Information
-
Patent Grant
-
6189940
-
Patent Number
6,189,940
-
Date Filed
Monday, January 25, 199925 years ago
-
Date Issued
Tuesday, February 20, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Burns, Doane, Swecker & Mathis, LLP
-
CPC
-
US Classifications
Field of Search
US
- 292 216
- 292 201
- 292 DIG 23
- 292 DIG 27
- 292 DIG 62
- 292 DIG 65
- 292 3363
-
International Classifications
-
Abstract
There is disclosed a vehicle door lock assembly performing one-motion opening function and one-step locking function with a lift lever that is not split into parts. The lock assembly has an inside lever 46 connected to an inside handle. The inside lever can engage with the lift lever 41 and with locking members 43, 47, and 52.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle door lock assembly and, more particularly, to a vehicle door lock assembly having one-motion opening function and one-step locking function.
In the one-motion opening function state, the door which is held in the locked state can be unlocked by manual operation of a door inside handle so that the door in the unlocked state is capable of being opened.
In the one-step locking function state, when the door is unlocked and held opened, the door can be locked and closed by manually closing the door and by manually operating a door inside locking operation member without also manually operating a door outside handle.
A conventional door lock assembly of this kind is disclosed in Japanese Utility Model Publication No. 31960/1983. This known assembly uses an opening lever that is rotated by manually operating either a door inside handle or an outside handle. This actuates a latch mechanism via a lift lever. A lock operation member is manually operated to rotate a locking member. This disengages the opening lever from the lift lever.
In this conventional assembly, the lift lever is divided into first and second lift levers. The first lift lever can engage the locking member. An inside lever can engage this first lift lever. The second lift lever is linked to the latch mechanism. The first and second lift levers can be engaged with each other in a direction to actuate the latch mechanism.
In this structure, when the locking member is in its locked position, if the inside handle is manually operated to rotate the inside lever from its initial position, the inside lever engages the first lift lever, which in turn rotates in a direction to actuate the latch mechanism. The first lift lever engages with the locking member and with the second lift lever. This rotates the locking member from its locked position to its unlocked position. The second lift lever rotates in a direction to actuate the latch mechanism, thus unlatching the latch mechanism. This is so-called one-motion opening function. When the locking member is in its locked position, if the latch mechanism is actuated, the second lift lever rotates in response to the operation of the latch mechanism. However, the rotation of the second lift lever is not transmitted to the first lift lever. Therefore, the locking member is not rotated to the unlocked position. This is so-called one-step locking function.
The aforementioned conventional assembly requires that the lift lever be split into the first and second lift levers. Therefore, this lock assembly has a large number of components and is disadvantageous in terms of the number of assembly steps and cost. Furthermore, since the lift lever is split into the first and second lift levers, some clearance must be defined between both lift levers, taking account of their dimensional errors. This clearance introduces delay to the timing at which the latch mechanism is actuated in response to operation of the inside or outside operation handle. This might deteriorate the operator's feeling in operating the assembly.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a door lock assembly for vehicles including an integral lift lever and having one-motion opening function and one-step locking function.
This object is achieved in accordance with the teachings of the invention by technical means in which an inside lever is linked to an inside handle and can engage with the lift lever and with a locking member.
With this technical means, when the locking member is in its locked position, if the inside handle is manually operated to rotate the inside lever from its initial position, the inside lever comes into engagement with the lift lever and with the locking member. This rotates the locking member from its locked position toward its unlocked position. Simultaneously, the lift lever rotates, actuating the latch mechanism. Thus, so-called one-motion opening function is performed. When the locking member is in its locked position, if the latch mechanism is actuated, the lift lever rotates in response to the operation of the latch mechanism. However, the rotation of the lift lever is not transmitted to the inside lever and so the locking member is not rotated into its unlocked position. So-called one-step locking function is performed. In this way, the one-motion opening function and one-step locking function are achieved with a single lift lever. Consequently, it is not necessary to split the lift lever into first and second lift levers, unlike in the prior art technique.
