The present disclosure relates to vehicles having doors.
In an effort to improve vehicle operation and convenience, many manufacturers have introduced a variety of convenience and operating features to vehicles. However, many components and systems of vehicles remain significantly similar to conventional vehicle designs dating back to the previous century. The disclosure provides for various systems and apparatuses to provide for improved operation of at least one door of a vehicle. The systems discussed herein may include doors that either assist a user when accessing the vehicle, and/or configured to open and close without requiring a vehicle user to physically reposition the door. Such systems may provide for improved operation of a vehicle as described herein.
According to one aspect of the present invention, a system for determining a door condition includes a hinge including a first portion coupled with a door and a second portion coupled with a vehicle frame and rotatably coupled with the first portion. The system further includes a sensor outputting a signal related to a position of the first portion relative to the second portion and a controller receiving the signal and determining whether the signal corresponds to a door closed condition or a door open condition.
According to another aspect of the present invention, a vehicle includes a door opening, a door, and a hinge coupled between the door and the opening and permitting an angular movement of the door relative to the opening. The vehicle further includes a sensor outputting a signal related to an angular relationship between the door and the opening and a controller receiving the signal and determining whether the signal corresponds to a door closed condition or a door open condition.
According to another aspect of the present invention, a method for detecting a condition of a vehicle door includes receiving a signal from a sensor including information related to a sensed position of the vehicle door in relation to an associated door opening. The method further includes determining that the door is in a closed condition or an open condition based on a comparison of the sensed position of the vehicle door to a known range of positions for the closed condition and the open condition.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present disclosure are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
As used herein, the term “and/or,” when used in a list of two or more items, means that nay one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Referring to
An actuator 22 is in communication with a controller (shown in
The actuator 22 is configured to adjust the door 14 from an opened position, as shown in
The position sensor 24 may correspond to a variety of rotational or position sensing devices. In some embodiments, the position sensor 24 may correspond to an angular position sensor configured to communicate the angular position ϕ of the door to the controller. The angular position ϕ may be utilized by the controller to control the motion of the actuator 22. The door position sensor 24 may correspond to an absolute and/or relative position sensor. Such sensors may include, but are not limited to quadrature encoders, potentiometers, accelerometers, etc. The position sensor 24 may also correspond to optical and/or magnetic rotational sensors. Other sensing devices may also be utilized for the position sensor 24 without departing from the spirit of the disclosure.
In some embodiments, the position sensor 24 may be utilized to determine if the door 14 of the vehicle 10 is ajar or in the closed position. As discussed above, the position sensor 24 may correspond to an angular position sensor configured to communicate the angular position ϕ of the door to the controller. In the above example of a potentiometer, position sensor 24 can output a signal to controller 70 that can vary proportionately with the angular position ϕ of door 14. In one example, the signal can increase in amplitude from a lower limit at an angular position ϕ corresponding to a closed position of door 14 (e.g. about 0°) to an upper limit at an angular position ϕ corresponding to a fully-open position of door 14. Controller 70 can, accordingly, compare the signal received from position sensor 24 at any given instant to a known range of signal amplitude and corresponding angular position to determine the particular instantaneous angular position of door 14. Further, the total range of angular positions ϕ of door 14 can be classified according to an open (or ajar) range and a closed range.
The closed range may be relatively small compared to the open range, but however, may be greater than a single value of angular position so as to account for slight variations of the fit of door 14 within opening 20. These variations may include changes in the compressibility of seals 48, 50 or the like or slight changes in other materials over time or due to temperature fluctuations or the presence of small objects or contaminants that may exert slight outward pressure on door 14 without interfering with the ability of door 14 to fully close (such as by latching or the like). In an example the closed position may correspond to an angular position ϕ of between 0° and 1°, between 0° and 0.5° or less, or between −0.5° and 0.5°, with other ranges being possible. Similarly, the open or ajar range may correspond to the remaining angular positions ϕ of door 14, which in an example, may be between 1° and 80° or the like, depending on the designated upper limit of the closed position and the total range of motion of door 14.
In this manner, controller 70 can take as an input the signal output by position sensor 24 and determine, not only the angular position ϕ of door 14 (which may be used to achieve desired door positioning in a feedback loop controlling actuator 22), but also whether door 14 is open or closed. The determination of the condition of door 14 between the open and closed positions may be used outside of the control scheme of actuator 22. For example, by whether the door 14 is oriented in the closed position as controlled by the actuator 22, the controller may be operable to identify a door closed status of the door 14 prior to operation of the vehicle 10. The position sensor 24 may be utilized in addition to various switches and sensors to communicate to the controller that the door 14 is secure and oriented in the closed position. The position sensor 24 may communicate that the door 14 is located in a position corresponding to the latched position thereof, or otherwise oriented proximate the body 16. In one example, a traditional closure switch or a door proximity sensor can also be included as a backup or redundancy to such utilization of position sensor 24. Further, the utilization of such a traditional closure switch or, in an example, a switch or other indicator within latch 58, can be used to implement an adjustment or re-zeroing process by which, controller 70, upon determining by position sensor 24 is within the range of angular positions ϕ corresponding to the closed position of door 14 (or within a predetermined tolerance thereof, e.g. about 1% to about 5%) and the sensor within latch 58 confirms that the door is completely closed and latched in such closed position, controller 70 can set the current angular position ϕ of door 14, as indicated by position sensor 24 as the fully closed, or zero, position. This functionality can allow controller 70 to compensate for movement among the various parts hinge assembly 18, actuator 22, position sensor 24, and associated portions of door 14 that may occur over time, due to fluctuations in temperature, and the like.
The implementation of a re-zeroing scheme can also allow a brushless DC motor to be used for actuator 22, with the control thereof useable by controller 70 to determine the angular position ϕ of door 14 as a form of integrated position sensor 24. In this respect, controller 70 can be in communication with the control circuitry of the brushless DC motor to track the number of revolutions thereof during an opening and closing operation of door 14. However, as inaccuracies of such tracking stack up as the motor revolves, which happens several times during a single opening and closing operation, the re-zeroing functionality can allow such a system to maintain an acceptable level of accuracy.
