1. Field of the Invention
The present invention relates generally to door slam prevention devices. More particularly, it relates to a component adapted to prevent a high velocity full closure of a door into a door jamb stop as well as providing controlled closure of the door thereafter. The device thereby can prevent potential injury to humans or animals which might have a body part in-between the door and jamb and helps to prevent damage to the door or jamb parts which a high velocity impact can cause.
2. Prior Art
A slamming door can cause many problems. Such slamming can be caused by wind in some cases, or accidental closure in others. On a boat or ship, movement or wind can initiate a high velocity closure or slamming of a door. The dangers of having a finger or hand smashed between a door jamb of a closing door are extreme. A crushing of fingers or toes or actual amputation can occur under the right conditions. Further, animals such as dogs and cats, can be severely injured and are unaware of such a potential for harm.
The dangers are further elevated if the closing door is a solid core or metal door or otherwise considerably heavy, even if, closing at a slow speed since force is the result of mass times its velocity. Even a lightweight door closing at a high velocity as it contacts the door jamb, can render extreme injuries to an unlucky occupant of the space between the door and jamb.
Whether moving at a high or low speed closure, such a closure is conventionally referred to as a slam or slamming. In an effort to slow door closure, many household, commercial, and public buildings employ dampeners such as hydraulic resistors or other means for providing a controlled, often slow, closure of an opened door. However, these efforts still may fall short. In some cases, such as in high wind, the wind forces may overpower the hydraulics and still cause the door to slam at a considerably high velocity, or, high force winds can breaks or disable some dampening type devices and cause a resulting injurious slam.
Additional dangers are also present even if a user's hands are clear of the door jamb. In the case of a high velocity door slam, once a user opens the door and begins to pass through the door way, the slamming door can strike the individual from the rear and cause considerable damage. Such damage may be increased if the door is of considerable weight or mass. If the door strikes the user in the rear while they are positioned on the opposite side of, or slightly within the door jamb, and not cognizant of their proximity to the plane occupied by the closed-door face, they can be thrown to the ground and suffer further injuries from the unsuspected impact. If the user is a young child, elderly, or happens to be struck in the head, the damage could unfortunately be fatal.
For one example, cruise ships and other passenger ships are known to employ fire safety doors often using hydraulics or other means for automatically closing the door after opening. These doors are often large and extremely heavy as is required for fire regulations. In open waters, wind may easily catch the large doors and as mentioned above, overpower the controlled closure provided by the hydraulics or other means, causing the door to slam.
Still further, the swaying or rocking of the vessel may additionally cause an ajar door to slam shut. Additionally, there are many doors on ships, just as in commercial buildings and homes, which have no protection against slamming due to an aversion by owners to the mounting and use of hydraulic dampeners or other means of slowing rotation of the door on the hinges. Even when hydraulic dampeners are employed, they can impart a false sense of security since such dampeners are frequently maladjusted, or rendered inoperable from age or lack of maintenance. Consequently, doors lacking functioning dampeners and the like, are prone to high velocity rotation from wind, children or adults pushing them, and movement of the structure housing them. The resulting slamming is as such, an injury waiting to happen.
Aside from damage to users, a slamming door may additionally cause damage to door hardware and even the door jamb frame and/or door jamb stop. Such repairs or replacements can be quite costly and extensive, and thus may go unrepaired for a time period, wherein the dangers are even further elevated.
Slamming hazards are also found in high velocity closing vehicle doors, cabinets, and drawers. For car doors, damage to metal or other components of the door are expensive and may compromise the integrity of the door. Also, due to the weight and protruding latches employed in car doors, hands or fingers caught between may be pulverized and not merely smashed. Cabinets and drawers are potential finger and hand hazards as they are often high traffic areas.
As such, there is a continuing unmet need for a door slam prevention device and method which provides controlled closure thereafter as needed for increased safety. Such a device should be easily engageable to an existing door. Such a device should not impede the closing of a door like a dampener so as to be employed where such hydraulic or other resistance is not wanted or needed. Such a device should be ideally adjustable to allow for user changes to operation from full prevention to no prevention. Still further, such a device should be employable to fail or move to a retracted position to allow door closure where it is needed or required to allow its use when not in a failure mode.
