The present invention relates to an overhead door operator system for opening and closing an opening.
A door operator system for an overhead door typically comprises a door connected to a door frame and a drive unit arranged to move the door along the door frame between an open and closed position for opening and closing the opening. The door, which may be a sectional door, is typically used as a garage doors or as an industrial door. The drive unit can further comprise a motor or a mechanical unit such as a spring to move the door.
In conventional overhead sectional door an electric motor mounted above the door pulls up the door using wires attached to the door. Such an overhead sectional door often implements balancing springs to reduce the force required to open the door. The implementation of a balancing spring increases the complexity of the door and is cumbersome to install when the door is mounted into position.
To achieve a more efficient door operator system that reduces the complexity and the risks of the door operator system during operation, maintenance and installation a door operator system with drive units mounted to the door has been developed. The door is driven by means of driven pinions interfacing with a fixed rack extending along the intended movement trajectory of the door. Such a door addresses several shortcomings and disadvantages with conventional door operator systems by introducing a drive modularity, allows for easier and faster installation and a reduced complexity. Additionally, it does not require a balancing spring.
However, the driving of such a door is associated with a number of challenges. The fixed rack requires a high accuracy in manufacturing and proper aligning of the racks when the door is installed. This increases the cost both for the door itself and the installation of the door.
An object of the present disclosure is to provide an overhead door operator system which seeks to mitigate, alleviate, or eliminate one or more of the above-identified deficiencies in the art and disadvantages singly or in any combination.
An object of the present invention is to reduce the complexity of the overhead door operator system.
According to one aspect an overhead door operator system for opening and closing an opening is provided. The overhead door operator system comprises a door frame comprising a first frame section at a first side of the opening and a second frame section at a second side of the opening. The overhead door operator system further comprises a door arranged to be moved between an open and closed position, the door being movably connected to the door frame.
Additionally, the operator system comprises a drive unit mounted on the door, the drive unit comprising at least one motor arranged to move the door from the closed position to the open position and an elongated transmission member extending along the first side of the opening and the first frame section.
The drive unit further comprises a driven transmission member in driving connection with the motor, the driven transmission member being movably connected to the elongated transmission member and arranged to interplay with said elongated transmission member for driving the driven transmission member along said elongated transmission member by means of the elongated transmission member at least partially wrapping around the driven transmission member.
Embodiments of the invention are defined by the appended dependent claims and are further explained in the detailed description section as well as in the drawings.
It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps, or components, but does not preclude the presence or addition of one or more other features, integers, steps, components, or groups thereof. All terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the [element, device, component, means, step, etc.]” are to be interpreted openly as referring to at least one instance of the element, device, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
A reference to an entity being “designed for” doing something in this document is intended to mean the same as the entity being “configured for”, or “intentionally adapted for” doing this very something.
The foregoing will be apparent from the following more particular description of the example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the example embodiments.
Embodiments of the invention will now be described with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the particular embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
In this embodiment, the door 8 is a sectional door 8 comprising a plurality of horizontal and interconnected sections 9a-e connected to the door frame 3. In one embodiment, the door is a garage door. In an alternative embodiment, the door is an industrial door. The door 8 is arranged to be moved along the door frame 3 between the closed position C and the open position O.
As shown in
In one embodiment, the door operator system is an up and over door operator system. A up and over door operator system is a system in which the door in the closed position C is arranged substantially vertical and in the open position O is arranged substantially horizontal and inside of the opening.
In an alternative embodiment, the door operator system is an up and up door operator system. A up and up door operator system is a system in which the door in the closed position C is arranged substantially vertical and in the open position O is arranged substantially vertical above the opening.
In a further alternative embodiment, the door operator system may be a door operator system in which the door in the closed position C is arranged substantially vertical and in the open position O is arranged in an inclined position disposed between a substantially vertical and a substantially horizontal position. For example, the door may be arranged at a 45 degrees angle from a horizontal position in the open position O, as the skilled person recognizes however the door may be arranged at any angle disposed between the horizontal and vertical orientation of the door in the open position O.
The door frame 3 comprises a first frame section 4 at a first side 5 of the opening 2 and a second frame section 6 at a second side 7 of the opening 2. The door frame 3 is connected to the wall 50 and to the floor 23. In one embodiment, the first frame section 4 comprises a substantially vertical part 4a and a substantially horizontal part 4b. The second frame section 6 comprises a substantially vertical part 6a and a substantially horizontal part 6b. The vertical part 4a, 6a and the horizontal part 4b, 6b are connected to create a path for the door 8 to glide on and a track for the drive unit 10 to interact with. In one embodiment, wherein the door operator system is an up and up door operator system the first and second frame section are vertical.