The position sensor 24 may also be utilized to provide feedback to the controller 70 to assist in positioning the door 14 to detect obstructions. In particular, controller 70, when directing actuator 22 to move door 14 to either the open position or the closed position (or a particular angular position ϕ therebetween), can use position sensor 24 to determine if door 14 is actually moving, such as by comparing the indicated angular position ϕ at successive intervals. If door 14 remains in a particular angular position ϕ for a predetermined period of time (in an example for about 0.5 seconds or in another example for up to about 1 second or two seconds), while controller 70 is attempting to close door 14, controller 70 can infer that door 14 is obstructed and take a desired corrective measure. In further examples, discussed below, position sensor 24 can be used to identify a status or orientation of the door 14 prior to initiating operation of the vehicle 10. In another example, controller 70 can output the determined condition of door 14, such as to a vehicle control module 162 (
Position sensor 24 may be incorporated into the structure of actuator 22 itself, or can otherwise be associated with both door 14 and opening 20. In one example, actuator 22 can include a first portion 54 coupled with the door 14 and a second portion 56 with the vehicle body 16 or frame defining opening 20, such portions being moveable relative to each other in a manner that corresponds to the movement of door 14. Position sensor 24 in the form of a potentiometer, for example, can include respective portions thereof coupled with each of such portions 54, 56 such that movement of the portion coupled with the door 14 can be measured relative to the second portion 56 thereof coupled with the vehicle opening 20 to, accordingly, measure the positioning between door 14 and opening 20. In a similar manner, sensor 24 may have a portion coupled directly with door 14 and another portion coupled directly with the opening 20. Still further, position sensor 24 can be in the form of an optical sensor mounted on either the door 14 or the opening 20 that can monitor a feature of the opposite structure (opening 20 or door 14), a marker, or a plurality of markers to output an appropriate signal to controller 70 for determination of angular position ϕ. In one example, an optical sensor used for position sensor 24 can be positioned such that actuator 22 is in a field of view thereof such that the signal output thereby can correspond directly to a condition of actuator 22 or a relative position of first portion 54 thereof relative to opening 20.
The interference sensor 26 may be implemented by a variety of devices, and in some implementations may be utilized in combination with the actuator 22 and the position sensor 24 to detect and control the motion of the door 14. The interference sensor 26 may correspond to one or more capacitive, magnetic, inductive, optical/photoelectric, laser, acoustic/sonic, radar-based, Doppler-based, thermal, and/or radiation-based proximity sensors. In some embodiments, the interference sensor 26 may correspond to an array of infrared (IR) proximity sensors configured to emit a beam of IR light and compute a distance to an object in an interference zone 32 based on characteristics of a returned, reflected, or blocked signal. The returned signal may be detected using an IR photodiode to detect reflected light emitting diode (LED) light, responding to modulated IR signals, and/or triangulation.
In some embodiments, the interference sensor 26 may be implemented as a plurality of sensors or an array of sensors configured to detect an object in the interference zone 32. Such sensors may include, but are not limited to, touch sensors, surface/housing capacitive sensors, inductive sensors, video sensors (such as a camera), light field sensors, etc. As disclosed in further detail in reference to
The interference sensor 26 may be configured to detect objects or obstructions in the interference zone 32 in a plurality of detection regions 34. For example, the detection regions 34 may comprise a first detection region 36, a second detection region 38, and a third detection region 40. In this configuration, the interference sensor 26 may be configured to detect the presence of an object in a particular detection region and communicate the detection to the controller such that the controller may control the actuator 22 accordingly. The detection regions 34 may provide information regarding the position of an object or obstruction to accurately respond and control the actuator 22 to change a direction or halt movement of the door 14 prior to a collision with the object. Monitoring the location of an object or obstruction relative to a radial extent 42 of the door 14 in relation to the hinge assembly 18 may significantly improve the control of the motion of the door 14 by allowing for variable sensitivities of each of the detection regions 34.
The variable sensitives of each of the detection regions 34 may be beneficial due to the relative motion and force of the door 14 as it is transitioned about the hinge assembly 18 by the actuator 22. The first detection region 36 may be the most critical because the actuator 22 of the door assist system 12 has the greatest leverage or torque closest to the hinge assembly 18. For example, a current sensor utilized to monitor the power delivered to the actuator 22 would be the least effective in detecting an obstruction very close to the hinge assembly 18. The limited effect of the current sensor may be due to the short moment arm of the first detection region 36 relative to the hinge assembly 18 when compared to the second detection region 38 and the third detection region 40. As such, the interference sensor 26 may have an increased sensitivity in the first detection region 36 relative to the second and third regions 38 and 40 to ensure that objects are accurately detected, particularly in the first detection region 36. In this way, the system 12 may facilitate accurate and controlled motion and ensure the greatest accuracy in the detection of objects while limiting false detections.
Though depicted in
As discussed further herein, the interference sensor 26 may be implemented by a variety of systems operable to detect objects and/or obstructions in the interference zone 32, entry region 52, and/or any region proximate the door 14 throughout the operation of the door assist system 12. Though the door assist system 12 is demonstrated in
Referring to
The interference sensor 62 may correspond to a plurality of proximity sensors or a sensor array 72 comprising a first proximity sensor 74 configured to monitor the first detection region 36, a second proximity sensor 76 configured to monitor the second detection region 38, and a third proximity sensor 78 configured to monitor the third detection region 40. The sensor array 72 may be in communication with the controller 70 such that each of the proximity sensors 74, 76, and 78 is operable to independently communicate a presence of the objects 64 and 66 in an electric field 80 defining each of their respective sensory regions. In this configuration, the controller 70 may be configured to identify objects in each of the detection regions 36, 38, and 40 at different sensitivities or thresholds. Additionally, each of the proximity sensors 74, 76, and 78 may be controlled by the controller 70 to have a particular sensory region corresponding to a proximity of a particular proximity sensor to the hinge assembly 18 and/or an angular position ϕ of the door 14.
The controller 70 may further be configured to identify a location of at least one of the objects 64 and 66 in relation to a radial position of the objects 64 and/or 66 along a length of the door 14 extending from the hinge assembly 18. The location(s) of the object(s) 64 and/or 66 may be identified by the controller 70 based on a signal received from one or more of the proximity sensors 74, 76, and 78. In this way, the controller 70 is configured to identify the location(s) of the object(s) 64 and/or 66 based on a position of the proximity sensors 74, 76, and 78 on the door 14. In some embodiments, the controller 70 may further identify the location(s) of the object(s) 64 and/or 66 based on the signal received from one or more of the proximity sensors 74, 76, and 78 in combination with an angular position ϕ of the door 14.
In some embodiments, the controller 70 may be configured to identify an object in each of the detection regions 36, 38, and 40 at a different sensitivity. The controller 70 may be configured to detect an object in the first detection region 36 proximate the first proximity sensor 74 at a first sensitivity. The controller 70 may be configured to detect an object in the second detection region 38 proximate the second proximity sensor 76 at a second sensitivity. The controller 70 may also be configured to detect an object in the third detection region 40 proximate the third proximity sensor 78 at a third sensitivity. Each of the sensitivities discussed herein may be configured to detect the objects 64 and 66 at a particular predetermined threshold corresponding to signal characteristics and/or magnitudes communicated from each of the proximity sensors 74, 76, and 78 to the controller 70.
