This patent document contains material subject to copyright protection. The copyright owner has no objection to the reproduction of this patent document or any related materials in the files of the United States Patent and Trademark Office, but otherwise reserves all copyrights whatsoever.
This invention relates to doors, including frameless glass door rail systems and methods.
Frameless heavy glass doors and panels for use with commercial and/or residential buildings typically utilize rail systems to provide support to the doors or panels while in use. The rail systems usually extend along one or more edges of the doors or panels (e.g., along the bottom edge) and are designed to maximize the structures' “frameless” appearance.
In some instances, the doors or panels are permanently secured within the rail systems such that if the doors or panels become broken or otherwise need replacement, the rail systems must also be replaced. This adds cost and additional labor.
In some instances, the doors or panels are removably configured with the rail systems, thereby avoiding this problem. However, current removable rail systems are difficult to assemble, do not provide a uniform attachment pressure to the doors or panels, and are generally bulky.
Accordingly, there is a need for a removable rail system for use with frameless glass panel doors or panels that is easy to install, that provides uniform attachment pressure to the doors or panels, and that are streamlined in appearance.
Various other objects, features and attendant advantages of the present invention will become fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
As used herein, unless used otherwise, the following terms and abbreviations have the following meanings:
Outboard means towards the outside, and in the case of a rail system and associated panel, towards the area outside the rail system and panel. Unless otherwise stated, this will typically be depicted in the FIGS as the portion of the system to the left of the system's median plane.
Inboard means towards in the inside, and in the case of a rail system and associated panel, towards the area outside the rail system and panel. Unless otherwise stated, this will typically be depicted in the FIGS as the portion of the system to the right of the system's median plane.
Lateral means towards the side, and in the case of a rail system and associated panel, facing away from the middle (the median plane) of the guard railing or panel.
Medial means towards the middle, and in the case of a guard railing or panel, facing towards the middle (the median plane) of the guard railing or panel.
In general, the system according to exemplary embodiments hereof provides a glass door rail system and its method of use for providing support to a glass door. The door rail system includes a longitudinal channel within which the glass door is removably mounted and secured. It is understood that the door rail system also may be used for other types of structures such as glass panes and/or other types of panels. It is also understood that the system may be used to provide support to structures comprising materials other than glass.
Referring now to
In one exemplary embodiment hereof as shown in
In general, the system 10 is adapted to secure and support the bottom portion of a panel 400 (e.g., the bottom edge of a glass door or pane). The control assembly 200 and the clamping assembly 300 are housed within the housing 100, and generally extend along the longitudinal length of the housing 100 as shown. The control assembly 200 in combination with the housing 100 control the inward clamping motions of the clamping assembly 300 as it engages with and supports the panel 400.
Housing Assembly
In one exemplary embodiment as shown in
In one exemplary embodiment hereof, the outboard portion's medial surfaces 108a and the inboard portion's medial surfaces 108b generally mirror one another in regard to positioning, orientation, shape and size across the inner channel 112. However, this may not be necessary. As will be described in other sections, each medial surface 108a, 108b has a distinct and purposeful functionality in supporting and guiding the clamping assembly 300.
In one embodiment, a first outboard medial surface 108a-1 and a first inboard medial surface 108b-1 extend upward and generally upright from the bottom 116 of the channel 112. These surfaces 108a-1, 108b-1 may be generally vertical. A second outboard medial surface 108a-2 and a second inboard medial surface 108b-2 extend upward from the top of the first surfaces 108a-1, 108b-1, respectively, at inward inclined angles (towards the median plane of the channel 112). A third outboard medial surface 108a-3 and a third inboard medial surface 108b-3 extend from the top of the second surfaces 108a-2, 108b-2, respectively, upward and generally upright. These surfaces 108a-3, 108b-3 may be generally vertical. A fourth outboard medial surface 108a-4 and a fourth inboard medial surface 108b-4 extend upward from the top of the third surfaces 108a-3, 108b-3, respectively, at inward inclined angles (towards the median plane of the channel 112). A fifth outboard medial surface 108a-5 and a fifth inboard medial surface 108b-5 extend upward from the top of the fourth surfaces 108a-4, 108b-4, respectively, at inward inclined angles (towards the median plane of the channel 112). A sixth outboard medial surface 108a-6 and a sixth inboard medial surface 108b-6 extend from the top of the fifth surfaces 108a-5, 108b-5, respectively, upward and generally upright. These surfaces 108a-6, 108b-6 may be generally vertical. The purpose and functionality of each separate and distinct surface 108a, 108b will be described in detail in other sections.