The device herein disclosed and described provides a solution to the shortcomings in prior art and achieves the above noted goals through the provision of a door slam prevention device having components providing one or a combination of a means for stopping a high velocity closing door to yield a gap for a determined dwell time, combined with a means for providing a controlled closure thereafter. In preferred modes of the device disclosed herein, the device may be engaged to the face of the door at either the handle side leading edge or the hinged side leading edge of a door which rotates toward a door jamb. However, in a particularly preferred mode, the device may be engaged at the top or uppermost leading edge of the door to be protected.
It must be further noted that those skilled in the art will appreciate that with slight modification the device may similarly be employed on car doors, cabinets and drawers without departing from the scope and overall intent of the device. As such, these and following descriptions should not be considered limiting.
Conventionally, for a closing door, the door's handle side edge moves slowly until it contacts the door stop positioned in a central area of the door jamb. At contact, the side surface of the door is registered in a position to allow the door's typical locking components to align and engage a recess in the central area of the jamb as well.
However, when a high rotating velocity causes the door to be slammed during closure, the leading door edge on the handle side frequently contacts the door jamb stop with such a great force as to damage or completely break one or a combination of the door jamb, the stop and/or the locking hardware components. Further, it is during such a high speed rotation where a user is most likely to be struck by the slamming door, or have a body part caught between the leading door edge and jamb, wherein the user may be seriously injured.
In one preferred mode of the device, a means for stopping a high velocity closing-door is provided by employing two translatable elongated members extending to an as-used position a distance form the housing to a distal end positioned past a side edge of a door. In the as-used position, as the high velocity closing door approaches the door jamb, a contact with the door jamb is made by a first elongated member sandwiched between a second elongated member and the jamb. This first member in use, contacts the door jamb frame and absorbs some of the generated force from the impact which deflects the first member to translate in a direction away from the frame or door jamb.
The second elongated member, parallel to the first, is maintained in an as-used or extended position, projecting past the edge of the door. In this position the second member provides a bump stop between the door and the door jamb frame forming a gap between the leading edge of the door and the door jamb. The door edge is thus held a distance away from the leading edge of the jamb, equal to the thickness of the second member, for the duration the second member is maintained extended from the housing.
The door jamb frame is typically considerably stronger and more durable than the door jamb stop which is positioned circumferentially on the central interior surface area of the frame. Thus, the door jamb frame is therefor considered less likely to be damaged by the impact with a slamming door. Further, one or both of the elongated members may be formed of a material configured to absorb some of the force of the slamming door.
The impact with the second elongated member transfers the force from the door momentum to the door frame and provides a means for maintaining a gap between the leading edge of the door and the jamb by preventing the rotating door from slamming into the seat of the door jamb stop within the interior of the jamb. A biased engagement of the second elongated member, to the first elongated member, provides a means for translating the second member in a direction away from the edge of the door and the door jamb frame, subsequent to striking it to prevent closure. This secondary translation allows the door to be fully closed in a controlled manner subsequent to holding the edge of the door away from the door jamb edge where it might cause injury. Further, if the door employs a hydraulic or other means for automatic closure, the controlled closure thereafter may be accomplished by those means subsequent to the secondary translation of the second member.
In another preferred mode the device is similarly positioned near the handle side edge, or leading edge of the door however, with the elongated member positioned a small distance from the edge, i.e., closer to the hinged side edge. In this resting position, the elongated member is maintained in position within the housing of the device by a spring or other biasing means.
In use, as the high velocity closing door approaches the door jamb, the force at the edge of a high velocity swinging door overcomes the spring bias and urges the elongated member to translate to a position where the distal tip is outward past the side edge of the door while concurrently stretching the spring. The elongated member is so positioned to provide a bump stop between the door and the door jamb frame as the door approaches the door jamb in a manner similar to the mode of the device described above. The impact of the jamb edge with the elongated member transfers the force of the door momentum to the door frame, and maintains the edge of the door a distance from the edge of the jamb, preventing the door from slamming into the door jamb stop for a dwell time.
With the centrifugal forces no longer present with the door ceasing rotation, the biasing force of the stretched spring, provides a means for biasing the elongated member to translate back to the resting position, out recessed behind both the leading edge of the door and the door jamb, such that the door can be closed in the conventional manner to a seated position abutting the stop
In particularly preferred modes of the device, rather than being positioned in a horizontal disposition to contact the frame surrounding the door along the long side adjacent the handle, the device is positioned in a vertical mounted orientation positioned for contact with the jamb running parallel to the top edge of the door. In this mode, in a ready position prior to door closure, the two elongated members extend a distance past the top leading edge of the door. On a door closure, the first elongated member will contact the door jamb frame's horizontally disposed uppermost edge thereby providing a bump stop between the door and door jamb frame. This contact with the frame maintains a gap between door and jamb for a dwell time or duration. Thereafter the first member translates behind the door edge exposing the second member to a contact with the frame which stops the door to maintain the gap between the leading edge of the vertical and horizontal side edges of the door, and the frame. This gap is maintained for the dwell time of the second member in an extended position to maintain the gap for an equal duration of time.