The first proximity sensor 74 may have a lower detection threshold than the second proximity sensor 76. The second proximity sensor 76 may have a lower threshold than the third proximity sensor 78. The lower threshold may correspond to a higher or increased sensitivity in the detection of the objects 64 and 66. In this configuration, the proximity sensors 74, 76, and 78 may be configured to independently detect objects throughout the interference zone 32 as the position of the door 14 is adjusted by the actuator 22 about the hinge assembly 18.
Each of the proximity sensors 74, 76, and 78 may also be configured to have different sensory ranges corresponding of their respective detection regions 36, 38, and 40. The sensory regions of each of the proximity sensors 74, 76, and 78 may be regulated and adjusted by the controller 70 such that the electric field 80 defining each of their respective sensory regions may vary. The controller 70 may adjust a range of a sensory region or an electric field 80 of the proximity sensors 74, 76, and 78 by adjusting a voltage magnitude supplied to each of the proximity sensors 74, 76, and 78. Additionally, each of the proximity sensors 74, 76, and 78 may be configured independently having different designs, for example different sizes and proportions of dielectric plates to control a range of the electric field 80 produced by a particular sensor. As described herein, the disclosure provides for a highly configurable system that may be utilized to detect a variety of objects in the interference zone 32.
The interference sensor 62 may also be implemented by utilizing one or more resistive sensors. In some embodiments, the interference sensor 62 may correspond to an array of capacitive sensors and resistive sensors in combination configured to monitor the interference zone 32 for objects that may obstruct the operation of the door 14. In yet another exemplary embodiment, the interference sensor 62 may be implemented in combination with at least one inductive sensor as discussed in reference to
Still referring to
The perimeter door seal 48 and/or the perimeter door opening seal 50 may comprise an outer layer 81 having the proximity sensors 74, 76, and 78 of the sensor array 72 proximate thereto or in connection therewith. The outer layer 81 may correspond to a flexible or significantly rigid polymeric material having the interference sensor 62 connected thereto. In some embodiments, the sensor array 72 may also be disposed proximate the perimeter door seal 48 and/or the perimeter door opening seal 50 on the door 14 and/or the body 16 respectively. In this configuration, the plurality of proximity sensors of the sensor array 72 may be utilized to detect an object in any of the detection regions 36, 38, and 40. This configuration may further provide for the interference sensor 72 to be conveniently incorporated into the perimeter door seal 48 and/or the perimeter door opening seal 50 for ease of implementation of the door assist system 12.
Referring now to
The induction coil of the interference sensor 82 may be configured to generate the magnetic field 84 and monitor the magnetic field 84 for variations that may correspond to an object, for example the first object 64 or the second object 66, being present in the interference zone 32. In this configuration, the interference sensor 82 is operable to communicate a signal that may be identified by the controller 70 to limit the motion of the actuator 22 and prevent a collision between the door 14 and the object (e.g. the first object 64 or the second object 66). The interference sensor 82 may be utilized alone or in combination with the interference sensor 62 in various embodiments to increase a detection accuracy and versatility of the door assist system 12 to detect a variety of objects having a wide range of material properties.
In some embodiments, the interference sensor 82 may be configured to monitor the interference zone 32 in each of the detection regions 36, 38, 40. Similar to the interference sensor 62, the interference sensor 82 may comprise a plurality of sensors, for example magnetic sensors. In this configuration, the controller 70 may be configured to detect an object in the first detection region 36 proximate a first magnetic sensor 86 at a first sensitivity. The controller 70 may further be configured to detect an object in the second detection region 38 proximate a second magnetic sensor 88 at a second sensitivity. Finally, the controller 70 may also be configured to detect an object in the third detection region 40 proximate a third magnetic sensor 90 at a third sensitivity.
Each of the sensitivities discussed herein may correspond to particular predetermined threshold corresponding to signal characteristics and/or magnitudes communicated from each of the magnetic sensors 86, 88, and 90 to the controller 70. The first magnetic sensor 86 may have a lower detection threshold than the second magnetic sensor 88. The second magnetic sensor 88 may have a lower threshold than the third magnetic sensor 90. The lower threshold may correspond to a higher or increased sensitivity in the detection of the objects 64 and 66. In this configuration, the magnetic sensors 86, 88, and 90 may be configured to detect objects throughout the interference zone 32 as the position of the door 14 is adjusted by the actuator 22 about the hinge assembly 18.
The controller 70 may be configured to receive various signals from the interference sensor 82 or magnetic sensors 86, 88, and 90, some of which may correspond to the detection of the objects 64 and 66. The magnetic sensors as discussed herein may correspond to various forms of magnetic or induction sensors that may be configured to monitor the magnetic field 84. For example, a magnetic sensor may correspond to various magnetic sensing devices including, but not limited to a Hall effect sensor, a magneto-diode, a magneto-transistor, an AMR magnetometer, a GMR magnetometer, a magnetic tunnel junction magnetometer, a magneto-optical sensor, a Lorentz force based sensor, an Electron Tunneling based sensor, a compass, a Nuclear precession magnetic field sensor, an optically pumped magnetic field sensor, a fluxgate magnetometer, and a search coil magnetic field sensor.
The controller 70 may be configured to detect the objects 64 and 66 by identifying changes in the magnetic field 84. For example, the identification may be accomplished by comparing signals from the magnetic sensors 86, 88, and 90 monitoring the magnetic field 84 during operation of the door assist system 12. The signals from the magnetic sensors 86, 88, and 90 may be compared by the controller 70 to previously measured or calibrated characteristics of the magnetic field 84. The previously measured or calibrated characteristics from the magnetic sensors 86, 88, and 90 may be stored in a memory in communication with the controller 70. In some implementations, the controller 70 may further utilize the angular position ϕ of the door 14 from the position sensor 24 to improve the comparison due to changes in the magnetic field 84 resulting from the change in distance between the door 14 and the body 16. In this configuration, the controller 70 may accurately identify changes in the magnetic field 84 to identify an obstruction in the interference zone 32 (e.g., the objects 64 and 66).
Referring now to
Referring to
The interference sensor 26 may be configured to identify a location of each of the objects 64 and 66 based on the position of the objects 64 and 66 relative to each of the detection regions 34 and the angular position ϕ of the door 14. That is, the controller 70 may be configured to identify and monitor the location of the objects 64 and 66 relative to the radial extent 42 of the door 14 in relation to the hinge assembly 18. The controller 70 may identify and monitor the location of the objects based on a detection signal for each of the objects received from one or more of the proximity sensors 96, 97, and 98. Based on the detection signal from one or more of the proximity sensors 96, 97, and 98, the controller 70 may identify the location of the objects based on the position of each of the proximity sensors 96, 97, and 98 along the radial extent 42 of the door 14. The controller 70 may further identify the location of the objects based on the angular position ϕ communicated from the door position sensor 24. In this configuration, the door assist system 12 may be configured to position the door 14 from a closed position to an opened position while preventing the door 14 from striking the objects 64 and 66.
