Rail systems are conventionally used to hold plate glass panels or panes (or other transparent, translucent or opaque panels) in a doorway opening or for use as a wall partition. Usually, the rail system runs along one or more edges of the panel and secures the panel at its edges. Preferably, the rail system includes an accessory channel space to hold miscellaneous door frame hardware, such as locking hardware, pivots and hardware related to hydraulic closure devices.
In many prior art rail systems, such as those typically used in the doors of shopping malls, the rail is permanently attached to the pane. Of course, this makes it difficult or impossible to remove the rail from the pane, and this is generally considered to be a disadvantage of these permanent attachment designs. Also, in these permanent attachment designs, it is conventionally the glass supplier who conventionally makes the permanent connection between the pane and the rail assembly. This means that the on-site glazier or door installer is dependent on the off-site glass supplier, which is disadvantageous, at least from the perspective of glaziers and installers.
However,
The present application deals with some potential problems in the above described prior art and some potential solutions to these potential problems. One potential problem with the door rail system of described U.S. Pat. No. 5,069,010 is that the hole in the side of the rail caused by access port 56 is not considered aesthetically appropriate for many applications. While it is necessary to cover the sides of the rail with some type of cladding, such as an aluminum plate, this adds expense, and makes the rail system more difficult to assemble and disassemble.
Another potential problem with the rail system of U.S. Pat. No. 5,069,010 is that accessory channel space 14 is formed by two separate pieces. These two separate pieces are separate because they clamp and unclamp to allow assembly with and disassembly from a pane. While it is advantageous that the rail system of U.S. Pat. No. 5,069,010 can be assembled with and disassembled from the pane, it is unfortunate that the accessory channel is defined by separate pieces because this means that hardware components in the accessory channel, which are attached to both sides of the accessory channel 14 require disassembly from the accessory channel before the accessory channel can be separated into its two defining pieces in order to allow the rail system to be removed from the pane.
To put it a little more simply, the rail system of U.S. Pat. No. 5,069,010 must be disassembled before it can be removed from a door. For similar reasons, and perhaps more importantly, hardware cannot be fully installed in accessory channel 14 until the rail system of U.S. Pat. No. 5,069,010 is assemble with the pane. While these assembly and disassembly difficulties are subtle, they can add significantly to the time required for a glazier or installer to do assembly and disassembly procedures.
Another problem is that the prior art systems require periodic maintenance (tightening) for proper operation. In many systems, simple tightening operations require removal of the door or panel and sometimes require partial disassembly of the rail.
Also, it is desirable to increase the clamping force and stability over what can be achieved by the rail system of U.S. Pat. No. 5,069,010. Furthermore, it is desirable to optimize the distribution of the clamping force along the portion of the pane that is held captive in the clamping hardware.
At least some embodiments of the present invention can solve these problems and associated opportunities for improvement.
At least some embodiments of the present invention may exhibit one or more of the following objects, advantages and benefits:
(1) to provide a rail system with an accessory channel;
(2) to provide a rail system with more stable clamping force;
(3)to provide a rail system with continuous and aesthetically-attractive exposed surfaces;
(4) to provide a rail system that does not require cladding to be placed over the exposed surfaces of the rails;
(5) to provide a rail system that takes advantage of taper locking forces;
(6) to provide a rail system wherein the weight of the pane causes forces that accentuate the clamping forces on the pane;
(7) to provide a rail system wherein the distribution of clamping force on the pane is optimized;
(8) to provide a rail system that is easier to assemble and disassemble because of easy accessibility of fastening members (e.g., screw heads);
(9) to provide a rail system that can more easily accommodate panes of different thicknesses;
(10) to provide a rail system that facilitates easy field maintenance and replacement;
(11) to provide a rail system that can be assembled with a pane by door installers and/or glaziers; and
(12) to provide a rail system that is removable from a pane without disassembly of the rail system.