The spring, engaged between the first member and now-translated second member, thereafter imparts sufficient force to bias and retract the second member. The dwell time of the second member in the extended position, and resulting gap, may be changed or adjusted by a change in the biasing force the spring communicates to the second member. This can be done by changing the spring length, size, or mounting points.
This mode of the device employing the top horizontal edge of the door and jamb, may be preferred in order to keep the device substantially out of the view of the public as for aesthetic purposes. Further, this mode provides a fail safe should the spring component biasing the second member fail to retract it to allow the door to close, since the second member subsequent frictional contact with the frame edge sufficient to hold it extended, will be pulled by gravity to the retracted position to allow door closure subsequent to striking the frame.
During fires or other disasters, in many venues it is a safety regulation that a door must be able to close within the jamb as may be needed to contain or secure an area. Therefore, this mode being substantially vertically mounted, gravity will act to bias the elongated members toward a stored position out of the way of the door jamb frame should the spring components fail.
Still further, this and other modes of the device may employ means for maintaining the device in one of three positions. This plurality of positioning includes an as-used or extended position providing the bump stop and subsequent closure, a stored or disable positioning wherein the device is clear of the door jamb frame, and a third position extending in a fashion where retraction is prevented, wherein the door is always prevented from closing. The members may be selectively locked or biased and held into any of the plurality of positions through a locking pin, button, or other suitable means.
It must be noted that in other preferred modes of the device, the force imparted for the translation of the elongated member may be accomplished via electronic means or other means for biasing. For example, the elongated member may be engaged to an electronic translating means, such as a solenoid or linear actuator, and may include accelerometers for switching that determine movement and/or if the velocity of the closing door is high enough to require an activation and employment of means for mainlining a gap between the door edge and jamb as well as for slam prevention as provided by the present invention herein.
In yet another preferred mode of the device, the elongated member may instead rotate from a first position to an as-used extended position between the leading edge of the door and door jamb frame by the centrifugal force generated by the high velocity closing door. Again, after the door is stopped and a gap maintained by the dwell time of the extended member, the elongated member is preferably biased back toward a first position, with its distal end behind the door edges such that the door can close in the conventional manner.
This mode of the device may be accomplished by employment of a spring loaded hinge operatively engaged to bias the elongated member in the first or retracted position. Thereafter this spring force providing a biasing is overcome by the centrifugal force of the slamming door in order to rotate the member to the as used position.
In still yet another preferred mode, the device may be employed adjacent the hinged side edge of the door. While this edge of the door moves at a slower speed than the handle edge due to a shorter arc, there is tremendous torque generated. Briefly, in this mode, as the high velocity swinging door approaches the door jamb, an elongated member is deployed at a position between the door and door jamb frame on the hinged side of the door. This positioning provides contact and a stop which prevents the door from rotating further, and the handle side edge of the door from slamming into the door jamb stop.
Still further, it is additionally preferred, that in all modes of the present invention discussed herein, the device should allow the door to close in the conventional manner, with no interference, when closing and rotating at a typical low velocity.
With respect to the above description, before explaining at least one preferred embodiment of the herein disclosed invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangement of the components in the following description or illustrated in the drawings. The invention herein described is capable of other embodiments and of being practiced and carried out in various ways which will be obvious to those skilled in the art. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for designing of other structures, methods and systems for carrying out the several purposes of the present disclosed device. It is important, therefore, that the claims be regarded as including such equivalent construction and methodology insofar as they do not depart from the spirit and scope of the present invention.
It is an object of the invention to provide a door slam prevention device that absorbs and uses energy from a slamming door to aid in preventing damage to a door jamb stop and/or locking hardware.
It is an object of the invention to provide a door slam prevention device having a bump stop between a closing door and a door jamb frame to maintain a resulting gap between door and jamb edges.
It is an object of the invention to provide a door slam prevention device that allows the door to close in a conventional manner, with no interference, when the door is swinging at a typical low velocity.