In some embodiments, the controller 70 may further be operable to prioritize a first detection of the first object 64 and a second detection of the second object 66. For example as illustrated in
Referring now to
As the actuator 22 begins to position the door 14, the controller 70 is configured to identify if an obstruction is detected (110). If an obstruction is detected, the controller 70 may halt the closing operation of the door (112). The controller 70 may also output an obstruction detection signal, which may be configured to activate an alarm of warning to alert an operator or occupant of the vehicle 10 of the obstruction detection (114). If an obstruction is not detected, the controller 70 may continue positioning the door 14 with the actuator 22 and monitoring the angular position ϕ of the door 14 by processing position information from the position sensor 24 (116). As the door 14 is repositioned, the controller 70 may continue to monitor the position information to determine when the door closure operation is complete (118). Additionally, the controller 70 may continue to monitor the interference zone 32 for obstructions throughout the repositioning of the door 14 as discussed in reference to method steps 106-114.
In step 118, if the door closure operation is determined to be complete, the controller 70 may halt the door actuator 22 (120). Additionally, the controller 70 may output a control signal that may identify that the door 14 of the vehicle 10 is secure such that a vehicle operation may be activated (122). A vehicle operation may include releasing a parking brake, engaging an autonomous vehicle operation, or otherwise enabling an operation of the vehicle 10 that may be completed when the door 14 is located in the closed position. More particularly, controller 70 may communicate with vehicle control module 162, by transmission of a signal or the like, to cause vehicle control module 162 to take a predetermined action in response to controller 70 having determined that door 14 is ajar. As discussed above, such a determination can be made using position sensor 24 to determine if the angular position ϕ of door 14 is within the designated range for the closed position thereof. The action taken by vehicle control module 162 can include maintaining the vehicle 10 in a stopped condition, such as by preventing ignition of the engine of vehicle 10 (such as by communication with an ignition module or unit of vehicle 10), implementing a park-lock mode, whereby the vehicle transmission is maintained in a park mode or condition, or the like (e.g. by communication with a park-lock module associated with the transmission). Vehicle 10 may provide an override for such park-lock functionality, such as via a menu item on HMI 128 or another accessible control within vehicle. Further, in an embodiment where vehicle 10 is configured for autonomous operation (including fully autonomous operation), vehicle control module 162 may prevent vehicle 10 from moving from a current location under autonomous operation.
Autonomous operation of vehicle 10 may be achieved, for example, by including within vehicle 10 an autonomous operation system 158 (which may be included within the functionality of vehicle control module 162, for example) having a vehicle location module 174 (
Autonomous operation system 158 is configured to process the position, trajectory, roadway, and map data to determine a path of travel for vehicle 10 between a current location and a desired destination. Further, autonomous operation system 158 is also configured to control the movement of vehicle 10 along such a path, including by control of a vehicle steering module 172, a vehicle brake module 176, and the vehicle throttle 178. Such control is implemented to maintain the speed of vehicle 10 at an acceptable level, while avoiding other vehicles, objects, etc. and while obeying surrounding traffic signs and signals. In this manner, a vehicle may be made “fully autonomous,” whereby vehicle 10 may drive from a current location to a destination without supervision by a user, driver, or the like. In some embodiments, fully autonomous vehicles may operate under the direction of a user that is not present within the vehicle 10, including by incorporation of a communication module capable of communicating with an application running on a remote device, such as a computer, smartphone, tablet, dedicated device, or the like. In this and in other embodiments, it may be useful for such a vehicle 10 to be able to identify whether or not door 14 (and similarly, other doors of vehicle 10) is closed, before beginning movement along the determined vehicle path. Accordingly, controller 70 can output a signal to one of vehicle control module 162 or autonomous operation system 158 to prevent autonomous driving of vehicle 10 if one or more doors 14 (e.g. any of the four doors of a sedan) is determined to be in an open, ajar, or non-closed condition. Such information can also be transmitted to the remote device, along with other vehicle condition information. In a further embodiment, controller 70 can take action to remedy the door open condition by alerting an occupant of vehicle 10 (such as by visible or audible indication) or by moving door 14 into the closed configuration, such as by control of actuator 22 and monitored by interference sensor 26, as discussed above.
After the door close operation is complete, the controller 70 may continue to monitor the door control device to determine if a door opening operation is requested (124). As described herein, the method 102 for controlling the door assist system 12 may further be utilized to control the opening operation of the door 14 and may include additional interference sensors 26 configured to detect obstructions that may be encountered as the actuator 22 opens the door 14.
Referring now to
As discussed herein, the gesture sensor 132 may be utilized to detect and record a motion of the object 134 and communicate motion data corresponding to the motion recorded by the gesture sensor 132 to the controller 70. In some embodiments, the gesture sensor 132 may correspond to an optical detection device 136. The optical detection device 136 may comprise an image sensor 138 and a light emitting device 140 in communication with the controller 70. The light emitting device 140 may correspond to a variety of light emitting devices and in some embodiments, may correspond to one or more light emitting diodes (LEDs) configured to emit light outside the visible range (e.g. infrared or ultraviolet light). The image sensor 138 may be configured to receive a light beam or a reflection thereof from the light emitting device 140 in a field of view 142 of the image sensor 138. The image sensor 138 may be a CMOS image sensor, a CCD image sensor, or any form of image sensor operable detect light emitted by the light emitting device 140.
In some embodiments, one or more of the interference sensor 26, the gesture sensor 132, the optical detection device 136 or any of the various detection devices discussed herein may be utilized to detect a period of inactivity or the door 14. A period of inactivity may correspond to a time interval or predetermined temporal period wherein an object is not detected proximate the door 14. In such cases, the controller 70 may monitor various regions proximate the door 14 to identify if an object (for example a vehicle occupant) is in proximity to the door 14. In response to the predetermined temporal period lapsing without the controller 70 detecting an object in proximity to the door 14, the controller may activate the actuator 22 to position the door 14 in a closed position. In this way, the disclosure may provide for at least one security feature that may be automatically activated by the controller 70 to secure the vehicle 10 in response to the period of inactivity.