According to one aspect of the present invention, a rail system for securing a panel includes a housing, at least one clamp and actuation hardware. The housing has a mating surface. The at least one clamp member is shaped and structured to clamp onto the panel. The at least one clamp member also has a mating surface located to be in contact with the mating surface of the housing. The actuation hardware is structured to drive the clamp member to move relative to the housing in a driven direction. The mating surface of the housing and the mating surface of the clamp member are inclined relative to this driven direction so that at least a portion of the clamp member will move in a clamping direction, which is different than the driven direction, when the clamp member is driven in the driven direction by the actuation hardware.
According to a second aspect of the present invention, a rail system for releasably securing a pane oriented in a vertical direction includes an elongated housing, a first clamp member, a second clamp member, a screw and a nut. The elongated housing includes a first inclined surface and a second inclined surface. The first inclined surface of the elongated housing is oriented to be generally inclined with respect to the vertical direction. The second inclined surface of the elongated housing is oriented to be generally inclined with respect to the vertical direction. The first clamp member includes an inclined surface and a pane clamping surface. The inclined surface of the first clamp member is located adjacent to the first inclined surface of the housing and is oriented to be approximately parallel to the first inclined surface of the housing. The second clamp member includes an inclined surface and a pane clamping surface. The inclined surface of the second clamp member is located adjacent to the second inclined surface of the housing and oriented to be approximately parallel to the second inclined surface of the housing. The nut is threadably engaged with the screw and located to drive the first and second clamp members in the vertical direction when the screw is rotated.
Further applicability of the present invention will become apparent from a review of the detailed description and accompanying drawings. It should be understood that the description and examples, while indicating preferred embodiments of the present invention, are not intended to limit the scope of the invention, and various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given below, together with the accompanying drawings which are given by way of illustration only, and are not to be construed as limiting the scope of the present invention. In the drawings:
Before plunging into a description of the Figures, some terms will now be defined.
Surface: The word surface is not limited to planer, regular or continuous surfaces but is rather to be construed broadly to include any surface including irregular or curved surfaces.
Inclined: Inclined means generally at an angle to. On occasion, a surface (which may not be perfectly planer) will describe as being inclined. Such a surface can be inclined with respect to something else, even though the curvature or irregularity in the surface may make it possible to observe only an approximate angle, rather than a precisely-defined mathematical angle (which would require a perfectly straight line or surface).
Screw: As used herein, screws refer to any threaded member. Screws are not required to have screw heads, although this is preferable.
Nut: As used herein, a nut is any piece having one or more threaded holes. For example, nut strips, further described below, are herein considered to be an example of a nut.
To the extent that a patentee may act as its own lexicographer under applicable law, it is hereby directed that all words appearing in the claims section, except for the above-defined words surface, inclined, screw and nut, shall take on their ordinary, plain and accustomed meanings (as generally evidenced, inter alia, by dictionaries and/or technical lexicons), and shall not be considered to be specially defined in this specification.
Pane 101 is preferably made of tempered glass, but may be alternatively may be a panel of any transparent, translucent or opaque material, such as acrylic or aluminum. Because pane 101 is preferably made of glass, it may be brittle, subject to warping and subject to uneven major surfaces. The present invention is helpful in providing secure and non-destructive clamping, despite these potential problems with glass panes.
Housing 102 is preferably formed of aluminum and is preferably manufactured by extrusion. Because the side surfaces of housing 102 will usually be exposed, it is preferable to use an attractive finish, such as satin anodize, black anodize or bronze anodize. Alternatively, conventional cladding, such as brass plates, may be placed over the exposed surfaces of housing 102 by conventional means, such as an adhesive. In some embodiments, housing 102 will run along the entire length and/or height of the door. Generally, glass doors only have rails at the top and bottom of the door. Wall partitions may have rails at the top, bottom and sides.