Control Assembly
In one exemplary embodiment hereof, the control assembly 200 includes a mount 202 disposed in the lower portion of the inner channel 112. The mount 202 includes a bottom 204, outboard lateral surface 206a and inboard lateral surface 206b. The top of the mount 202 includes a top mount channel 208. The top mount channel 208 is formed by an outboard upper medial surface 210a, and inboard upper medial surface 210b and a bottom 212 joining the surfaces 210a, 210b and forming the bottom of the top mount channel 208. The outboard upper medial surface 210a may generally extend at an outward inclined angle (away from the median plane of the channel 208 towards the outboard portion 102) and the inboard upper medial surface 210b may generally extend at an outward inclined angle (away from the median plane of the channel 208 towards the inboard portion 104)
As shown in
The height H1 of the mount 202 is preferably less than the height H2 of the first outboard and inboard medial surfaces 108a-1, 108b-1. In this way, the mount 202 may be free to move vertically a distance approximately equal to the difference between H1 and H2 (that is, a vertical distance equal to H1-H2). In some embodiments, H1-H2 may be in the range of about 2 mm-8 mm and preferably about 4 mm-5 mm. In some embodiments, H1-H2 may be 4 mm leaving 1 mm to accommodate a glass panel that may be slightly thicker than specified. It is understood that the range of H1-H2 may be greater or lesser depending on the requirements, and on the inclined angle of the outboard upper medial surface 210a and/or the inboard upper medial surface 210b. For the purposes of this specification, this gap defined by the difference between H1 and H2 within the channel 112 will be referred to as gap G1.
In some embodiments, one or more movement mechanisms are used to move the mount 202 upward within the gap G1. For example, in some embodiments a threaded opening 214 passes through the bottom 116 of the channel 112 (preferably positioned at the midpoint of D1) and is adapted to receive threaded fastening hardware 216 (e.g., a bolt or similar) therein. The threaded fastening hardware 216 preferably has a length that may extend through and out the top of the opening 214. In some embodiments, rotation of the threaded fastening hardware 216 within the threaded opening 214 causes the hardware 216 to move upward and/or downward within the opening 214.
With the mount 202 positioned within the channel 112 as described above, the threaded fastening hardware 216 may extend through the opening 214 and engage the bottom 204 of the mount 202. In this way, upward movement of the hardware 216 within the opening 214 may apply an upward force to the mount 202 causing it to move upward within the gap G1. In this configuration, the mount 202 may be free to move upward until the top of the mount 202 reaches the height H2 at which point the second outboard and inboard medial surfaces 108a-2, 108b-2 may provide a stop to the mount 202. At this position, downward movement of the hardware 216 within the opening 214 may allow the mount 202 to move downward (e.g., due to gravity) within the gap G1. Accordingly, the fastening hardware 216 may be used to move the mount 202 up and down within the gap G1. The fastening hardware 216 may include a head 218 to facilitate the rotation of the hardware 216 using one's fingers or a tool.
In other embodiments, other types of movement mechanisms may be used to apply an upward force to the mount 202 causing it to move upward within the gap G1. For example, a spring, a lever, a ratchet, other types of movement mechanisms and any combination thereof may be used to provide this functionality.
Clamping Assembly
In one exemplary embodiment hereof as shown in
In one exemplary embodiment hereof, the outboard clamping member 302a and the inboard clamping member 302b are positioned face-to-face opposite one another with each member's medial surfaces 304a, 302b, respectively, facing one another. In this way, the clamping members 302a, 302b may generally mirror one another in regard to positioning, orientation, shape and size as shown. In this position, the clamping members 302a, 302b may define a clamping channel 310 therebetween the two within which the panel 400 may be received and secured.