With reference to the embodiment of the method 202 shown in
To prevent unauthorized access to vehicle 10, the controller 70 may first seek to identify if a user within a field of view of the gesture sensor 132 is an “authorized” user. This may be done by acquiring image data from the signal received from gesture sensor 132 (which may be accomplished by isolating a frame of the video data, for example) and processing the data (step 210) according to a desired mode of user-identification using visible characteristics. In one example, controller 70 can identify faces in the acquired image data and run one of various facial-recognition algorithms to determine if one of the identified faces is that of an authorized user (step 208). Other physical characteristics can be processed similarly according to alternative ways of identifying users. In this manner, controller 70 can be configured to only accept a gesture-based command from an identified authorized user.
In one embodiment illustrated in
The motion data recorded by the gesture sensor 132 may include various movements of the object 134 and sequences or combinations thereof. For example, the optical detection device 136 may be operable to communicate video data containing imagery of the motion object 134 (e.g. a hand, limb, etc.) or an authorized user performing a gesture in the form of one of a variety of movements (e.g. up, down, left, right, in, out, etc.) of the object 134 in the field of view 142. In one aspect, gesture sensor 132 can include two or more sensors (e.g. cameras) to obtain stereoscopic video data of the corresponding field of view, thereby allowing movement of object 134 toward or away from vehicle 10 to be determined and tracked. The controller 70 may then identify object 134 and track the movement thereof, comparing each movement thereof to a particular sequence or order of movements corresponding to a predetermined gesture or previously saved gesture associated with a command to interpret a gesture within the data as a control gesture. Upon interpreting the control gesture to determine that the image data received from the image sensor 138 contains movement of object 134 that corresponds to the particular sequence or order of the predetermined or previously saved gesture, the controller 70 may activate the door assist system 12 such that the door 14 opens, closes, or is repositioned in accordance with a particular gesture identified.
Controller 70 can be pre-programmed with gestures for opening, closing, or repositioning door 14 that the user can replicate using object 134 for recognition by controller in a video signal obtained from gesture sensor 132. In another aspect, the previously-described setup mode 222 may further include protocol for entering user-derived control gestures (step 244). In this aspect, the user may enter a “record” mode (step 246) in which a gesture is executed within the field of view of image sensor 132. In an example, the record mode can be started with a push of a button on a key fob associated with vehicle 10 or by a predetermined gesture. When finished, controller 70 can process the date (step 248) and identify a tracked object 134 (step 250) and track the motion thereof (step 252). Controller 70 can then cause the HMI 128 can display a diagram of the recorded gesture (step 254), for which a desired control is unknown. The user can then determine whether to use the gesture and which type of control the gesture is associated with (such as by selection from a list of menu items in step 256), at which point the previously unknown gesture is stored in memory 170 as a command gesture in association with the desired door movement (step 258).
In either gesture designation protocol, controller 70 may implement a learning mode during operation (202), in which the particular motion path 180 associated with a command gesture may be adjusted over time to more accurately identify a gesture and appropriately interpret such a gesture. In such a mode, a first tolerance zone 182 may be applied with the motion path 180 stored in memory 170. In general, the tolerance zone 182 may map a deviation from the movement path 180 by object 134 that can still be interpreted as corresponding to a command gesture. This operation can allow controller 70 to identify a gesture, despite the user moving object 134 in a manner that is not precise (step 216). Further, controller 70 can monitor deviations from motion path 180 that are within the tolerance zone 182 for a level of consistency of such deviations (step 260). Controller 70 can then adjust motion path 180 to match or compensate for the repeated deviation with the tolerance zone 182 being similarly adjusted (step 262). In a further aspect, the learning mode can identify repeated movements of object 134 or a second object that are outside the tolerance zone 182 for a particular motion path 180, but still exhibit characteristics of such movement. In one example, movement by a foot of the user may be carried out in a manner similar to a gesture made by the user's hand but may differ from the exact path due to anatomy, etc. If such a movement is repeated for a predetermined number of times so as to include the same similar characteristic as motion path 180, controller 70 can then store such a movement in memory 170 as a second movement path corresponding to the same movement command.
In some embodiments, the gesture sensor 132 may correspond to one or more proximity sensors (although gesture sensors 132 in the form of an optical detection device and a proximity sensor are shown in
Referring now to
Each of the capacitive sensors 148 may generate a separate electric field 150. The controller 70 may utilize one or more signals received from the capacitive sensors 148 to identify a position of the object 134 and a motion of the object 134 relative to each of the electric fields 150. A threshold value of a signal received from each of the capacitive sensors 148 may be communicated to the controller 70 to identify the motion of the object 134 proximate the sensor array 144. The controller 70 may compare the signals received from the capacitive sensors 148 to a predetermined or previously recorded signal stored in the memory in order to identify a gesture. In response to identifying the gesture, the controller 70 is configured to activate the door assist system 12 such that the door 14 opens, closes, or is repositioned in accordance with the particular gesture identified.
Referring now to
In some implementations, characteristics of the location of the vehicle 10 may correspond to an angular orientation of the vehicle 10 relative to gravity. The system 12 may comprise an incline sensor 154 in communication with the controller 70 configured to detect and measure the orientation. The incline sensor 154 may be disposed in various portions of the vehicle 10 and correspond to a variety of sensors. In some implementations, the incline sensor 154 may be configured to measure the incline about a plurality of axes via a tilt sensor, accelerometer, gyroscope, or any device operable to measure the incline of the vehicle 10 relative to gravity. The incline sensor 154 may communicate the incline 152 of the vehicle 10 to the controller 70 such that when the door 14 is arranged the opened position or a partially opened position, the controller 70 is configured to activate the actuator 22 to prevent the door 14 from swinging open, closing, or changing in angular position ϕ. In some embodiments, the controller 70 may be operable to identify that the vehicle 10 is likely on an incline by utilizing a GPS and a map to determine if the vehicle 10 is located on the incline 152.
In some embodiments, the controller 70 may be configured to control the actuator 22 to balance the door 14 relative to the incline 152. Based on the angular position or orientation communicated to the controller 70 by the incline sensor 154, the controller 70 may be operable to determine a force required to apply to the door 14 to maintain the angular position ϕ of the door 14 and prevent the door 14 from accelerating due to gravity. The controller 70 is further operable to control the actuator 22 to apply the force to the door to simulate the motion of the door on a level surface. In this way, the controller 70 may identify that the vehicle 10 is parked or oriented at an angle and prevent the door 14 from swinging under the force of gravity.
Additionally, the controller 70 may be configured to limit a rate of motion of the door 14 by monitoring a change in the angular position ϕ of the door communicated by the position sensor 24. In such embodiments, the controller 70 may monitor the rate of change of the angular position ϕ of the door 14 and control the actuator 22 to apply an opposing force to a motion of the door 14 to dampen or slow the motion of the door 14 to a predetermined rate. The controller 70 may further be configured to hold the door 14 at one or more angular positions in response to an input received from the door control device 130 or based on one or more programmed door positions stored in a memory of the controller 70. In this way, the door assist system 12 provides for a variety of control schemes to assist in the operation of the door 14.