A further object of this invention the provision of a device operating in a two-step process of full closure prevention where a first member absorbs force and translates out of the way, and a dwell time of a second member in an extended position, prevents full closure of the door for a duration of time which may be used by an individual to remove their hand or body part from the formed gap, before closure starts again.
An additional object of the invention is a device which will stop a slamming and maintain the safety gap to prevent injury, however should components fail, will still retract to allow closure subsequent to a first prevention thereof.
Additional objects of the invention will be brought out in the following part of the specification, wherein detailed description is for the purpose of fully disclosing the invention without placing limitations thereon.
a shows another preferred mode of the device.
b shows yet another preferred mode of the device.
a shows a perspective view of the mode of the device of
b shows a front view of the device of
c shows another front view of the device of
d shows a front view of the device of
a shows perspective view of yet a further preferred mode of the device employing purely linear translation, detailing the elongated housing and door stop component extending therefrom.
b shows a front view of the device of
c shows another front view of the device of
d shows a front view of the device of
a shows a front view of yet a further preferred mode of the device employing a linear track. The front sidewall is omitted to show the components housed within and the components in a retracted position.
b shows a front view of the device of
c shows a front view of the device of
It is an object of the present invention to maintain a gap between the leading edge of a closing door and that of a door jamb for a duration sufficient to allow a user to remove an appendage or body part therefrom and avoid injury. The gap is maintained through employment of means for preventing a high velocity closing door from slamming and concurrently receding within a door jamb into a stop for a dwell time whereafter a controlled closure into the door jamb is achievable in a normal fashion. As such, it must be noted that descriptions of the preferred modes of the device to follow are give merely to convey the overall scope as is concurrent with the intent of the invention. Therefor it is understood that those skilled in the art may realize various other means, or modifications of the preferred modes therein, for accomplishing the above noted goals and intentions without departing from the overall scope of the invention, wherein such various other means and modifications are anticipated.
In this description, the directional prepositions of up, upwardly, down, downwardly, front, back, top, upper, bottom, lower, left, right and other such terms refer to the device as it is oriented and appears in the drawings and are used for convenience only; they are not intended to be limiting or to imply that the device has to be used or positioned in any particular orientation.
Now referring to drawings in
A protruding portion 42 extends from the sidewall opposite the ramped portion 40 in a direction substantially orthogonal to the longitudinal length of the member 34. The protruding member 42 includes an aperture 44 communicating therethrough which is parallel the longitudinal direction. In use, a first spring 56 is engaged to set screw 48 and passes through the aperture 44 to an engagement with the second member 50. When assembled as shown in
Additionally, as can be seen there is a longitudinally extending cavity 45 on the top wall of the member 34, providing a kind of track. In use, the cavity 45 works in cooperative engagement with tracking pin 60 (
In use, springs 56, 58 provide a biasing means during translation of the members 34, 50, during operative employment of the current preferred mode of the device 10 described later in
As can further be seen, a cushion element 46 is engaged to the protruding portion 42 of the first member 34 and provides a dampener or cushion between the protruding portion 42 and the interior of the sidewall 16. The cushion element 46 is preferably a soft material such as a soft plastic, rubber, or sponge, however it is additionally preferred that the engaged contact surface between the element 46 and the sidewall 16 be low friction and can be accomplished by any means known in the art.
Again, as clearly shown in the figure, the distal ends 38, 54 of the first and second members 34, 50 respectively, in the first position shown, are at a distance protruding away from the distal edge of the sidewall extension 24 as is desired and whose purpose is disclosed shortly below.
It is noted that the descriptions of
Further,
The following figures provide a description of the modes of operation of the device 10 during the high velocity closure of a door 1000. Again the procedure described will be similar for other structures as well.
A moment later, shown in
With the second member 50 remaining substantially stationary, as shown in
With the door's 1000 momentum stopped, the stretched first spring 56 provides a biasing force to draw the second member 50 into the housing 12 and adjacent the first member 34, shown in
It should be noted, and is highly emphasized, that in the case of conventional slow closure of the door 1000, the first and second members 34, 50 will tend to translate in unison. For example, during a slow closure of the door 1000, with the device 10 in the starting first position of
Further, a spring 92 is shown engaged to and extending from the proximal end 88 of the member 80. Again noting that in other modes of the invention the spring may be replaced by other biasing means, for example a linear actuator.