For example, many doors are about 3 feet in length, which would dictate a housing of approximately 3 feet in length. In other embodiments, such as patch fitting applications, the housing will be shorter. For example, a housing 9 inches in length may be preferred when the primary purpose of the rail system is to hold door closure accessories in its accessory channel space (as further explained below), because shorter rails are less expensive and are also thought to be more aesthetically attractive in some applications.
As shown in
As shown in
Although the general concept of accessory channels was known in the prior art (see FIG. 1), accessory channel space includes features such as protrusions 112 and discontinuity 114 that help to secure accessories within the accessory channel. Also, as shown in
Compression member 116 of housing 102 defines the topside of accessory channel space 103. As shown in
As shown in
As shown in
Because clamp member 104 is formed as two pieces 104a, 104b, panes of various nominal thickness can be accommodated merely by varying the dimensions of housing 102 and/or pads 110, without changing the design of clamp members 104.
Screw 106 is preferably a bolt steel, socket head cap screw with a ¼-28 thread, but it is noted that many other kinds of fasteners may be used. As with many clamping applications, threaded fasteners are the most preferred way of actuating the components to generate clamping forces, but, at least in theory, other fastening devices, such as ratcheting devices and rack-and-pinion devices could alternatively be employed.
Different types of screws may be preferable for various embodiments. For example, a flat head screw would occupy none of the space of accessory channel 103, and flat head screws may be preferred for applications where a flat head screw can sustain enough driver torque to secure the pane.
As shown in
As shown in
Various views of end cap 130 are shown in
Now that the hardware components of rail system 100 have been discussed, the mechanics of the clamping of pane 101 will be explained. Generally speaking, according to the present invention the clamping force is generated by a wedge geometry so that a driving force in one direction causes a clamping force in a different direction.
For example, as shown in
Although the geometry of rail system 100 is preferred for reasons further explored below, many other types of wedge geometries are possible. A couple of these will now be discussed.
When first clamp member 304a moves in driven direction D, contact between its inclined surface 322 and roller 324 (which is built into housing 302) forces first clamp member 304a to move by translation and/or rotation in the clamping direction of arrow E to clamp down on a pane (not shown). While the roller 324 would add expense and potential structural weakness, it could potentially: (1) reduce wear on housing 302 and clamp member 304a; and (2) guide an irregular and/or curved inclined surface on clamp member 304a. Such an irregular or curved inclined surface might be employed to optimize the correlation between driving torque on screw 306 and eventually-effected clamping force exerted by clamp member 304a on the pane. Roller 324 also serves to illustrate that an inclined surface on the housing is not necessary, if there is an inclined surface on clamp member 304a.
Moving now to the other side of rail assembly 300, when second clamp member 304b moves in screw tightening direction D, contact between its sliding surface 326 and inclined surface 320 of housing 302 forces second clamp member 304a to move by translation and/or rotation in the clamping direction of arrow F to clamp down on a pane (not shown). Sliding surface 326 serves to illustrate that an inclined surface on the clamp member is not necessary, if there is an inclined surface on the housing.
Now that some possible variations have been explored, the focus will return to the first embodiment of
However, wide variation in angles X and angle Y, as well as in the difference between angle X and angle Y, are possible. Different choices for these angles and for the difference between these angles can be used to optimize: (1) the correlation between driving torque of screw 106 and clamping force; and (2) the distribution of clamping force along pane 101.
One advantage of mating inclined surfaces is that a phenomenon called taper lock occurs, to some extent, between housing 102 and clamp members 104. The taper lock phenomenon, effected by relatively long contacting inclined surfaces, helps secure clamp members 104 in position relative to housing 102 and helps prevent screw 106 from loosening once it is tightened to the correct tightness.
Furthermore, the clamping force provided by clamp members 104 is thought to be provided by a combination of translational and/or rotational motion. The relative amounts of rotation and translation will affect the distribution of clamping force over the clamped surface of the pane. As optimal distribution of clamping force is discovered, the angles of inclination of the wedge-clamping geometry of the present invention will give designers a powerful design mechanism for tweaking the clamping force distribution. This is another advantage of at least some embodiments of the present invention.