In some embodiments, the door assist system 12 may be configured to function in a semi-manual operation wherein a user of the door 14 may manually adjust the angular position ϕ and the actuator 22 may maintain the angular position ϕ set by the user. As shown in
As described, the controller 70 may control the actuator 22 to apply sufficient force to prevent motion of the door 14 about the hinge assembly 18 due to gravity. The controller 70 may also be configured to detect an external force applied to the door 14 by a user of the vehicle 10. The external force may be identified by the controller 70 as a spike or increase in current from the actuator 22. Upon identification of the spike or increase, the controller 70 may gradually release the actuator 22 such that the angular position ϕ may be freely adjusted. Additionally, upon release of the actuator 22, the controller 70 may be configured to control the rate of closure or the rate of change of the angular position ϕ. In this way, after the controller 70 releases the actuator 22 such that the door 14 may move, the actuator 22 still may maintain force on the door 14 sufficient to prevent the door 14 from swinging rapidly and/or slamming.
In some embodiments, a characteristic of a location of the vehicle 10 may correspond to a weather or wind speed condition proximate the vehicle 10. The door assist system 12 may utilize a positioning device (not shown), for example a global positioning system (GPS), to retrieve weather information or at least one weather condition based on a location or GPS location identified for the vehicle 10. The GPS location and/or weather information may be utilized to identify periods when the door 14 may likely be unexpectedly repositioned or forced to swing about the hinge assembly 18 due to a wind gust or elevated wind speeds. The weather information may be accessed by the controller 70 via a wireless data connection, for example a GSM, CDMA, WiFi, or any other wireless data communication protocol.
The controller 70 may utilize the GPS data in combination with the weather data to identify if the vehicle 10 is located in an area with potentially elevated wind speeds. If the controller 70 identifies that the vehicle 10 is located in such an area, the controller 70 is configured to prevent excess motion of the door 14 and/or dampen the motion of the door 14 about the hinge assembly 18. The controller 70 may be configured to prevent movement of the door 14 due to wind by detecting an external force applied to the door 14 as a spike or increase in current from the actuator 22 and/or due to an unexpected increase in the rate of change of the angular position ϕ of the door 14. In this way, the door assist system 12 is operable to predict if the vehicle 10 is located in an area with elevated wind speeds and prevent excess motion of the door 14 due to such windy conditions.
The characteristic of the location of the vehicle 10 or weather information may also be detected by the controller 70 via a wind detection device 156, for example an anemometer. The wind detection device 156 may be disposed on the vehicle 10 and configured to monitor the localized wind conditions proximate the vehicle 10 and communicate a wind speed or direction signal to the controller 70. In response to a detection of windy conditions, the wind detection device 156 is configured to communicate wind condition data to the controller 70. In response to windy conditions or wind speeds exceeding a wind speed threshold, the controller 70 is configured to control the actuator 22 to prevent excess motion of the door 14 and/or dampen the motion of the door 14 about the hinge assembly 18. In some implementations, the controller 70 may also control the actuator to hold the door 14 at an angular position ϕ to prevent unwanted motion of the door 14 due to the windy conditions, as similarly discussed in reference to the incline sensor 154.
Referring now to
The controller 70 may be in communication with a vehicle control module 162 via a communication bus 164 of the vehicle. The communication bus 164 may be configured to deliver signals to the controller 70 identifying various vehicle states. For example, the communication bus 164 may be configured to communicate to the controller 70 a drive selection of the vehicle 10, an ignition state, an open or ajar status of the door 14, etc. The vehicle control module 162 may also communicate with HMI 128 for implementation of the above-described learning and identification modes. The controller 70 may comprise a processor 168 comprising one or more circuits configured to receive the signals from the communication bus 164 and output signals to control the door assist system 12. The processor 168 may be in communication with a memory 170 configured to store instructions to control the activation of the door assist system 12.
The controller 70 is configured to control the actuator 22 to adjust the door from the opened position to the closed position and control the angular position ϕ of the door 14 therebetween. The actuator 22 may be any type of actuator that is capable of transitioning the door 14, including, but not limited to, electric motors, servo motors, electric solenoids, pneumatic cylinders, hydraulic cylinders, etc. The position sensor 24 may correspond to a variety of rotational or position sensing devices. In some embodiments, the position sensor may correspond to an angular position sensor configured to communicate the angular position ϕ of the door to the controller 70 to control the motion of the actuator 22. The position sensor 24 may correspond to an absolute and/or relative position sensor. Such sensors may include, but are not limited to encoders, potentiometers, accelerometers, etc. The position sensor 24 may also correspond to optical and/or magnetic rotational sensors. Other sensing devices may also be utilized for the position sensor 24 without departing from the spirit of the disclosure.
The interference sensor 26 may be implemented by a variety of devices, and in some implementations may be utilized in combination with the actuator 22 and the position sensor 24 to detect and control the motion of the door 14. The interference sensor 26 may include various sensors utilized alone or in combination. For example, the interference sensor 26 may correspond to one or more capacitive, magnetic, inductive, optical/photoelectric, laser, acoustic/sonic, radar-based, Doppler-based, thermal, and/or radiation-based proximity sensors. Though particular devices are disclosed in reference to the exemplary embodiments of the interference sensor 26, it shall be understood that various sensor technologies known and yet to be discovered may be utilized to implement the door assist system 12 without departing from the spirit of the disclosure.
The controller 70 is further in communication with the door control device 130 comprising the gesture sensor 132. The gesture sensor 132 is configured to detect a motion or a gesture by an object 134 to activate the controller 70 to adjust the position of the door 14. The gesture sensor 132 may correspond to a variety of sensory devices. Sensory devices that may be utilized for the gesture sensor 132 may include, but are not limited to optical, capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity and sensor arrays or other elements for determining the gestures of the object 134 in proximity thereto.
The gesture sensor 132 may be utilized to detect and record a motion of an object and communicate motion data corresponding to the motion recorded by the gesture sensor 132 to the controller 70. The motion data may be communicated by a variety of analog or digital signals that may be utilized by the controller 70 to identify a gesture recorded by the gesture sensor 132. The motion data may be identified by the controller 70 to activate the door assist system 12 such that the actuator 22 repositions the door 14. The gesture to be identified by the controller 70 in order to activate the door assist system 12 may be predetermined or previously saved to the memory 170 of the controller 70. Upon receipt of the motion data, the controller 70 may compare the communicated motion data to the previously saved motion data to identify a gesture utilized to access the vehicle 10.
