The present invention relates to door locks. More particularly, the present invention relates to a door lock for use in an institution such as a prison or mental health facility where there is a risk of a patient or prisoner using the door knob or lever to secure a rope or the like (a ligature) in an effort to hang or otherwise injure himself.
The invention provides a lock device comprising a lock mechanism configured to be mounted on a door, the lock mechanism including a locking member having extended and retracted positions relative to the door for releasably securing the door relative to an adjacent structure, and the lock mechanism including a pivoting member operably connected to the locking member such that pivotal movement of the pivoting member about an axis moves the locking member between the extended and retracted positions, and an assembly including a handle manually pivotable about the axis, and a clutch mechanism connecting the handle to the pivoting member, the clutch mechanism at all times transmitting a torque below a predetermined value from the handle to the pivoting member, and the clutch mechanism at all times allowing the handle to pivot relative to the pivoting member when the torque exceeds the predetermined value.
The invention also provides lock device comprising a lock mechanism configured to be mounted on a door, the lock mechanism including a locking member having extended and retracted positions relative to the door for releasably securing the door relative to an adjacent structure, and a pivoting member operably connected to the locking member such that pivotal movement of the pivoting member about an axis moves the locking member between the extended and retracted positions, the lock mechanism having a locked state wherein the pivoting member is prevented from pivoting and an unlocked state wherein the pivoting member is pivotable, and an assembly including a handle manually pivotable about the axis, a cam member fixed to the pivoting member for pivotal movement therewith, the cam member having a surface having therein a recess, a rotor fixed to the handle for pivotal movement therewith, the rotor having a surface facing the surface of the cam member and having therein a recess, a drive member seated in the recess of the cam member and in the recess of the rotor when the rotor is in a normal position relative to the cam member, and a spring biasing the surface of the cam member and the surface of the rotor together, such that, when the drive member is seated in the recesses and the lock mechanism is in the unlocked state, pivotal movement of the rotor about the axis is transmitted to the cam member via the drive member, whereby pivotable movement of the handle is transmitted to the pivoting member of the lock mechanism, and such that, when the lock mechanism is in the locked state and the handle is pivoted with a torque greater than an amount determined by a force of the spring, the drive member moves against the force of the spring and out of the recess, so that the rotor is able to pivot relative to the cam member, whereby the handle is able to pivot relative to the pivoting member of the lock mechanism.
The invention also provides lock device comprising a lock mechanism configured to be mounted on a door, the lock mechanism including a locking member having extended and retracted positions relative to the door for releasably securing the door relative to an adjacent structure, and a pivoting member operably connected to the locking member such that pivotal movement of the pivoting member about an axis moves the locking member between the extended and retracted positions, the lock mechanism having a locked state wherein the pivoting member is prevented from pivoting and an unlocked state wherein the pivoting member is pivotable, an exterior assembly including a manually movable exterior member operably connected to the locking member for moving the locking member between the extended and retracted positions, and an interior assembly including a handle manually pivotable about the axis, the handle having a lever portion and a shank portion, a cam member having a cylindrical portion fixed to the pivoting member for pivotal movement therewith, and the cam member having a circular plate portion extending in a flange-like manner from an outer end of the cylindrical portion, the plate portion of the cam member having a generally planar cam surface generally perpendicular to the axis, the cam surface having therein first and second diametrically spaced, generally circular recesses, each of the recesses having a depth, the cam surface having therein an annular recess centered on the axis, the annular recess intersecting the recesses and having a depth less than the depth of the recesses, and the cam surface also having therein a cylindrical recess centered on the axis and located inside the annular recess, a rotor having a cylindrical portion fixed to the handle for pivotal movement therewith, and the rotor having a circular plate portion extending in a flange-like manner from an inner end of the cylindrical portion of the rotor, the plate portion of the rotor having a generally planar inner surface generally perpendicular to the axis, the inner surface facing the cam surface and having thereon a cylindrical portion extending into the cylindrical recess in the cam surface, and the plate portion also having a generally planar outer surface generally perpendicular to the axis, the outer surface facing away from the cam surface, and the plate portion having therethrough first and second diametrically spaced openings extending between the inner and outer surfaces and respectively aligned with the first and second recesses in the cam surface when the rotor is in a normal position relative to the cam member, a first ball seated in the first recess of the cam member and in the first opening of the plate portion when the rotor is in the normal position, a second ball seated in the second recess of the cam member and in the second opening of the plate portion when the rotor is in the normal position, a spring seat having a cylindrical sleeve surrounding the cylindrical portion of the rotor, and the spring seat having a circular plate portion extending in a flange-like manner from an inner end of the cylindrical sleeve, the plate