding door 2 is halfway open by a manual operation, and a press-on operation of the outside handle 5 is made, which is a request for the automatic operation, the automatic sliding door controller 10 determines that the request is for the automatic opening operation. Sliding door 2 slides open. Since during the automatic operation from the door half-opened position the operation opening the sliding door is executed first, things or objects are less apt to get caught in the sliding door 2 as opposed to if the operation of closing the sliding door were executed first.
In the first example, where the press-on operation of the outside handle 5 is done during the progress of the automatic opening operation, the automatic sliding door controller 10 determines that the operation is a request for the automatic closing operation. Therefore, when the user wants to execute the automatic closing operation in the case where the sliding door 2 is halfway open by manual operation, the user performs the press-on operation of the outside handle 5, and the automatic opening operation is initiated. Then the user performs the press-on operation of outside handle 5 again to execute the automatic closing operation. In this way, even though the switch synchronizing with the operation of the outside handle 5 is only the press switch 11, it is possible to execute either the automatic opening operation or the automatic closing operation from the door half-opened state. The user can therefore obtain a great convenience.
A second example of the opening and closing control apparatus is shown in
As shown in
The outside handle 205 is set to a non-operation position as shown
In the opening and closing control apparatus, when the user opens or closes the sliding door 2 manually, the user pulls the outside handle 205. In the same manner as the first example, the operating signal is not input to the automatic sliding door controller 10, and the automatic operation is not executed. Therefore, the user can obtain the convenience of the manual operation, such as opening the sliding door 2 halfway and quickly opening or closing the sliding door 2.
On the other hand, when the user executes the automatic operation the user performs the press-on operation of the press switch 211 as shown in
Thus, in the opening and closing control apparatus of the second example the following results, same as those of the first example, can be obtained. First, the user can obtain the convenience of selecting the use of the automatic opening and closing operation or the use of the manual at will. Second, the single press switch 211 can be used for determining the user's intention. The switch is easy to set and has a high degree of design flexibility. Third, during the automatic operation from the door half-opened position, the operation in the direction opening sliding door 2 is executed first, so that things or objects are less apt to get caught in the sliding door 2. Lastly, it is possible to execute either the automatic opening operation or the automatic closing operation from the door half-opened state conveniently with only the outside handle 205 acting on the press switch 211. Hence, great convenience can be obtained.
The press switch 211 is placed at an end portion of the outside handle 205, which is proximate to an axis or center of rotation. It is therefore possible to easily perform the press-on operation of the press switch 211 while the user is grasping the grip portion 205a.
Next, the opening and closing control apparatus according to a third example is explained with reference to
As shown in the sectional view of
The outside handle 305 is supported pivotally in both the inward and outward directions of the vehicle from the neutral position in the same manner as outside handle 5 of the first example.
The press switch 11, which is switched on when pressing the outside handle 305 in the inward direction of the vehicle from the neutral position, is provided inside the sliding door 2. Moreover, press switch 211 is provided at an end portion of outside handle 305 on an outer surface of the outside handle 305, proximate to rotation axis 2a.
Accordingly, in the opening and closing control apparatus of the third example, the user can open and close the sliding door 2 manually by the pull operation of the outside handle 305.
On the other hand, when the push-on operation of the press switch 211 is performed or the press switch 11 is switched on by the press-on operation of the outside handle 305, the automatic operation can be executed. Here, the same automatic operation can be executed according to either operating signal of press switch 11 or press switch 211. Or, the automatic opening operation can be executed according to either one of the press-on operation of the press switch 11 or the push-on operation of the press switch 211, and then the automatic closing operation can be executed according to another operation of the press switch 11 or the press switch 211.
Accordingly, in the opening and closing control apparatus of the third example, too, the user has the convenience of selecting at any time the automatic opening and closing operation or the manual operation.
The opening and closing control apparatus according to the third example provides both the press switch 11 and the press switch 211. The user can operate the two switches 11, 211 independently when requesting the automatic opening and/or closing operation. And by dividing these switches according to the request, the determination of whether the request is for the automatic opening operation or for the automatic closing operation is simplified.
The structure and configuration, operations and also effects of the components of the third example are the same as the first example, and therefore their explanations are omitted here.
Although all three examples have been described in detail with reference to the drawings, possible structures or configurations are not limited to these examples.