The controller 70 may comprise an incline sensor 154. The incline sensor 154 may correspond to a variety of sensors and in some implementations may correspond to a tilt sensor, accelerometer, gyroscope or any other device operable to measure the vehicle 10 oriented on an incline relative to gravity. The incline sensor 154 may communicate the incline of the vehicle 10 to the controller 70 such that when the door 14 is arranged in the opened position or a partially opened position, the controller 70 is configured to activate the actuator 22 to prevent the door 14 from swinging open, closing, or changing in the angular position ϕ. In this way, the controller 70 may identify that the vehicle 10 is parked or oriented at an angle and prevent the door 14 from swinging under the force of gravity.
The controller 70 may also comprise a positioning device or GPS device 174 configured to receive positioning data and may also be configured to receive wireless data via a wireless data transceiver. The positioning data and/or the wireless data may be utilized to determine a location of the vehicle 10 and the weather conditions of that location. Based on the weather conditions and position of the vehicle 10, the controller 70 may be configured to identify periods when the door 14 may likely be unexpectedly repositioned or forced to swing about the hinge assembly 18 due to a wind gust or elevated wind speeds. The weather information may be accessed by the controller 70 via a wireless data transceiver configured to wirelessly communicate data. The data may be wirelessly communicated via GSM, CDMA, WiFi, or any other form of wireless data communication protocol.
The controller 70 may be in communication with a wind detection device 156, for example an anemometer. The wind detection device 156 may be disposed on the vehicle 10 and configured to monitor the localized wind conditions proximate the vehicle 10. In response to a detection of windy conditions, the wind detection device 156 is configured to communicate wind condition data to the controller 70. In response to wind conditions or wind speeds exceeding a wind speed threshold, the controller 70 is configured to control the actuator 22 to prevent excess motion of the door 14 and/or dampen the motion of the door 14 about the hinge assembly 18.
The controller 70 may also further be in communication with an autonomous operation system 158. This may be achieved indirectly through the communication of controller 70 with vehicle control module 162, which may implement the functionality of autonomous operation system 158 or may be in communication therewith. Autonomous operation system 158 can receive data from a vision module 166 and from GPS device 174 to determine a path for autonomous driving and can implement movement of vehicle 10 along such a path by communication with brake module 176 and with throttle 178. The communication of controller 70 with autonomous operation system 158 may allow autonomous operation system to receive data related to the angular position ϕ of door 14 relative to opening 20 or related to a condition of door 14 between an open condition and a closed condition such that autonomous movement of vehicle 10 is prevented when one or more doors 14 of vehicle 10 is in the open condition.
For the purposes of describing and defining the present teachings, it is noted that the terms “substantially” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a division of U.S. application Ser. No. 14/812,324 entitled “DOOR POSITION SENSOR AND SYSTEM FOR A VEHICLE,” now U.S. Pat. No. 10,443,287, filed on Jul. 29, 2015, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1742764 | Giltsch | Jan 1930 | A |
2721353 | Mackintosh | Oct 1955 | A |
2915777 | Allen | Dec 1959 | A |
3344554 | Yukio Misaka et al. | Oct 1967 | A |
3357137 | Lombardi et al. | Dec 1967 | A |
3895281 | Corbaz | Jul 1975 | A |
4078770 | Yates et al. | Mar 1978 | A |
4143497 | Offenbacher | Mar 1979 | A |
4386398 | Matsuoka et al. | May 1983 | A |
4441376 | Tobey | Apr 1984 | A |
4488753 | Koike | Dec 1984 | A |
4497137 | Nelson | Feb 1985 | A |
4501012 | Kishi et al. | Feb 1985 | A |
4501090 | Yoshida et al. | Feb 1985 | A |
4674230 | Takeo et al. | Jun 1987 | A |
4727679 | Kornbrekke et al. | Mar 1988 | A |
4763111 | Matsuo et al. | Aug 1988 | A |
4899945 | Jones | Feb 1990 | A |
4952080 | Boiucaner et al. | Aug 1990 | A |
5236234 | Norman | Aug 1993 | A |
5317835 | Dupuy et al. | Jun 1994 | A |
5355628 | Dranchak | Oct 1994 | A |
5369911 | Fortunato | Dec 1994 | A |
5396158 | Long et al. | Mar 1995 | A |
5434487 | Long et al. | Jul 1995 | A |
5787636 | Buchanan, Jr. | Aug 1998 | A |
5801340 | Peter | Sep 1998 | A |
5913763 | Beran et al. | Jun 1999 | A |
6065185 | Breed et al. | May 2000 | A |
6145354 | Kondo et al. | Nov 2000 | A |
6247271 | Fioritto et al. | Jun 2001 | B1 |
6275231 | Obradovich | Aug 2001 | B1 |
6305737 | Corder et al. | Oct 2001 | B1 |
6341807 | Cetnar et al. | Jan 2002 | B2 |
6370732 | Yezersky et al. | Apr 2002 | B1 |
6401392 | Yuge | Jun 2002 | B1 |
6435575 | Pajak et al. | Aug 2002 | B1 |
6442902 | Van Den Oord | Sep 2002 | B1 |
6498970 | Colmenarez et al. | Dec 2002 | B2 |
6624605 | Powder et al. | Sep 2003 | B1 |
6777958 | Haag et al. | Aug 2004 | B2 |
6928694 | Breed et al. | Aug 2005 | B2 |
7034682 | Beggs et al. | Apr 2006 | B2 |
7045764 | Beggs et al. | May 2006 | B2 |
7068146 | Sasaki et al. | Jun 2006 | B2 |