In
As an alternative means for providing a biasing force, the spring 92 of the mode of the device 10 of
a shows an additional preferred mode of the device 10 wherein the member 100 is engaged to the bracket 110 by an unbiased hinge 113 such as a pin. The member 100 additionally may include a weighted distal end 114 however it is oriented substantially downward. In use, the centripetal force of the swinging door will cause the member 100 to rotate upward to the as used position, and once the door is stopped, gravity will act to return the member 100 to the rested position. Still another preferred mode shown in
In other preferred modes not shown, the first member 118 and second member 124 may be engaged to a bracket and other mounting components as to position the second member 124 in the space between the door 1000 and door jamb frame stop 1020 and then articulate both members away from that space after providing a stop between the door 1000 and frame 1010. In this mode the ramped portion of the first member 118 may be at a compound angle, or have a complex curvature as needed.
d depict views of a preferred mode of the device 10 in the as used position engaged near the handle side edge of a door 1000 which is powered and automatic. In this mode and other modes described shortly below, the device includes door stop components which are automated by electronic controls to automatically deploy the stopper element 146 after a prolonged closure of the door, to thereby allow the door to be closed and the protective stopper 140 automatically deployed on the next opening of the door.
This is especially important in instances where the device 10 may be deployed, such as a hotel, or the exterior doors of a windy venue. The doors at a point may be closed for the evening for security or to keep out cold weather. With other modes of the device 10 and prior art, a user had to actively re-deploy the stopper 176 which prevents full closure of the door into the jamb. Should the deployment be delayed or forgotten when the door is left open, injuries might result to hands, digits, and limbs of persons or animals unlucky enough to have such in between the door and jamb upon a slamming of the door caused by a gust of wind or someone leaning on the door or otherwise. Employing the mode of the device 10 herein, this problem is eliminated by the automatic re-deployment of the stopper, shown as 146, 176, and 210, to a protective position, once the door is opened.
The device 10 includes a housing 140 defined by a plurality of sidewalls 142 and having an elongated aperture 144 formed on at least one sidewall 142. As can been seen, a stopper element 146 extends from within the housing 140 through the aperture 142 in a first or rested position. The stopper 140 is engaged to an arm member 150 which is rotationally engaged within the housing 140 by a hinge 154. At the proximal end, opposite the stopper 146, the arm 150 is rotationally engaged to the distal end of the actuator arm 158 of an electronic linear actuator 156. The linear actuator itself is rotationally engaged to the housing 140 similarly by a hinge 157 or the like.
In use, similar to other modes of the device 10 shown and described previously, with the device 10 in the rested position show in
Immediately after contact of the stopper 146 with the door jamb frame, a sensor or switch 148 engaged to or in communication with a sensing component of the stopper 146 will close a circuit and thereby activate the linear actuator 156 causing the arm 150 and stopper 146 to rotate upward to essentially draw the stopper 146 into the interior of the housing 140, as shown in
After the device 10 has successfully prevented the door 1000 from slamming and provided a means for providing a full closure without damage to the frame, it is desired to essentially reset the device 10 while the door is in the fully closed position to allow the device 10 to once again return to the as used or first position. In accordance with the current preferred mode of the device 10, this is accomplished by timing, or otherwise providing a means for activating the linear actuator 156 to rotate the arm 150 back to the rested position. Shown in
As such, it is shown and preferred that the arm 150 is formed of a two-piece construction having a rotatable hinge portion 152 allowing the stopper end of the arm 150 to be deflected to the stored, or loaded position shown. The device 10 will remain in the position of
a-39d show another automated mode of the device 10 employing purely linear translation to prevent a high velocity closing door from slamming into a door jamb stop as well as to provide controlled closure of the door thereafter. Shown, the device 10 again includes an elongated housing 170 defined by a plurality of sidewalls 172 and having an aperture 174 formed on at least one sidewall 172. As can been seen, a stopper element 176 extends from within the housing 170 through the aperture 172 in a first or rested position. The stopper 170 is engaged to an arm member 180 comprising of a first and second 182, 184 telescopically engaged components. It is preferred that the second component employs a spring (not shown) or other means for biasing the first component 182 in the extended or rested position as shown in
In use, with the device 10 in the first rested position, and engaged preferably at or near the handle side edge of a door, the stopper 176 extends past the door edge and provides a bump stop against the door jamb frame for a high velocity closing door. Immediately after contact with the door jamb frame, or by compression between the fingers of a user closing the door for the evening, a switch or sensor 178 engaged to the stopper activates the linear actuator 186 as to translationally draw the arm 180 and stopper 176 within the housing 170, as shown in