In one embodiment, a first outboard lateral surface 306a-1 and a first inboard lateral surface 306b-1 extend upward from the bottoms 308a, 308b, respectively, at outward inclined angles (away from the median plane of the combined members 302a, 302b). A second outboard lateral surface 306a-2 and a second inboard lateral surface 306b-2 extend upward from the top of the first surfaces 306a-1, 306b-1, respectively, at inward inclined angles (towards the median plane of the combined members 302a, 302b). A third outboard lateral surface 306a-3 and a third inboard lateral surface 306b-3 extend from the top of the second surfaces 306a-2, 306b-2, respectively, upward and generally upright. These surfaces 306a-3, 306b-3 may be generally vertical. A fourth outboard lateral surface 306a-4 and a fourth inboard lateral surface 306b-4 extend upward from the top of the third surfaces 306a-3, 306b-3, respectively, at inward inclined angles (towards the median plane of the combined members 302a, 302b). A fifth outboard lateral surface 306a-5 and a fifth inboard lateral surface 306b-5 extend upward from the top of the fourth surfaces 306a-4, 306b-4, respectively, at inward inclined angles (towards the median plane of the combined members 302a, 302b). The purpose and functionality of each separate and distinct outboard lateral surface 306a-1, 306a-2, 306a-3, 306a-4, 306a-5 and each separate and distinct inboard lateral surface 306b-1, 306b-2, 306b-3, 306b-4, 306b-5 will be described in detail in other sections.
In one exemplary embodiment hereof, the clamping assembly 300 includes a clamping gasket member 312 comprising silicon or another appropriate material. In some embodiments, the gasket member 312 is a single piece with a generally U-shaped and/or V-shaped cross-section. Accordingly, the gasket member 312 may include an outboard portion 314a, an inboard portion 314b and a bottom 316 connecting the outboard and inboard portions 314a, 314b thereby defining the U-shaped and/or V-shaped member 312. In other embodiments, the gasket's outboard portion 314a and inboard portion 314b may be formed separately and combined to form the overall gasket member 312.
In one exemplary embodiment hereof, the outboard clamping member's medial surface 304a is configured with the lateral surface 318a of the gasket's outboard portion 314a, and the inboard clamping member's medial surface 304b is configured with the lateral surface 318b of the gasket's inboard portion 314b. It is preferable that the footprint of surface 304a (e.g., the height) generally match that of surface 318a, and that the footprint of surface 304b (e.g., the height) generally match that of surface 318b as shown in
The surfaces 304a and 318a may be configured together using one or more attachment mechanisms 320a, and the surfaces 304b and 318b may be configured together using one or more attachment mechanisms 320b. In some embodiments, the attachment mechanisms 320a may include one or more slots 322a in the medial surface 304a that may receive and secure corresponding one or more tabs 324a extending from the gasket's lateral surface 318b. Similarly, the attachment mechanisms 320b may include one or more slots 322b in the medial surface 304b that may receive and secure corresponding one or more tabs 324b extending from the gasket's lateral surface 318b. The tabs 324a, 324b, once inserted into the respective slots 322a, 322b, may be held therein by opposing surfaces (e.g., the tabs 324a, 324b may be dart shaped) thereby eliminating any costly adhesive bonding process. The attachment mechanisms 320b also may provide adequate shear strength to resist being inadvertently removed by the clamping process to the panel 400.
In addition, the outboard clamping member 302a may include a bottom medial tab 326a that may be received into a recess 328a in the bottom outboard side of the gasket member 312, and the inboard clamping member 302b may include a bottom medial tab 326b that may be received into a recess 328b in the bottom inboard side of the gasket member 312. These tab-recess combinations 326a-328a, 326b-328b may provide additional attachment support in the bottom region between the clamping members 302a, 302b and the gasket member 312.
In any event, it is preferable that the surfaces 318a, 318b be held generally tight and flush against the respective surfaces 304a, 304b. In this way the outboard clamping member 302a, the inboard clamping member 302b and the gasket member 312 are held together as a unit to generally form the clamping assembly 300 as shown in
In some embodiments, the gasket member 312, in its at rest and unflexed state, holds the outboard and the inboard clamping members 302a, 302b apart and separated by a gap G2 (e.g., the gap between opposing bottom tabs 328a, 328b or between other opposing portions of the members 302a, 302b if the tabs 328a, 328b are not present). In some embodiments as shown in
As will be described in other sections, when the clamping members 302a, 302b are moved towards one another in a clamping motion, the bottom portion 330 of the gasket member 312 may be adapted to compress (e.g., kink or bend inward on itself) to accommodate the clamping motion and to allow the gap G2 to decrease accordingly.
The System (Combined Assemblies)
In one exemplary embodiment hereof as shown in
In this arrangement, the lower portion (e.g., the first outboard lateral surface 306a-1 and the first inboard lateral surface 306b-1) of the clamping assembly 300 rests at least partially within the mount's top mount channel 208. In this configuration as shown in
In some embodiments, at least some of the interfaces (1)-(10) between the surfaces as described above are utilized to translate upward movement(s) of the mount 202 into inward movement(s) of the clamping members 302a, 302b.