More preferably, the locking member has first and second arm portions. When the locking member is in its locked position, if the inside handle is manually operated to rotate the inside lever from its initial position, the first and second arm portions engage the locking member and the lift lever, respectively.
More preferably, the latch mechanism is mounted to a base plate comprising a horizontal wall and a vertical wall, which support the lift lever and the inside lever, respectively.
The locking actuator has an output lever capable of engaging the inside lever. Preferably, the locking member incorporates the output lever of the locking actuator.
Other objects and features of the invention will appear in the course of the description thereof, which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
a plan view of a vehicle door lock assembly in accordance with the present invention;
FIG. 2
is a side elevation of the vehicle door lock assembly shown in
FIG. 1
;
FIG. 3
is an exploded perspective view of a lever mechanism included in the door lock assembly shown in
FIGS. 1 and 2
;
FIG. 4
is a plan view of a latch mechanism included in the door lock assembly shown in
FIGS. 1 and 2
;
FIG. 5
is plan view similar to
FIG. 1
, but in which the door is locked;
FIGS. 6
a
,
6
b
,
7
a
,
7
b
,
8
a
,
8
b
,
9
a
, and
9
b
are plan views of main portions of the vehicle door lock assembly shown in
FIGS. 1 and 2
, illustrating one-motion opening function using an inside lever;
FIGS. 10
a
,
10
b
,
11
a
, and
11
b
are plan views of main portions of the vehicle door lock assembly shown in
FIGS. 1 and 2
, illustrating one-step locking function.
DESCRIPTION OF THE PREFERRED EMBODIMENT
As shown in
FIGS. 1 and 2
, a door lock assembly, generally indicated by reference numeral
1
, is built in accordance with the present invention and mounted in a vehicle door (not shown). This door lock assembly
1
comprises a base plate
2
, a latch mechanism
3
, a lever mechanism
4
, and a locking actuator
5
. The base plate
2
assumes an L-shaped form and has a horizontal wall portion
21
and a vertical wall portion
22
.
Referring to
FIG. 4
, the latch mechanism
3
comprises a body
31
, a pawl
32
, and a latch
33
. The body
31
is securely mounted to the rear surface of the horizontal wall
21
of the base plate
2
and receives the pawl
32
and the latch
33
which are biased in one direction by respective spring. A striker
34
is mounted on the vehicle body (not shown). The body
31
of the latch mechanism is provided with a groove
31
a
to permit the striker
34
to go into or out of the groove
31
a
when the door (not shown) is opened or closed. The pawl
32
and the latch
33
are rotatably held to the body
31
via pins
32
a
and
33
a
, respectively. A U-shaped groove
33
b
is formed in the outer surface of the latch
33
to receive the striker
34
when it enters the groove
31
a
in the body
31
. An engaging claw
32
b
capable of engaging each grooves
33
c
and a tooth
33
d
is formed on the outer surface of the pawl
32
. The pawl
32
engages one of the grooves
33
c
and the tooth
33
d
of the latch
33
when the latch
33
rotates. The pawl
32
and the latch
33
are constructed in this conventional way.
The striker
34
is received in the U-shaped groove
33
b
in the latch
33
. Under this condition, the pawl
32
engages the engaging tooth
33
d
of the latch
33
, whereby the pawl
32
limits rotation of the latch
33
. This keeps the door closed. When the pawl
32
is rotated to disengage the pawl from the engaging tooth
33
d
of the latch
33
. This permits the door to open.
As shown in
FIGS. 1-3
, the lever mechanism
4
comprises a lift lever
41
, an opening lever
42
, a locking lever
43
, a slide bush
45
, an inside lever
46
, and a key lever
47
. The lift lever
41
is placed on the surface of the horizontal wall
21
of the base plate
2
and rotatably held to the pin
32
a
that supports the pawl
32
of the latch mechanism
3
. A fitting flange
41
a
is formed at one arm portion of the lift lever
41
and fits over the pawl
32
. Thus, the lift lever
41
rotates with the pawl
32
. An engaging flange
41
c
is formed at the other arm portion of the lift lever
41
. A leg portion
41
d
extends from the body of the lift lever
41
and is opposite to the other arm portion.