Again, this will allow the door to achieve a fully closed position. Further, through electronic timing or other activation means, with the door in the closed position, the linear actuator 186 reverses direction and translates the arm 180 back toward the first or rested position. However, as shown in
a-40c show another automated mode of the device 10 employing another means for linear translation of the door stop device components to prevent a high velocity closing door from slamming into a door jamb stop as well as provide controlled closure of the door thereafter. Shown, the device 10 again includes an elongated housing 200 defined by a plurality of sidewalls and having an aperture formed on at least one sidewall. Similar to other modes, a stopper element 210 extends from within the housing 200 through the aperture in a first or rested position. The stopper 210 is engaged to an arm member 202 comprising of first and second 204, 206 telescopically engaged components. It is preferred that the second component employs a spring (not shown) or other suitable means for biasing the first component 204 in the extended or rested position as shown in
In use, with the device 10 in the first rested position, and engaged preferably at or near the handle side edge of a door, the stopper 176 extends past the door edge and provides a bump stop against the door jamb frame for a high velocity closing door. Immediately after contact with the door jamb frame, a switch or sensor engaged to the stopper 210 activates the driving motor 212 as to translationally draw the track 208 and arm 202 within the housing 200, as shown in
Again, as in all modes of the automatic mode of the device 10, this will allow the door to achieve a fully closed position for long periods if desired and still automatically redeploy the stopper and eliminate the possibility of someone forgetting to do so. Further, through electronic timing or other activation means, with the door in the closed position, the driving motor 212 reverses direction and translates the track 208 and arm 180 back toward the first or rested position. Again however, as shown in
The device 10 in the currently shown mode comprises a housing 220 formed of a plurality of sidewalls, a closed end, and an open end 227. Again, similar to other modes of the device 10 the housing 220 has at least one sidewall extension 222. Further, a first threaded aperture 224 and second threaded aperture 226 are shown on respective sidewalls of the housing 220 as needed to engage screws which is described in more detail later.
The components of the device 10 to be housed within the housing 220 are shown in the exploded view for descriptive purposes wherein the intended operation of the device and its components will be set forth in later figures. Further it is to be understood that the various components are capable of modifications as needed to achieve the above noted goals as is within the overall scope and intended purpose of the device 10 and should not be considered limited by the following descriptions.
In the figure there is seen the first member 228. The first member 228 is depicted as a rigid but impact absorbing body preferably of a rectangular cross section and formed of a material such as a polymeric material or rubber. The member 228 includes a ramped portion 230 communicating with at least one sidewall of the body of the member 228. It must be noted that the ramped portion 230 may similarly be a curved or otherwise angled portion as needed for the intended purpose which will become apparent shortly.
A second member 232 is also shown and comprised of a substantially rigid body preferably of a rectangular cross section. The second member 232 additionally includes at least one curved or ramped portion 236 which in the as used mode provides a means for deflecting or otherwise rotating the member 232 during high velocity impact with the door jamb frame. This action provides a means for communicating the force of impact away from the components of the device 10 and is shown in more detail in
Referring now to both the exploded view in
However, it must be noted that the device 10 may employ other means for engagement such as adhesives, snap fits, or the like and is not limited to screw type engagement shown. Further, there is seen a first spring engagement screw 246, spring adjustment slide 248 and drive screw 254 employed in combination with a first spring 256 which provides a means bias the bracket 238 and first member 228 in the as used position defined shortly. In use the spring 256 extends from the engagement screw 246 to a set screw 258 which is engaged within the aperture 226 of the housing 220, a clearer depiction of this is shown later in the side views of
The second member 232 communicates with the bracket 238 via a second spring 260. There is shown a second spring engagement screw 250, spring adjustment slide 252, and drive screw 254, wherein the spring 260 extends from the screw 250 to an engagement point with the second member 232 (not shown). The adjustment slide 252 and drive screw 254 provide means for adjusting the spring tension or biasing force of the second spring 260. As such, similar to other modes of the device 10, the first member 228 and second member 232 may translate independent each other.
The following figures provide a description of the modes of operation of the device 10 engaged on the top side edge during the high velocity closure of a door 1000.