For example, although the three examples pertain to a side sliding door, the opening and closing control apparatus can be applied to other doors, such as a back door. Further, although the outside handle 5, 205, 305 provided on the outer side of sliding door 2 are described as the door lever, the door lever can also be the inside handle 7 provided on the inner side of sliding door 2.
Furthermore, in the examples, the pull operation of the outside handle 5, 205, 305 is described as the manual opening and closing operation of the door lever. The press-on operation of the outside handle 5 and the push-on operation of the press switch 211 are also described as the predetermined operation different from the manual opening and closing operation of the door lever. However, the manual opening and closing operation is not limited to this. For example, the user may pull the handle in the rear direction of the vehicle when opening the door, and may pull the handle in the front direction of the vehicle when closing the door. In that case, as shown in
As seen in
In the example shown in
In the above examples, the press switches 11, 211, 411 are described as an operation outputting unit. However, the operation outputting unit is not limited to these switches. For example, a switch (or switches) that outputs two kinds of signals for the automatic opening and closing operations may be provided.
Further, in the first example, when the locking operation is made along with the automatic closing operation, the warning is issued after the automatic closing operation is initiated (steps S9→S10). However, the warning is not limited to this. For example, the warning can be first issued when the press switch 11 changes from “OFF” to “ON” by another press-on operation of press switch 11. Then the automatic closing operation could be initiated.
Also, the above-described examples have been described in order to allow easy understanding of the present invention and do not limit the present invention. On the contrary, the disclosure is intended to cover various modifications and equivalent arrangements which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structure as is permitted under the law.
Number | Date | Country | Kind |
---|---|---|---|
2005-354593 | Dec 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5319364 | Waraksa et al. | Jun 1994 | A |
5836639 | Kleefeldt et al. | Nov 1998 | A |
5912631 | Kusunoki | Jun 1999 | A |
6049268 | Flick | Apr 2000 | A |
6089649 | Hamada et al. | Jul 2000 | A |
6091162 | Williams, Jr. et al. | Jul 2000 | A |
6125583 | Murray et al. | Oct 2000 | A |
6181024 | Geil et al. | Jan 2001 | B1 |
6425206 | Noda et al. | Jul 2002 | B1 |
6588829 | Long et al. | Jul 2003 | B2 |
6765472 | Suparschi et al. | Jul 2004 | B2 |
6856239 | Hicks | Feb 2005 | B1 |
6933831 | Ieda et al. | Aug 2005 | B2 |
7052073 | Ichinose et al. | May 2006 | B2 |
7100325 | Ichinose | Sep 2006 | B2 |
7144068 | Oxley et al. | Dec 2006 | B2 |
7183733 | Suzuki et al. | Feb 2007 | B2 |
7187146 | Saito et al. | Mar 2007 | B2 |
7233080 | Garnault et al. | Jun 2007 | B2 |
7267391 | Yokomori | Sep 2007 | B2 |
7288907 | Kamiya et al. | Oct 2007 | B2 |
20010003405 | Morillon | Jun 2001 | A1 |
20010022049 | Clark et al. | Sep 2001 | A1 |
20020046439 | Agostini et al. | Apr 2002 | A1 |
20020046440 | Agostini et al. | Apr 2002 | A1 |
20030216817 | Pudney | Nov 2003 | A1 |
20040074148 | Her | Apr 2004 | A1 |
20040123525 | Suzuki et al. | Jul 2004 | A1 |
20040168371 | Engelgau et al. | Sep 2004 | A1 |
20040257296 | Ieda et al. | Dec 2004 | A1 |
20050176400 | Mullet et al. | Aug 2005 | A1 |
20060055510 | Little et al. | Mar 2006 | A1 |
20060107598 | Imai et al. | May 2006 | A1 |
20060164029 | Suzuki et al. | Jul 2006 | A1 |
20060168891 | Aoyama et al. | Aug 2006 | A1 |
20060232100 | Kamiya et al. | Oct 2006 | A1 |
20060232378 | Ogino et al. | Oct 2006 | A1 |
20060283089 | Ishihara et al. | Dec 2006 | A1 |
20070107313 | Suzuki et al. | May 2007 | A1 |
20070120382 | Chevalier | May 2007 | A1 |
20070164104 | Dulgerian et al. | Jul 2007 | A1 |
20070188120 | Mullet et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
1092133 | Sep 1994 | CN |
02-140375 | May 1990 | JP |
2003-020859 | Jan 2003 | JP |
WO 2005031092 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070130837 A1 | Jun 2007 | US |