The invention relates to an electromechanical lock equipped with a solenoid. The solenoid's operation is controlled with a controller.
Electromechanical locks often use a solenoid to control deadbolting means in the lock so that the lock bolt is locked into the deadbolted position or the deadbolting means are released from the deadbolted position. A solenoid is also used to link the handle to other parts of the lock.
A typical solenoid comprises a coil fitted into a ferromagnetic body. A solenoid plunger, which is a metal rod, is located inside the coil and moved by means of a magnetic field generated around the coil. The movement of the solenoid plunger is utilised in lock mechanisms to achieve the desired action.
The operation of the solenoid is controlled by a controller also known as a solenoid controller. The purpose of the controller is to reduce the current consumption of the solenoid.
Electromechanical locks have relatively little space for the different components of the lock. Smaller electromechanical locks in particular require the use of smaller solenoids due to lack of space. However, the solenoid must be sufficiently large to generate the required power. Thus the problem (particularly with small solenoids) is that the solenoid must generate sufficient power while maintaining reasonable current consumption.
The objective of the invention is to reduce the disadvantages of the problem described above. The objective will be achieved as described in the independent claim. The dependent claims describe various embodiments of the invention.
In an embodiment according to the invention, the controller 7 of a solenoid of an electromechanical lock 6 is arranged to generate motion power 3 to move the solenoid plunger and holding power 2 to hold the solenoid plunger in place so that the motion power generated is comprised of a higher power level 4 and a lower power level 5 that are alternating. Thus the motion power 3 is pulsating power that aims to overcome the friction forces working against the movement of the solenoid plunger. Pulsating motion power consumes less current than steady motion power.
In the following, the invention is described in more detail by reference to the enclosed drawings, where
The period of motion power is dimensioned so that the solenoid plunger can be moved to the desired position. Approximately 130 ms is appropriate for most applications. It is preferable that the motion power range 3 starts with a higher power level. For example, three higher power levels and two lower power levels, among which the first level is a higher power level, constitute a very well-functioning solution. The duration of the higher power level 4 can be, for example, 25 to 35 ms, and the duration of the lower power level 5 can be 15 to 25 ms. In practice, periods of approximately 130 ms (or another period of motion power) can be repeated as desired, for example at intervals of 1 second or 3 seconds. This is convenient, for example, when a user is pressing the lock handle, preventing the solenoid plunger from moving. In this case, the solenoid will not warm up excessively because the duration of the higher power level is limited and it is repeated at certain intervals, while the user may have ceased pressing the handle.
The solenoid controller 7 is a processor within the lock, for example. It can also be an electric circuit customised for the purpose.
Because variable-level motion power consumes less power than steady motion power at a high level, energy is saved. This also allows a smaller solenoid to more securely move the desired lock mechanisms. The load on the power supply is also smaller. Variable-level motion power allows the use of a stronger spring pulled by the solenoid. The return spring can be dimensioned in accordance with the motion power. Repeating the motion power will correct any changes in state. This makes lock operation more reliable. Also, the solenoid will not warm up unnecessarily.
As can be noted, an embodiment according to the invention can be achieved through many different solutions. It is thus evident that the invention is not limited to the examples mentioned in this text. Therefore any inventive embodiment can be implemented within the scope of the inventive idea.
Number | Date | Country | Kind |
---|---|---|---|
20075822 | Nov 2007 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2008/050636 | 11/6/2008 | WO | 00 | 6/18/2010 |