Referencing
With reference to
To allow for the driving of the door 8, the overhead door operator system 1 further comprises an elongated transmission member 19 extending along the first side 5 of the opening 2 and the first frame section 4. The drive unit 10 further comprises a driven transmission member 18 which is in driving connection with the motor 11. The driven transmission member 18 is movably connected to the elongated transmission member 19 and arranged to interplay with said elongated transmission member 19 for driving the driven transmission member 18 along said elongated transmission member 19 by means of the elongated transmission member 19 at least partially wrapping around the driven transmission member 18. Thus, the elongated transmission member 19 is arranged to at least partially envelope said driven transmission member 18.
The elongated transmission member does in comparison with a fixed rack provide a more cost-efficient solution both in terms of manufacturing and installation. Furthermore, the elongated transmission member allows for relative movement between the door 8 and the frame and does not require a high accuracy and proper aligning in the same manner as a fixed rack solution. The elongated transmission member may thus be arranged to allow for a degree of movement along a direction orthogonal to the first frame section 4.
Further, the elongated transmission member enables a safer door operator system due to said elongated transmission member following and keeping the engagement with the driven transmission member, at least to some extent, even if the door is pushed away from the rail. In addition, the elongated transmission member is more silent and resistant to wear compared to a fix rack and less likely to malfunction due to pinching of external objects.
The elongated transmission member 19 may be in the form of a suspended bendable transmission member. It is noted that bendable in this context does not necessarily imply that said transmission member necessarily is flexible but only that it allows for wrapping around the driven transmission member. Accordingly, the transmission member 19 may be considered to be arranged to be in engagement with the driven transmission member 18 and provide for relative movement between the driven transmission member 18 and a direction of movement of the door 8 as defined by the frame 3. Worded differently said transmission member may be considered as a non-fix transmission member or a suspended transmission member. The elongated transmission member may accordingly be arranged to engage the driven transmission member independently of the frame.
The drive unit 10 is moveably connected to the elongated transmission member 19. Accordingly, drive unit 10 is connected to said elongated transmission member 19 so as to allow for relative movement between the door and the frame, whereby the drive unit is fix to the door. The drive unit 10 comprises at least one motor 11. The drive unit 10 is arranged to move the door 8 from the closed position to the open position. To provide power to the motor 11, the at least one motor 11 may be connected to at least one energy storage device, such as a battery, arranged to power the at least one motor 11. The drive unit 10 is arranged to move the door 8 from the closed position C to the open position O.
In one embodiment, the drive unit 10 is arranged to move the door from the open position O to the closed position C. In one embodiment, the door 8 is arranged to move from the open position O to the closed position C by means of the weight of the door 8. In one embodiment, the drive unit 10 is arranged to brake the door 8 when moving from the open position O to the closed position C.
In one embodiment, the elongated transmission member may be suspended only by means of a top end and a bottom end.
The elongated transmission member 19 may be biased. The biasing of the elongated transmission member 19 enables keeping of the tension of the resilient elongated member 19 at a suitable level and further compensates for wear and potential tolerance issues.
In one embodiment, the elongated transmission member 19 may be biased by means of a spring arrangement. A top end of the elongated transmission member 19 may be fixedly mounted and a bottom end of said elongated transmission member 19 may be spring-loaded. This allows for easier access for an operator performing service work involving the spring. In one embodiment, the top and bottom end of the elongated transmission member 19 is mounted to the frame, for example the first frame section 4.
In one embodiment, the overhead door operator system further comprises at least one guide member 92. The at least one guide member 92 is mounted to the door 8. The guide member 92 may be arranged to interplay with the elongated transmission member 19 for guiding the door 8 along the elongated transmission member 19 by means of the elongated transmission member 19 at least partially wrapping around the at least one guide member 92. The guide member 92 thus moves the elongated transmission member 19 and guides the driven transmission member 18 in relation to said elongated transmission member 19 to properly align them. Hence, a more reliable door operator system may be achieved. The guide member 92 may preferably be a rotatable guide member which may be mounted to the door 8 by means of a journaled connection. Thus, the elongated transmission member 19 is arranged to at least partially envelope said guide member 92.
Referencing
As shown in
The elongated transmission member 19 may be any conventional elongated transmission member 19 providing the required slack to compensate for horizontal or diagonal movement of the drive unit and/or door. The elongated transmission member may be a belt or a chain.