In general, an upward force F1 applied by the fastening hardware 216 to the bottom 204 of the mount 202 is translated from the mount 202 to the clamping assembly 300. Ignoring frictional elements for the moment, and considering the outboard clamp member 302a first as shown in the schematic of
Applying the same logic to the interface between the second inboard lateral surface 306b-2 and the second inboard medial surface 108b-2, the upward force F1 applied to the mount 202 is partially translated into an inward force F7 to the inboard clamp member 302a (see
In some embodiments, the inward forces F6 and F7 may be generally applied to the middle portion of the clamp members 302a, 302b where the clamp members 302a, 302b may be at their thickest (e.g., at interfaces (3) and (4) of
In addition, by providing two inwardly inclined interfaces on each side of the system 10 (interfaces (3) and (9) on the outboard side and interfaces (4) and (10) on the inboard side), the housing 100 is held more securely in place with respect to the panel 400. The upper opposing inward forces F6, F7 at interfaces (9) and (10), respectively, prevent the housing 100 from becoming angular or otherwise out of parallel with respect to the plane of the glass panel 400.
In some embodiments, and using the same logic applied above, the upward force F1 applied to the mount 202 is partially translated into inward forces F8 and F9 at interfaces (9) and (10), respectively (
In some embodiments, it may be preferable that the surface 108a-5 be parallel to the surface 108a-2 so that the forces F6 and F7 may be vectorially equal. It may also be preferable that the surface 108b-5 be parallel to the surface 108b-2 so that the forces F8 and F9 may be vectorially equal. In this way, the forces applied at interfaces (3) and (4) may equal the forces applied at interfaces (9) and (10), respectively. In some embodiments, the surfaces 108a-2, 108a-5, 108b-2, 108b-5 may be inwardly inclined at 25° towards the median plane of the housing 100. In some embodiments, the surfaces 108a-2, 108a-5, 108b-2, 108b-5 may be inwardly inclined at 15°-50° towards the median plane of the housing 100. It is understood that the surfaces 108a-2, 108a-5, 108b-2, 108b-5 may be at any inwardly inclined angle towards the median plane of the housing 100 and that the scope of the system 10 is not limited in any way by the angles of the surfaces 108a-2, 108a-5, 108b-2, 108b-5.
In some embodiments, it may be preferable that the surface 108a-2 and the surface 108b-2 be at mirrored angles with one another with respect to the median plane of the housing 100. In some embodiments, it may be preferable that the surface 108a-5 and the surface 108b-5 be at mirrored angles with one another with respect to the median plane of the housing 100.
In use, as the upward force F1 is applied to the mount 202 by the threaded fastening hardware 216, the mount 202 and the clamping members 302a, 302b move upward. The inward forces F6 and F8 are applied to the clamping member 302a, and the inward forces F7 and F9 are applied to the clamping member 302b. As the clamping member 302a moves upward, the forces F6, F8 cause the clamping member 302a to also move inward while sliding along the interfaces (3) and (9), respectively. Similarly, as the clamping member 302b moves upward, the forces F7, F9 cause the clamping member 302b to also move inward while sliding along the interface (4) and (10), respectively. These inward movements of clamping members 302a, 302b result in the clamping motion of the clamping assembly 300. In some embodiments, it may be preferable that the interfaces (3), (9), (4) and (10) be smooth and free of obstructions or excessive friction so that the clamping members 302a, 302b may slide along the interfaces smoothly and without jarring. In some embodiments, the inward force F2 (and a similar inward force applied to the clamping member 302b) may negate some of the frictional forces that may be formed by the movement of the abutted surfaces moving over one another.
In some embodiments, the unitizing gasket 312 holds the clamping members 302a, 302b in position during the clamping motion during which the gap G2 may be reduced (as the members 302a, 302b approach one another). As shown as shown in
In some embodiments, the bottom of the panel 400 may be inserted into the clamping assembly's channel 310 and the threaded fastening hardware 216 may be rotated to cause the inward clamping motions of the clamping members 302a, 302b. This in turn causes the clamping members 302a, 302b to clamp and thereby hold and support the panel 400 within the system 10. The slight inward inclinations of the interfaces (3), (9), (4) and (10) minimize any change in the panel's penetration depth in the channel 310 throughout the panel thickness adjustment range, leaving the panel height relatively unchanged during the clamping process. This may also maintain parallelism of the panel rail with respect to the plane of the panel 400 and may aid in equalizing the force distribution along the panel 400 imposed by the gasket 312 contact surfaces.