portion having a generally planar inner surface generally perpendicular to the axis, the inner surface of the plate portion of the spring seat facing the outer surface of the plate portion of the rotor, and the inner surface of the plate portion of the spring seat bearing against the first and second balls and having therein an annular recess which is centered on the axis and in which the balls are seated, and the plate portion of the spring seat also having a generally planar outer surface generally perpendicular to the axis, the outer surface of the plate portion of the spring seat facing away from the outer surface of the plate portion of the rotor, a coil spring surrounding the sleeve portion, the spring having an inner end engaging the outer surface of the plate portion of the spring seat, and the spring having an outer end engaging the handle, such that the spring exerts a force on and biases the plate portion of the spring seat against the first and second balls and thereby biases the first and second balls into the first and second recesses, and a cover member fixed to the handle, the cover member having therein a circular opening which is centered on the axis and through which the cylindrical portion of the cam member extends, and the cover member engaging the plate portion of the cam member so that the plate portion of the cam member, the rotor, the balls, the spring seat and the spring are held between the cover member and an inner surface of the handle and are completely contained within the shank portion of the handle, such that, when the first and second balls are seated in the first and second recesses and the lock mechanism is in the unlocked state, pivotal movement of the rotor about the axis is transmitted to the cam member via the first and second balls, whereby pivotable movement of the handle is transmitted to the pivoting member of the lock mechanism, and such that, when the lock mechanism is in the locked state and the handle is pivoted with a torque greater than an amount determined by the force of the spring, the first and second balls move against the force of the spring and out of the first and second recesses and into the annular groove in the cam surface, so as to move the spring seat axially relative to the rotor and away from the outer surface of the plate portion of the rotor, and so that the rotor is able to pivot relative to the cam member, whereby the handle is able to pivot relative to the pivoting member of the lock mechanism, providing an anti-ligature function.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The lock device 10 also comprises an exterior assembly 42 including the thumbturn 38 for operating the deadbolt as is known in the art. As mentioned above, the device locks on the outside or exterior. The exterior assembly 42 also includes a manually movable exterior member or lever 46 pivotable about the axis 30 and operably connected to the latch 22 for moving the latch between the extended and retracted positions. The exterior lever 46 can also retract the deadbolt 34 as is known in the art.
The lock device 10 also comprises an interior assembly 50 including an interior handle or lever 54 manually pivotable about the axis. The handle 54 has (see
The lock device 10 also comprises (see
The clutch mechanism 70 includes a cam member 74 having a cylindrical portion 78 fixed to the spindle 26 for pivotal movement therewith. As shown in
The clutch mechanism 70 also includes a rotor 110 having a hollow cylindrical portion 114 fixed to the handle 54 for pivotal movement therewith. As shown in
The clutch mechanism 70 also includes first and second balls or drive members 154 and 158 respectively seated in the openings 144 and 148 of the plate portion 126. The balls remain seated in the openings 144 and 148 during operation of the clutch mechanism. The balls 154 and 158 are also respectively seated in the recesses 94 and 98 of the cam member 74 when the rotor 110 is in the normal position. This is shown in
The clutch mechanism 70 also includes a coil spring 186 surrounding the sleeve portion 166, the spring 186 having an inner end engaging the outer surface 182 of the spring seat 162, and the spring 186 having an outer end engaging an inner surface 190 of the handle 54, as shown in
The lock device 10 also comprises a cover member 200 fixed to the handle 54. In the illustrated construction, the cover member 200 is fixed to the shank 62 of the handle with four screws 204. The cover member 200 has therein a circular opening 208 which is centered on the axis 30 and through which the cylindrical portion 78 of the cam member 74 extends. The cover member 200 engages the plate portion 86 of the cam member 74 so that the plate portion 86, the rotor 110, the balls 154 and 158, the spring seat 162 and the spring 186 are held between the cover member 200 and the inner surface 190 of the handle 54, and the clutch mechanism 70 is completely contained within the shank portion 62 of the handle, as shown in
When the balls 154 and 158 are seated in the recesses 94 and 98 and the lock mechanism 14 is in the unlocked state, pivotal movement of the rotor 110 about the axis 30 is transmitted to the cam member 74 via the balls, whereby pivotable movement of the handle 54 is transmitted to the spindle 26. Specifically, when the rotor pivots, the walls of the rotor openings 144 and 148 push on the balls 154 and 158, and the balls push on the walls of the cam member recesses 94 and 98. When the lock mechanism 14 is in the locked state and the handle 54 is pivoted with a torque greater than a predetermined amount determined by the force of the spring 186, pivotal movement of the rotor 110 causes the balls 154 and 158 to move, against the force of the spring 186 (to the right in
To summarize, the handle 54 has a normal position (extending horizontally in the illustrated construction), and the clutch mechanism 70 has a normal state wherein the handle 54 is drivingly connected to the spindle 26 (the balls 154 and 158 are in the recesses 94 and 98), and a slipping state in which the handle is not drivingly connected to the spindle 26 (the balls are not in the recesses 94 and 98). The clutch mechanism 70 automatically returns to the normal state (the balls return to the recesses 94 and 98) when the handle 54 returns to the normal position.