Another advantage of the geometry of
This advantage of self-tightening, at the bottom rail, actually is a fairly important advantage and will now be explained. At least with some embodiments of the rail system of the present invention, in order to tighten the screws of the top rail, one must merely open the door and tighten the screws by coming in from over the top of the door rail through the accessory channel. However, the floor will generally block the open bottom to the accessory channel of the bottom rail, and will thereby block access to the screws. This is generally true whether the door is in the open or closed position, because the bottom of a door generally stays pretty close to the floor at all times. That means that when the bottom rail screws need tightening, the door must be taken out of the frame and then replaced after the screws are tightened.
However, in embodiments of the present invention that have self-tightening screws, this operation needs to be performed less frequently, or not at all, at the bottom rail. Therefore, it can be pretty big benefit to have a self-tightening bottom rail, even when the top rail needs to be tightened from time to time.
There are effective limits on the angles of inclination X and Y shown in FIG. 3. If angles X and Y are less than about 10 degrees, it may be difficult to generate sufficient clamping force for a given amount of driving torque on screw 106. On the other hand, if the angles X and Y are greater than about 85 degrees, then it may become difficult to assemble and/or disassemble rail assembly 100.
Still another advantage is that housing 102 is unitary, even though the clamp members 104 move within this unitary housing 102 to clamp and unclamp panes. The main advantage of this unitary housing is that hardware residing in accessory channel 103, which is defined by unitary housing 102, can remain in place within housing 102 while the housing is assembled with and disassembled from a pane. This is not true of removable rail systems where the housing itself must be disassembled into halves in order to clamp and unclamp a pane. If the housing is disassembled, then components in the accessory channel must generally be disassembled from one or more housing components to allow disassembly of the housing. Therefore, the unitary housing of the present invention can save significant time required for assembly and disassembly.
Many variations on the above-described jamb assemblies are possible, such as mating jamb and fascia surfaces with various different shapes of splines, protrusions, grooves or other mating surfaces that facilitate attachment there between. Such variations are not to be regarded as a departure from the spirit and scope of the invention, but rather as modifications intended to be encompassed within the scope of the following claims.
This application is a divisional of U.S. patent application Ser. No. 09/631,148, now U.S. Pat. No. 6,434,905, filed Aug. 2, 2000 and titled DOOR RAIL SYSTEM.
Number | Name | Date | Kind |
---|---|---|---|
981972 | Bonness | Jan 1911 | A |
984384 | McElaney et al. | Feb 1911 | A |
1083865 | Sloss | Jan 1914 | A |
1507769 | Disbro | Sep 1924 | A |
3789564 | Kessler | Feb 1974 | A |
3802143 | Adler et al. | Apr 1974 | A |
4235049 | Marinoni et al. | Nov 1980 | A |
4418506 | Weber et al. | Dec 1983 | A |
4423582 | Yates | Jan 1984 | A |
4550542 | La See | Nov 1985 | A |
4655025 | Marinoni | Apr 1987 | A |
4671016 | Boeckx | Jun 1987 | A |
4680903 | Horgan, Jr. | Jul 1987 | A |
4835927 | Michlovic | Jun 1989 | A |
4920717 | Hooper, Jr. | May 1990 | A |
5069010 | Trainor, Jr. et al. | Dec 1991 | A |
5356675 | Unger et al. | Oct 1994 | A |
5444958 | Lu | Aug 1995 | A |
5483775 | Redman | Jan 1996 | A |
5666692 | Toledo | Sep 1997 | A |
5694722 | Husting et al. | Dec 1997 | A |
5857298 | Fullwood | Jan 1999 | A |
6014846 | Sono et al. | Jan 2000 | A |
6434905 | Sprague | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
300053 | Aug 1932 | IT |
Number | Date | Country | |
---|---|---|---|
20020100234 A1 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09631148 | Aug 2000 | US |
Child | 10092774 | US |