It is understood by a person of ordinary skill in the art, upon reading this specification, that while various embodiments have been described herein as having two distinct mating interfaces between the clamping assembly 300 and the housing on the outboard side of the system 10 (e.g., interfaces (3) and (9)), and two distinct mating interfaces between the clamping assembly 300 and the housing on the inboard side of the system 10 (e.g., interfaces (4) and (10)), the system 10 may include any number of mating interfaces on either its outboard and/or inboard sides. For example, the outboard and/or inboard sides may include 3, 4, 5, 6, 7, 8, 9, 10 or more mating interfaces. In this way, the force applied by the mount 202 to the clamping members 302a, 302b and the resulting forces applied by the clamping members 302a, 302b to the panel 400 may be uniform and evenly distributed along the vertical height of the clamping members 302a, 302b.
In one exemplary embodiment, the outboard and/or inboard portions 102, 104 may include stops to regulate the upward travel of the clamping assembly 300. In one embodiment, one or more medial surfaces 108a, 108b may include one or more lips 118 that may be positioned to restrict movement of the clamping members 302a, 302b at certain positions (e.g., at the top end of the medial surfaces 108a, 108b). For example, as shown in
In one exemplary embodiment, the outboard and/or inboard portions 102, 104 may include one or more clamping force limit stops to limit the downward movement of the clamping members 302a, 302b within the top mount channel 208 relative to the mount 202. In one embodiment, the outboard upper medial surface 210a and/or inboard upper medial surface 210b may include one or more lips 120 that may be positioned to block movement of the clamping members 302a, 302b. For example, as shown in
In one exemplary embodiment hereof as shown in
In one exemplary embodiment hereof as shown in
In this configuration, the bottom portion 330 of the gasket member 312 may be adapted to compress (e.g., kink or bend inward on itself or into side recesses 222 in the mount 202) to accommodate the clamping motion and to allow the gap G2 to decrease accordingly.
Benefits of the System
The benefits of the system 10 are multifold and include, without limitation:
First, having two vertically offset force-providing interfaces (3), (9) on the outboard side and two vertically offset force-providing interfaces (4), (10) on the inboard side provides a uniform force across the vertical height of each clamping member 302a, 302b, respectively. This in turn results in uniform clamping forces applied by the clamping members 302a, 302b to the lateral sides of the panel 400 when in use, thereby minimizing strain and stress to the system 10. In addition, the upper opposing inward forces F6, F7 at interfaces (9) and (10), respectively, prevent the housing 100 from becoming angular or otherwise out of parallel with respect to the plane of the glass panel 400.
Second, the unitizing gasket 312 holds the outboard and inboard clamping members 302a, 302b in proper relation to one another for the insertion of the clamping assembly 300 into the housing assembly 100.
Third, the unitizing gasket 312 holds the outboard and inboard clamping members 302a, 302b in proper relation to one another with an adequate gap therebetween (channel 310) for the loading of the panel 400 into the channel 310 for subsequent clamping of the panel 400. This also eliminates the need for temporary spacer blocks.
Fourth, the unitizing gasket 312 provides a cushioned yet gripping interface between the clamping members 302a, 302b and the panel 400 when clamped.
Fifth, the unitizing gasket 312 minimizes the need for adhesives within the system 10 (e.g., between the panel 400 and the clamping members 302a, 302b, etc.).
Sixth, the unitizing gasket 312 provides a weather seal between the rail system 10 and the panel 400.
It is understood that the benefits shown above are meant for demonstration and that other benefits of the system 10 may also exist. Those of ordinary skill in the art will appreciate and understand, upon reading this description, that embodiments hereof may provide different and/or other advantages, and that not all embodiments or implementations need have all advantages.
Where a process is described herein, those of ordinary skill in the art will appreciate that the process may operate without any user intervention. In another embodiment, the process includes some human intervention (e.g., a step is performed by or with the assistance of a human).
As used herein, including in the claims, the phrase “at least some” means “one or more,” and includes the case of only one. Thus, e.g., the phrase “at least some ABCs” means “one or more ABCs”, and includes the case of only one ABC.