In one embodiment, the elongated transmission member 19 may be a belt. Thus, the guide member 92 and the driven transmission member 18 may be pulley elements arranged to interface with said belt. In one embodiment, the belt may be a cogged belt or a ribbed belt, whereby the guide member 92 and the driven transmission member 18 may be cogged wheels interfacing with the ribs of said cogged or ribbed belt.
The elongated transmission member 19 may also be a chain, which is depicted in
In one embodiment, the overhead door operator system further comprises a first set of guide rollers 17 and a second set of guide rollers 17. Said first and second set of guide rollers are mounted to the door 8. The first set of guide rollers 17 are arranged to interplay with the first frame section 4 and the second set of guide rollers 17 are arranged to interplay with the second frame section 6. The guide rollers thus moves together with the door 8 in a guided manner along the trajectory formed by the frame, e.g. the first frame section 4 and the second frame section 6.
In one embodiment, the door 8 is a sectional door. Hence, the door comprises a plurality of horizontal and interconnected sections 9a-e (as depicted in
Again referring to
In one embodiment, the drive unit 10 is mounted to the bottommost section 9e of the door 8 and the first and second lower guide roller are disposed adjacent to a bottom horizontal end phase of the bottommost section 9e. The upper guide rollers may correspondingly be disposed adjacent to a top horizontal end phase of the bottommost section 9e.
In one embodiment, upper and lower guide rollers may be mounted to each section 9a-e. Preferably, the upper guide rollers are disposed adjacent to the upper horizontal end phase and the lower guide rollers are disposed adjacent to the bottom horizontal end phase of each section. The at least one guide member 92 may be, as most clearly depicted in
As seen in said
In one embodiment, the guide member is coaxial with the guide roller being disposed adjacent to a bottom horizontal end phase of the bottommost section 9e of the door. This is particularly advantageous due to it providing a superior pivoting position of the door. The guide roller and the guide element hence creates a common low pivot point for the door when the door is approaching its open position O when the overhead door operator system is an up and over door operator system. This significantly reduces the space required above the door opening compared to for example a door with driven sections utilising for example a fix rack.
In one embodiment, a first upper guide member 92 is arranged coaxially with the first upper guide roller 17. Correspondingly, a first lower guide member 92 is arranged coaxially with the first lower guide roller 17. Hence, the section 9e which is driven may be both guided along the elongated transmission member 17 and the frame at the same axes. This further increases the stability and decreases the load on the section onto which the drive unit 10 is mounted. Preferably, the section is the bottommost section and the lower guide member and the lower guide wheel are arranged adjacent to the bottom phase of said bottommost section. Hence, one of the guide rollers 17 and one of the guide member 92 may be arranged coaxially to each other adjacent to the bottom horizontal edge of the door 8. This may be the case in a single section door as well.
In one embodiment, the overhead door operator system comprise a pair of elongated transmission members to allow for a more stable movement pattern of the door 8. A first elongated transmission member 19 extends along the first side 5 of the opening 2 and the first frame section 4. A second elongated transmission member 19 extends along the second side 7 of the opening 2 and the second frame section 6. The guiding and driving arrangements discussed with reference to the first side of the door may accordingly be mirrored to the second side of the door.
Thus, the overhead door operator system may further comprise a first and second driven transmission member 18 arranged to interplay with the first and second elongated member 19 by means of the first and second elongated transmission member at least partially wrapping around the first and second driven transmission member, respectively.
The first and second driven transmission member 18 may be driven by means of a single or multiple motors 11. In one embodiment, a single motor 11 is in driving connection with the first and second transmission member 18. The single motor 11 may be connected to the first and second driven transmission members 18 by means of a first and second shaft extending from the motor 11. As will be further described with reference to
Analogously to the first vertical side of the door, the second side of the door may have one or more guide members mounted thereon. In one embodiment, the overhead door operator system further comprises at least one guide member 92 mounted to the door 8 arranged to interplay with the second elongated transmission member for guiding the door 8 along the second elongated transmission member 17 by means of the second elongated transmission member at least partially wrapping around said guide member. Worded differently, said door operator system comprises at least one first guide member 92 mounted on the door 8 arranged to interplay with the first elongated transmission member 19 and at least one second guide member 92 mounted on the door 8 arranged to interplay with the second elongated transmission member 19 by means of the first and second elongated transmission member at least partially wrapping around the first and second guide member, respectively.
Both the elongated transmission members 19 may be biased by means of spring arrangements. A top end of the elongated transmission members 19 may be fixedly mounted and a bottom end of said elongated transmission members 19 may be spring-loaded. This allows for easier access for an operator performing service work involving the spring. In one embodiment, the top and bottom ends of the elongated transmission members 19 are mounted to the frame, .e.g. to the first and second frame section, respectively.