The opening lever
42
is placed on the surface of the horizontal wall
21
and rotatably held to the pin
32
a
in the same way as the lift lever
41
. This opening lever
42
has one arm portion connected via a rod (not shown) to an outside handle (not shown) mounted on the outside of the door. A spring
48
is mounted around the pin
32
a
and has its one end anchored to the opening lever
42
, the other end being fixed to the base plate
2
. The spring
48
always biases the opening lever
42
in a clockwise direction (as viewed in
FIG. 1
) toward its initial position.
The locking lever
43
is positioned on the surface of the horizontal wall
21
and rotatably held to the base portion
21
by the pin
43
a
. The locking actuator
5
has an output lever
52
(described later) to which the locking lever
43
is linked. This locking lever
43
is connected via the output lever
52
and a rod (not shown) to a locking knob (schematically shown in FIG.
3
and designated as
43
′) mounted on the inside of the door. Furthermore, the locking lever
43
is connected via the above-described key lever
47
to a key cylinder mechanism (not shown) mounted on the outside of the door. An arc-shaped slot
43
b
is formed about the pin
32
a
in the other arm portion of the locking lever
43
.
The slide bush
45
is slidably held to the other arm portion of the opening lever
42
. A pin portion
45
a
is formed on the slide bush
45
and slidably inserted in the slot
43
b
in the locking lever
43
. The bush
45
has an engaging protrusion
45
b
capable of engaging with the engaging flange
41
c
of the lift lever
41
when the opening lever
42
is rotated. When the locking lever
43
is rotated, the pin portion
45
a
is inserted in the slot
43
b
and caused to slide against the other arm portion of the opening lever
42
. Thus, the engaging protrusion
45
b
is brought into or out of the trajectory of the engaging flange
41
c
of the lift lever
41
in which it engages the protrusion
45
b
. As a result, the door is either locked or unlocked. A turnover spring
49
is mounted between the locking lever
43
and the base plate
2
to bias the locking lever
43
either into its locked position (
FIG. 5
) or into its unlocked position (FIG.
1
).
The inside lever
46
is rotatablyheld to the vertical wall
22
by a pin
44
. This inside lever
46
is joined via a rod (not shown) to the inside handle (not shown) mounted on the inside of the door. The aforementioned first arm portion
46
a
and second arm portion
46
b
extend from this inside lever
46
.
The key lever
47
is placed on the surface of the horizontal wall
21
and rotatably held to the base portion
21
via the pin
43
a
. An engaging protrusion
47
a
is formed on this key lever
47
and received in a notch
43
c
formed in the locking lever
43
. As the key lever
47
is turned, the engaging protrusion
47
a
bears against the wall portion defining the notch
43
c
, permitting the rotation of the key lever
47
to be transmitted to the locking lever
43
.
As shown in
FIGS. 2 and 3
, the locking actuator
5
is equipped with an electric motor (not shown) acting as a power source, the motor being contained within a housing
51
. The actuator
5
is held to the vertical wall
22
of the base plate
2
via a bracket
23
. The actuator
5
has an output shaft
53
extending outwardly through the housing
51
. The output lever
52
is fixedly mounted to this outwardly extending portion of the output shaft
53
such that the lever
52
rotates with the output shaft
53
. This output shaft
53
is coupled to the motor via a well-known reduction gearset (not shown) having a function of returning to its neutral position. The output lever
52
has a leg portion
52
b
connected to the locking lever
43
and to a locking knob (not shown) via a rod (not shown). The output lever
52
has a leg portion
52
a
extending from the body of the lever
52
. In the structure of this actuator
5
, the output lever
52
is rotated with the output shaft
53
by driving the motor to rotate the output shaft
53
. In consequence, the locking lever
43
is rotated. The output lever
52
is biased either into its locked position (
FIG. 6
a
) or into its unlocked position (
FIG. 9
a
) by the turnover spring
49
in the same way as the locking lever
43
.