As used herein, including in the claims, term “at least one” should be understood as meaning “one or more”, and therefore includes both embodiments that include one or multiple components. Furthermore, dependent claims that refer to independent claims that describe features with “at least one” have the same meaning, both when the feature is referred to as “the” and “the at least one”.
As used in this description, the term “portion” means some or all. So, for example, “A portion of X” may include some of “X” or all of “X”. In the context of a conversation, the term “portion” means some or all of the conversation.
As used herein, including in the claims, the phrase “using” means “using at least,” and is not exclusive. Thus, e.g., the phrase “using X” means “using at least X.” Unless specifically stated by use of the word “only”, the phrase “using X” does not mean “using only X.”
As used herein, including in the claims, the phrase “based on” means “based in part on” or “based, at least in part, on,” and is not exclusive. Thus, e.g., the phrase “based on factor X” means “based in part on factor X” or “based, at least in part, on factor X.” Unless specifically stated by use of the word “only”, the phrase “based on X” does not mean “based only on X.”
In general, as used herein, including in the claims, unless the word “only” is specifically used in a phrase, it should not be read into that phrase.
As used herein, including in the claims, the phrase “distinct” means “at least partially distinct.” Unless specifically stated, distinct does not mean fully distinct. Thus, e.g., the phrase, “X is distinct from Y” means that “X is at least partially distinct from Y,” and does not mean that “X is fully distinct from Y.” Thus, as used herein, including in the claims, the phrase “X is distinct from Y” means that X differs from Y in at least some way.
It should be appreciated that the words “first,” “second,” and so on, in the description and claims, are used to distinguish or identify, and not to show a serial or numerical limitation. Similarly, letter labels (e.g., “(A)”, “(B)”, “(C)”, and so on, or “(a)”, “(b)”, and so on) and/or numbers (e.g., “(i)”, “(ii)”, and so on) are used to assist in readability and to help distinguish and/or identify, and are not intended to be otherwise limiting or to impose or imply any serial or numerical limitations or orderings. Similarly, words such as “particular,” “specific,” “certain,” and “given,” in the description and claims, if used, are to distinguish or identify, and are not intended to be otherwise limiting.
As used herein, including in the claims, the terms “multiple” and “plurality” mean “two or more,” and include the case of “two.” Thus, e.g., the phrase “multiple ABCs,” means “two or more ABCs,” and includes “two ABCs.” Similarly, e.g., the phrase “multiple PQRs,” means “two or more PQRs,” and includes “two PQRs.”
The present invention also covers the exact terms, features, values and ranges, etc. in case these terms, features, values and ranges etc. are used in conjunction with terms such as about, around, generally, substantially, essentially, at least etc. (i.e., “about 3” or “approximately 3” shall also cover exactly 3 or “substantially constant” shall also cover exactly constant).
As used herein, including in the claims, singular forms of terms are to be construed as also including the plural form and vice versa, unless the context indicates otherwise. Thus, it should be noted that as used herein, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Throughout the description and claims, the terms “comprise”, “including”, “having”, and “contain” and their variations should be understood as meaning “including but not limited to”, and are not intended to exclude other components unless specifically so stated.
It will be appreciated that variations to the embodiments of the invention can be made while still falling within the scope of the invention. Alternative features serving the same, equivalent or similar purpose can replace features disclosed in the specification, unless stated otherwise. Thus, unless stated otherwise, each feature disclosed represents one example of a generic series of equivalent or similar features.
The present invention also covers the exact terms, features, values and ranges, etc. in case these terms, features, values and ranges etc. are used in conjunction with terms such as about, around, generally, substantially, essentially, at least etc. (i.e., “about 3” shall also cover exactly 3 or “substantially constant” shall also cover exactly constant).
Use of exemplary language, such as “for instance”, “such as”, “for example” (“e.g.,”) and the like, is merely intended to better illustrate the invention and does not indicate a limitation on the scope of the invention unless specifically so claimed.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3774363 | Kent | Nov 1973 | A |
4612743 | Salzer | Sep 1986 | A |
7963077 | Lin | Jun 2011 | B2 |
8181405 | Nash | May 2012 | B2 |
9127498 | Ye | Sep 2015 | B1 |
9303444 | Choi | Apr 2016 | B1 |
9366382 | Bonomi | Jun 2016 | B2 |
9540861 | Abdul Lathief | Jan 2017 | B2 |
10731402 | Koster | Aug 2020 | B2 |
10871024 | Carleton | Dec 2020 | B2 |