In one embodiment, which is exemplified in
The elongated transmission members 19 may be arranged to wrap around and interplay with a portion of the driven transmission member 18 and a portion of the upper and lower guide members 92. The portion of the driven transmission member 18 interplaying with the elongated transmission member 19 being opposite to the portions of the upper and lower guide member 92 interplaying with said elongated transmission member 19. This achieves a larger interface between the driven transmission member, guide member and elongated transmission member, whereby a more stable overhead door operator system which requires less torque to operate may be achieved.
In one embodiment, wherein only a first elongated transmission member is in driving connection with the transmission member, the door operator system may only comprise a first upper and lower guide member according to the above.
In one embodiment wherein the drive unit 10 is mounted to a section 9e of the door 8, a first upper guide member 92 arranged to interplay with the first elongated transmission member 19 may be arranged adjacent to a top phase of the section 9e. A first lower guide member 92 arranged to interplay with the first elongated transmission member 19 may be arranged adjacent to a bottom phase of the section 9e. A second upper guide member 92 arranged to interplay with the second elongated transmission member 19 may be arranged adjacent to a top phase of the section 9e. A second lower guide member 92 arranged to interplay with the second elongated transmission member 19 may be arranged adjacent to a bottom phase of the section 9e.
In one embodiment, the first upper guide member 92 may be arranged coaxially with the first upper guide roller (17) for interplaying with the first elongated transmission member 19 by means of the first elongated transmission member at least partially wrapping around the first upper and lower guide member. The first lower guide member 92 may be arranged coaxially with the first lower guide roller 17 for interplaying with the first elongated transmission member 19. The second upper guide member 92 may be arranged coaxially with the second upper guide roller 17 for interplaying with the second elongated transmission member 19 by means of the second elongated transmission member at least partially wrapping around the second upper and lower guide member. The second lower guide member 92 may be arranged coaxially with the second lower guide roller 17 for interplaying with the second elongated transmission member 19.
As depicted in
In one embodiment wherein the drive unit 10 comprises a single motor, the motor is connected to the reduction gearing 76 which may be in the form of the gearbox, whereby an output shaft of the gearbox is connected to the first and second driven transmission member 18 so as to transfer torque to said first and second driven transmission member 18, or in the case of the operator system only having one elongated transmission member, the single driven transmission member.
In one embodiment wherein the drive unit 10 comprises the first and second motor. The first motor may be connected to a first reduction gearing, such as a gearbox, in turn connected to the first driven transmission member. The second motor may be connected to a second reduction gearing, such as a gearbox, in turn connected to the second driven transmission member.
The overhead door operator system may further comprise at least one transmission member protector 61. The transmission member protector 61 is arranged to at least partially enclose the driven transmission member 18 and a portion of the elongated transmission member 19 interplaying with said driven transmission member 19. The transmission member protector 61 is for preventing the elongated transmission member 19 being brought out of engagement with the driven transmission member 18. Hence, a safer overhead door operator system may be achieved. The transmission member protector 61 may also serve as a mean to prevent a human to come into contact with the elongated transmission member 19.
The transmission member protector 61 may be arranged to extend outwardly, i.e. horizontally, from the door 8 across the elongated transmission member 19 to cover said elongated transmission member 19. The transmission member protector 61 may be attached to the door 8 or the drive unit 10.
In one embodiment, in which a plurality of driven transmission members 18 are utilized, the overhead door operator system may comprise a plurality of transmission member protectors 61. Each transmission member protector 61 may be arranged to at least partially enclose a corresponding driven transmission member 18 and the portion of the elongated transmission member 19 interplaying with said driven transmission member 18.
In one embodiment, the overhead door operator system may further a transmission member tensioner for spring-loading the elongated transmission member 19, wherein the top and bottom end of the elongated transmission member 19 are fixedly mounted and the transmission member tensioner is attached to the door 8. The transmission member tensioner may comprise a roller element arranged to interplay with the elongated transmission member 19.
As depicted in
As seen in
In one embodiment, the drive unit 10 at least comprises a first motor 11a and a second motor 11b, the first motor 11a and the second motor 11b may be mounted at the same vertical sides of the door 8. The first and second motor may be arranged on the same horizontal section of the door 8. The first and second motor may be arranged on the bottommost horizontal section 9e of the door 8.
In one embodiment, the first motor 11a is moveably connected to the first elongated transmission member 19 by means of the first driven transmission member 18 and the second motor 11b is moveably connected to the second elongated transmission member 19 by means of the second driven transmission member 18.