7132642 | Shank et al. | Nov 2006 | B2 |
7175227 | Menard | Feb 2007 | B2 |
7193509 | Bartels et al. | Mar 2007 | B2 |
7215529 | Rosenau | May 2007 | B2 |
7273207 | Studer | Sep 2007 | B2 |
7280035 | McLain et al. | Oct 2007 | B2 |
7320497 | Zinn et al. | Jan 2008 | B2 |
7342373 | Newman et al. | Mar 2008 | B2 |
7377557 | Shelley et al. | May 2008 | B2 |
7400153 | Shoji et al. | Jul 2008 | B2 |
7438346 | Breed | Oct 2008 | B1 |
7439632 | Ogino et al. | Oct 2008 | B2 |
7538506 | Zinn et al. | May 2009 | B2 |
7686378 | Gisler et al. | Mar 2010 | B2 |
7688179 | Kurpinski et al. | Mar 2010 | B2 |
7874609 | Whinnery | Jan 2011 | B2 |
7886409 | Yip | Feb 2011 | B2 |
8077022 | Baruco et al. | Dec 2011 | B2 |
8132844 | Sonnek et al. | Mar 2012 | B2 |
8159231 | Sakamaki | Apr 2012 | B2 |
8169317 | Lemerand et al. | May 2012 | B2 |
8186013 | Yip | May 2012 | B2 |
8237544 | Nakashima | Aug 2012 | B2 |
8284022 | Kachouh | Oct 2012 | B2 |
8397581 | Ruby, III et al. | Mar 2013 | B2 |
8511739 | Brown et al. | Aug 2013 | B2 |
8615927 | Ezzat et al. | Dec 2013 | B2 |
8635809 | Wuerstlein | Jan 2014 | B2 |
8641125 | Jimenez et al. | Feb 2014 | B2 |
8651461 | Christensen et al. | Feb 2014 | B2 |
8789314 | Alexander | Jul 2014 | B2 |
9605465 | Wojdyla | Mar 2017 | B2 |
20010004164 | Mattsson | Jun 2001 | A1 |
20020026750 | St. John | Mar 2002 | A1 |
20020039008 | Edgar et al. | Apr 2002 | A1 |
20020047678 | Wilson | Apr 2002 | A1 |
20030038544 | Spurr | Feb 2003 | A1 |
20030222758 | Willats et al. | Dec 2003 | A1 |
20050012482 | Kidokoro | Jan 2005 | A1 |
20050174077 | Haag et al. | Aug 2005 | A1 |
20050242618 | Menard | Nov 2005 | A1 |
20050280284 | McLain et al. | Dec 2005 | A1 |
20060230574 | Murayama et al. | Oct 2006 | A1 |
20070090654 | Eaton | Apr 2007 | A1 |
20070186480 | Freeman | Aug 2007 | A1 |
20070192038 | Kameyama | Aug 2007 | A1 |
20080211519 | Kurumado et al. | Sep 2008 | A1 |
20080295408 | Heissler | Dec 2008 | A1 |
20080296927 | Gisler et al. | Dec 2008 | A1 |
20090113797 | Hoermann | May 2009 | A1 |
20090153151 | Cho et al. | Jun 2009 | A1 |
20090206826 | Booth | Aug 2009 | A1 |
20090322504 | Gifford et al. | Dec 2009 | A1 |
20100224117 | Christensen et al. | Sep 2010 | A1 |
20110203181 | Magner et al. | Aug 2011 | A1 |
20110260848 | Rodriguez Barros et al. | Oct 2011 | A1 |
20110295469 | Rafii et al. | Dec 2011 | A1 |
20120042572 | Yuge | Feb 2012 | A1 |
20120179336 | Oakley | Jul 2012 | A1 |
20130031747 | Gobart et al. | Feb 2013 | A1 |
20130074412 | Wellborn et al. | Mar 2013 | A1 |
20130091768 | Houser et al. | Apr 2013 | A1 |
20130097940 | Brown et al. | Apr 2013 | A1 |
20130127479 | Grills et al. | May 2013 | A1 |
20130138303 | McKee et al. | May 2013 | A1 |
20130186001 | Cui | Jul 2013 | A1 |
20140000165 | Patel et al. | Jan 2014 | A1 |
20140055349 | Itoh | Feb 2014 | A1 |
20140150581 | Scheuring et al. | Jun 2014 | A1 |
20140297060 | Schmidt et al. | Oct 2014 | A1 |
20140373454 | Sasaki | Dec 2014 | A1 |
20150240548 | Bendel | Aug 2015 | A1 |
20150292253 | Hartmann | Oct 2015 | A1 |
20150330134 | Bendel | Nov 2015 | A1 |
20150330140 | Kincaid | Nov 2015 | A1 |
20170030127 | Elie | Feb 2017 | A1 |
20170030135 | Elie | Feb 2017 | A1 |
20170030737 | Elie | Feb 2017 | A1 |
20170247927 | Elie | Aug 2017 | A1 |
20190309564 | Mitchell | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2034320 | Nov 1994 | CA |
101403271 | Apr 2009 | CN |
201343938 | Nov 2009 | CN |
202294674 | Jul 2012 | CN |
103132847 | Jun 2013 | CN |
103269914 | Aug 2013 | CN |
203143980 | Aug 2013 | CN |
103422764 | Dec 2013 | CN |
203551964 | Apr 2014 | CN |
203580776 | May 2014 | CN |
4119579 | Dec 1992 | DE |
4207706 | Sep 1993 | DE |
10004161 | Aug 2001 | DE |
10038803 | Feb 2002 | DE |
102007062473 | Jul 2009 | DE |
0397300 | Nov 1990 | EP |
2174814 | Apr 2010 | EP |
1265772 | Dec 2010 | EP |
2287430 | Feb 2011 | EP |
1899565 | Oct 2011 | EP |
2583848 | Apr 2013 | EP |
2765112 | Aug 2014 | EP |
2873074 | Jan 2006 | FR |
07285789 | Oct 1995 | JP |
2000080828 | Mar 2000 | JP |
2000318444 | Nov 2000 | JP |
2004176426 | Jun 2004 | JP |
2009161959 | Jul 2009 | JP |
20100095383 | Apr 2010 | JP |
2013007171 | Jan 2013 | JP |
2013028903 | Feb 2013 | JP |
2014129037 | Jul 2014 | JP |
2014148842 | Aug 2014 | JP |
20020048811 | Jun 2002 | KR |
20130068538 | Jun 2013 | KR |
20100098620 | Sep 2010 | WO |
2013013313 | Jan 2013 | WO |
2013074901 | May 2013 | WO |
Entry |
---|
Steeven Zeiß, Alexander Marinc, Andreas Braun, Tobias Große-Puppendahl, Sebastian Beck; “A Gesture-based Door Control Using Capacitive Sensors”; Fraunhofer-Institut für Graphische Datenverarbeitung IGD; pp. 1-10; date unknown. |
Abd Manan Bin Ahmad; “The Design and Development of a System for Controlling Automotive Functions using Speech Recognition”; Universiti Teknologi Malaysia; pp. 1-100; 2006. |
Haleem, M.S.; “Voice Controlled Automation System”; IEEE International; Dept. of Electron. Eng., NED Univ. of Eng. & Technol.; Multitopic Conference; Print ISBN: 978-14244-2823-6; pp. 1-2; Dec. 23-24, 2008. |
“InnoTrans 2014: Safety on Vehicle Doors with Non-Touch Detection System from Mayser”; Mayser Safety Technology; pp. 1-1; Aug. 4, 2014. |
Bogdan Popa; “How BMW's Soft Close Doors Work”; Autoevolution; pp. 1-6; Aug. 18, 2012. |
Number | Date | Country | |
---|---|---|---|
20190383647 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14812324 | Jul 2015 | US |
Child | 16556895 | US |