As shown in
FIG. 2
, the leg portion
41
d
of the lift lever
41
is placed in the rotary trajectory of the first arm portion
46
a
of the inside lever
46
when this lever
46
is rotated from its initial position (
FIG. 2
) in a clockwise direction (as viewed in FIG.
2
), i.e., in the direction to open the door. The first arm portion
46
a
can engage the leg portion
41
d
. When the output lever
52
is in its locked position, the leg portion
52
a
of the output lever
52
is placed in the rotary trajectory of the second arm portion
46
b
of the inside lever
46
when this lever
46
is rotated from the initial position (
FIG. 2
) in a clockwise direction (as viewed in FIG.
2
). The second arm portion
46
b
can engage the leg portion
52
a
. When the output lever
52
is in its unlocked position, the leg portion
52
a
of the output lever
52
is off the rotary trajectory of the second leg portion
46
b
of the inside lever
46
. The leg portion
52
a
is unable to engage the second leg portion
46
b
. The operation is next described.
In the state shown in
FIGS. 1 and 2
, the door is unlocked. The opening lever
42
and the inside lever
46
are in their initial positions. The locking lever
43
and the output lever
52
are in their unlocked positions. Under this condition, if the outside door handle is operated to rotate the opening lever
42
in a counterclockwise direction (as viewed in
FIG. 1
) against the biasing force of the spring
48
, the engaging protrusion
45
b
of the slide bush
45
comes into engagement with the engaging flange
41
c
of the lift lever
41
, thus rotating the lift lever
41
in the same direction as the opening lever
42
(i.e., in the direction to open the door) The pawl
32
is rotated, permitting the door to be opened. If the inside handle is operated to rotate the inside lever
46
in a clockwise direction (as viewed in
FIG. 2
) (i.e., in the direction to open the door), the first arm portion
46
a
engages and pushes the leg portion
41
d
, rotating the lift lever
41
in a counterclockwise direction (as viewed in
FIG. 1
) (i.e., in the direction to open the door). Consequently, the pawl
32
is rotated, permitting the closed door to be opened.
Referring to
FIG. 1
, if the locking knob, the key cylinder mechanism, or the actuator
5
is operated to rotate the locking lever
43
in a clockwise direction (as viewed in FIG.
1
), and if the locking lever
43
is brought into its locked position, the slide bush
45
slides against the opening lever
42
as shown in FIG.
5
. This brings the engaging protrusion
45
b
of the slide bush
45
out of the rotary trajectory in which the protrusion
45
b
engages the flange
41
c
of the lift lever
41
when the opening lever
42
is rotated. The result is that the opening lever
42
and the lift lever
41
rotate idly. Hence, the door, being unlocked, is now locked. At this time, the output lever
52
is also put into its locked position.
In
FIG. 5
, if the inside handle is operated to rotate the inside lever
46
in the direction to open the door, the first arm portion
46
a
engages and pushes the leg portion
41
d
, as shown in
FIGS. 6
a
-
9
b
to rotate the lift lever
41
in the direction to open the door. At the same time, the second leg portion
46
b
engages and pushes the leg portion
52
a
, rotating the output lever
52
in the direction of unlocking operation into its unlocked position. The locking lever
43
is moved into its unlocked position. The door, being locked and open, is unlocked and allowed to be opened. Thus, so-called one-motion opening function is performed. The leg portion
52
a
of the output lever
52
in its unlocked position is taken out of the rotary trajectory of the second arm portion
46
b
when the inside lever
46
is rotated, as shown in
FIG. 9
b
. Therefore, the operation of the inside lever
46
is not hindered at all when the door is unlocked.