The motors 11 and the drive unit 10 are preferably arranged on the same main phase of the door 8, e.g. an outer or inner phase of the door 8. To protect the motors 11 and drive unit 10, said motors and drive unit are arranged on an inner phase of the door in the form of an interior facing door phase of the door 8.
In one embodiment, the motor(s) 11 of the drive unit 10 is a direct current DC motor 11. In a preferred embodiment, the motor(s) 11 is a brushless direct current (BLDC) motor(s).
A control unit may be in operative communication with the drive unit 10. The control unit may be in wired communication with the two motors 11a, 11b or be in a wireless communication.
The control unit is configured to control the movement of the drive unit 10, i.e. when and how the drive unit 10, and its associated motors 11a, 11b, should move the door 8. The control unit is arranged to receive input of if the door 8 should be opened or closed. In one embodiment, the control unit is arranged to receive the input from one or more of a user interface, a mechanical button or a remote control. In one embodiment, the control unit is arranged to receive input from sensors for automatic operation of the door.
The drive unit may further comprise additional motors which will now be described further.
In one embodiment schematically depicted in
In one embodiment, the first and second motor 11a, 11b are arranged on a section 9e that is located on the section 9 of the door being closest to the floor in the closed position C. However, it should be noted that the section 9e could for example also be the section 9d which is the section being arranged next to the section being closest to the floor in the closed position C.
In one embodiment schematically depicted in
In the embodiments where additional sections 9a-e are arranged with motors, these may be arranged on every other section, every section or at one section being arranged above the section 9e.
In one embodiment the first, second, third or the first, second, third and fourth motor may be arranged on a section 9. Preferably, said motors may be arranged on the bottommost section 9e.
In one embodiment, at least one motor 11 of the drive unit 10 is configured to brake the movement of the door 8 when the door 8 is moved from the open position O to the closed position C. In one embodiment in which the operator system has two motors, both the first and second motor 11a and 11b are configured to brake the movement of the door 8 when the door 8 is moved from the open position O to the closed position C.
In one embodiment, at least one motor 11 of the drive unit 10 is configured to act as a generator and to charge the at least one energy storage device when the door 8 is moved from the open position O to the closed position C. In one embodiment, both the first and second motor 11a, 11b of the drive unit 10 is configured to act as a generator and to charge the at least one energy storage device when the door 8 is moved from the open position O to the closed position C. Due to the weight of the door 8 forcing the door towards the closed position, the at least one motor of the drive unit is caused to rotate, whereby the motor may generate power for charging said energy storage device.
At least one motor 11 of the drive unit 10 may further comprise a brake. In one embodiment, both the first 11a and the second motor 11b comprises the brake. In one embodiment, the brake is an electromagnetic brake. The brake is arranged to control/reduce the speed of the door 8 when it is moved from the open position O to the closed position C. In one embodiment, the brake is arranged to keep the door from moving in any position along the trajectory of door between the closed position and open position.
In one embodiment, the drive unit 10 is mounted to a section 9e, i.e. one of said plurality of horizontal and interconnected sections, of the door 8. The first motor 11a and the second motor 11b are arranged on the same section 9e. Preferably, the first motor 11a and the second motor 11b are arranged at different vertical sides of the section 9e. Each motor 11a, 11b is thus arranged in conjunction to the first frame section 4 and the second frame section 6, respectively.
In one embodiment, the door 8 could be horizontal, or at least at an angle in view of the closed position C, and the door 8 is positioned inside of the opening 2 and above the opening 2. When moving from the closed position C to the open position O, the sections 9 of the door that are interconnected will push on each other such that the whole door 8 will move upwards. The sections 9 will rotate and move in relation to each other when moving from a vertical position to the horizontal position.
In one embodiment, at least one of the first and second motor 11 is run as a generator 11 when moving the door 8 from the open position O to the closed position C. As the sprocket(s) 18 are rotated the generator 11 is rotated. The generator 11 reduces the speed of the door 8. The generator 11 that is connected to the energy storage device charges said energy storage device when moved. By using the kinetic energy of the moving door 8 the energy storage device is charged.
The invention has been described above in detail with reference to embodiments thereof. However, as is readily understood by those skilled in the art, other embodiments are equally possible within the scope of the present invention, as defined by the appended claims. It is recalled that the invention may generally be applied in or to an entrance system having one or more moveable door member not limited to any specific type. The or each such door member may, for instance, be a swing door member, a revolving door member, a sliding door member, an overhead sectional door member, a horizontal folding door member or a pull-up (vertical lifting) door member.
Number | Date | Country | Kind |
---|---|---|---|
1930182-9 | Jun 2019 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/064661 | 5/27/2020 | WO | 00 |