If a person places a rope around the handle 54 when the lock mechanism 14 is unlocked, a weight on the rope will simply turn the handle 54 to open the door, and the rope will slide off the handle. The torque required to pivot the spindle 26 will not exceed the predetermined value when the lock mechanism is unlocked. If a person places a rope around the handle 54 when the lock mechanism 14 is locked, a weight on the rope exerting on the handle a torque greater than the predetermined value will cause the clutch mechanism 70 to slip, the handle 54 will pivot downward without opening the door, and the rope will slip off the handle.
It should be understood that various alternative constructions are within the scope of the invention. For example, the recesses 144 and 148 in the rotor need not be through-holes. They could be blind recesses, like those in the cam surface 90. All recesses could have other shapes. The deeper recesses could be in the cam surface 90 and the balls 154 and 158 could move out of the recesses in rotor 110, or the recesses 94, 98, 144 and 148 could be the same depth and the balls could move out of both. The drive members need not be balls. Other rolling or bearing-type members could be used. Another possible alternative is to eliminate the spring seat 162 and have the spring 186 push directly on the rotor 110. This alternative would require the recesses 144 and 148 in the rotor 110 to be blind, rather than being through-holes. It would also require more clearance for the rotor 110 to move axially relative to the handle 54. Use of the spring seat 162 is preferred for ease of construction of the rotor.
While various suitable materials can be employed, the cam member 74, rotor 110, spring seat 162 and balls 154 and 158 are preferably made of hardened steel. The spring seat 162 may pivot with the rotor 110, or the balls may move with the rotor 110 relative to the spring seat 162.
Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1516152 | Dumont | Nov 1924 | A |
1534701 | Gray | Apr 1925 | A |
1910125 | Root | May 1933 | A |
3314708 | Welch | Apr 1967 | A |
3662628 | Schnepel | May 1972 | A |
4453753 | Fayerman et al. | Jun 1984 | A |
4773240 | Foshee | Sep 1988 | A |
4784417 | Fleming et al. | Nov 1988 | A |
4998760 | Nixon et al. | Mar 1991 | A |
5603534 | Fuller | Feb 1997 | A |
5620216 | Fuller | Apr 1997 | A |
5651280 | Park | Jul 1997 | A |
5787743 | Weigard | Aug 1998 | A |
5787744 | Berger et al. | Aug 1998 | A |
5927777 | Kuo et al. | Jul 1999 | A |
6041630 | Shen | Mar 2000 | A |
6223567 | Fadul | May 2001 | B1 |
6398274 | Huang et al. | Jun 2002 | B1 |
6527314 | Brown | Mar 2003 | B2 |
6546765 | Linares | Apr 2003 | B1 |
6705138 | Shen | Mar 2004 | B1 |
6725693 | Yu et al. | Apr 2004 | B2 |
6802194 | Shen | Oct 2004 | B1 |
6921116 | Humes | Jul 2005 | B2 |
7077437 | Huang | Jul 2006 | B2 |
7686357 | Engel et al. | Mar 2010 | B2 |
7766751 | Christensen et al. | Aug 2010 | B2 |
7793527 | Shen | Sep 2010 | B2 |
7900978 | Zimmer | Mar 2011 | B2 |
8210580 | Engel et al. | Jul 2012 | B2 |
8215685 | Ellis | Jul 2012 | B2 |
20100126239 | Berger | May 2010 | A1 |
20100327611 | Rees | Dec 2010 | A1 |
20110068927 | Berger | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2458681 | Sep 2009 | GB |
Entry |
---|
Anti-ligature product web pages, retrieved Apr. 21, 2011, from: http://www.krowl.co.uk/www.krowl.co.uk/info.php?p=20, 5 pages. |
PCT/US2012/046830 International Search Report and Written Opinion dated Sep. 27, 2012 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20130015672 A1 | Jan 2013 | US |