Where the passenger locks the door in leaving the vehicle, if he or she operates the locking knob to lock the door and then closes the door (so-called keyless locking), the latch mechanism
3
interlocks with the operation for closing the door and rotates the lift lever
41
in the direction to open the door, in the same way as when the inside handle or the outside handle is operated, as shown in
FIGS. 10
a
and
11
a
. However, the rotation of the lift lever
41
in the direction to open the door moves the leg portion
41
d
of the lift lever
41
away from the first arm portion
46
a
of the inside lever
46
. Therefore, as shown in
FIGS. 10
b
and
11
b
, the inside lever
46
is not rotated in the direction to open the door. Consequently, the output lever
52
in its locked position is not rotated to its locked position in spite of the engagement of the second leg portion
46
b
of the inside lever
46
with the leg portion
52
a
. Rather, it is assured that the output lever
52
is held in its locked position. In this way, when the keyless locking is done, it is not necessary to operate the outside handle. That is, so-called one-step locking function is fulfilled.
In the embodiment described above, the output lever
52
of the locking actuator
5
is a locking member set forth in claim
1
. Where the locking actuator
5
is not present, the lever may be rotatably held to the vertical wall
22
of the base plate
2
, and this lever may be used as the locking member set forth in claim
1
instead of the output lever
52
.
In accordance with the present invention, an inside lever capable of engaging with a lift lever is permitted to engage a locking member. The lift lever is an integral component; in the past, the lift lever has been split into first and second lift levers. Consequently, one-motion opening function and one-step locking function can be accomplished without increasing the number of components.
As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.
Claims
- 1. A vehicle door lock assembly for automotive vehicles, comprising:an inside lever adapted to be mounted in the inside of a door and adapted to be connected to an inside handle, said inside lever being capable of being rotated from an initial position by manually operating said inside handle; an opening lever adapted to be connected to an outside handle mounted on the outside of the door and capable of being rotated by manually operating the outside handle; a latch mechanism actuated by said inside lever or said opening lever via a lift lever capable of engaging with said inside lever; a locking lever connected to said opening lever via a slide bush; and locking means having a leg portion positioned along a rotary path of said inside lever at a locked position of said locking lever, said inside lever being adapted to engage said lift lever and said leg portion of said locking means to operate said latch mechanism and said slide bush when said inside lever is rotated from said initial position through a single operation of the inside handle.
- 2. The vehicle door lock assembly of claim 1, wherein said inside lever has a first arm portion and a second arm portion, and wherein, when said inside handle is manually operated to rotate said locking means from their initial locked position, said first arm portion and said second arm portion engage said locking means and said lift lever, respectively.
- 3. The vehicle door lock assembly of claim 1, wherein said latch mechanism is mounted to a base plate having a horizontal wall portion and a vertical wall portion, and wherein said horizontal wall and said vertical wall hold said lift lever and said inside lever, respectively.
- 4. The vehicle door lock assembly of claim 1, wherein a locking actuator has an output lever capable of engaging said locking means.
- 5. A vehicle door lock assembly for vehicles having a structure for actuating a latch mechanism by rotational operation of either an inside lever or an opening lever via a lift lever and engaging or disengaging said opening lever and said lift lever by rotating a locking member connected to a locking operation knob, said inside lever being adapted to be connected to an inside handle, said inside lever directly engaging said lift lever and said locking member to rotate said locking member and said lift lever, said inside lever directly engaging the locking member to rotate the locking member when the locking member is in a locked position and directly engaging the lift lever to actuate the latch mechanism upon operation of the inside lever from an initial position during a single operation of the inside handle.
- 6. The vehicle door lock assembly of claim 5, wherein said locking member is connected to a locking lever which is connected to said opening lever via a slide bush.
- 7. The vehicle door lock assembly of claim 6, wherein said locking member is secured to an output shaft of an electrical actuator.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-17356 |
Jan 1998 |
JP |
|
US Referenced Citations (8)
Foreign Referenced Citations (1)
Number |
Date |
Country |
58-31960 |
Jul 1983 |
JP |