It is noted that during closure, the top edge of the door 1000 approaches the top edge of the door jamb frame 1010 at a slight angle of attack due to rotational movement. As such it is preferred that the strike plate 300 is angled or otherwise formed to assure flush contact of the face of the first member 228 with the face of the strike plate 300 during impact. Further, it is to be understood that the strike plate 300 may be permitted to pivot, or otherwise be set for optimal engagement in a manner which best transfers the impact force of the high velocity closing door 1000 the door jamb frame 1010.
A moment after impacting the door jamb, shown in
Subsequent to translation of the first member, with the second member 232 remains substantially in an extended position or stationary, as shown in
As can also be seen, a ramped or curved portion 236 at the end of the second member 232 closest to the retracted first member 228, provides an important function in that it allows the second member 232 to pivot or deflect slightly in a direction away from the door jamb, on impact. This defection causes the curved portion 236 to ride on the first member 228 and absorbs impact energy and aids in minimizing the transfer of energy directly into the assembled components of the device 10. It has been found that this pivoting of the second member 232 and resulting energy absorption significantly reduces the chance of damage to the housing 220. This is because instead of a long lever being formed by the extended second member 232 transmitting all the torque of impact to the housing 220, the vector of the force of impact is communicated in an angled vector relative to the face of the door to which the housing 220 engages and dissipated, thus reducing the chance of damage to the housing or a dismount from the door.
With the door's 1000 momentum stopped, and the door held open a gap for an adjustable duration of time, any body part or other item in the maintained gap, can be withdrawn. Thereafter the biasing force from the stretched second spring 260, which has been elongated by the moving mount to the first member, provides the biasing force to translate the second member 232, away from the edge of the door, and along the housing 220 and to a position adjacent the first member 228, shown in
Additional utility of the depicted device 10 of the current preferred mode, is provided in a substantially vertically disposed mounting of the device 10, with vertical translation of the first and second member. Used in a vertical disposition, translating parallel to the long side of the door, should the second spring 260 fail to impart bias, gravity will act to bias the second member 232 to translate toward the housing 220 as needed, to allow the door 1000 to safely close. This gravitational bias and translation occurs once the force of the door jamb against the side of the second member 232 is frictionally insufficient to maintain it extended.
In use on a moving door, normally once the first member retracts, the impact of the jamb on the second member 232 causes a rebound of the second member 232 away from the door jamb. Frictional engagement is lost during the disconnect caused by the rebound, and gravity will aid translation of the second spring 260 is functional, and will cause the translation by itself should the second spring 26 be damaged, disconnected, or missing. This gravitational secondary biasing is highly desirable as a fail safe mechanism of the current mode of the device 10 to allow closure of doors, such as fire sealing or water tight doors that must be allowed to close during certain emergency situations.
As is the intent of the present invention, subsequent to the dwell time of the second member 228 in an extended position, and the resulting maintaining of a gap between the door edge and frame, a slow controlled closure of the door 1000 into the frame, is then achievable. Closure into the frame is shown in the current figure, where the ramped portion 230 at the distal leading edge of the first member 228, is shown contacting the door jamb stop 1020.
As noted, in many instances of a high velocity door closure, where the second member 232 contacts the door jamb, or wall surface for a dwell time in the extended position, a rebound occurs which separates the second member 232 from frictional engagement with the door jamb or contact surface. During this disconnect, the biasing force of the second spring 260 will translate the second member to a retracted position. It should be noted that in addition to adjusting the biasing force of the second spring 260 to increase or decrease dwell time and the resulting formed gap, the material forming the second member 232 may also be adjusted for durometer, to make it more or less resilient. This is most important for two reasons. First, the resilient material absorbs the extreme force of the contact of the door and the edge between it, without communicating that force to the housing which would dismount it. Instead, the resilient material absorbs it. Currently nylon and delron, and materials of similar durometer are employed but this can be adjusted to absorb more or less force.
Secondly, the durometer of the material forming the second member can be adjusted for more or less resilience, and thereby adjust the distance of any rebound. The time of rebound can be adjusted to increase or decrease the dwell time of the gap between the leading edge of the door 1000 and the leading edge of the door jamb. The size of the rebound also increases the size of the gap momentarily. Consequently the device used for doors at slamming speeds, from 4 to 50 feet per second (and as also defined by ANSI for door specifications), bumps, rebounds, and then closes at a conventional speed, all the while maintaining a gap for a dwell time. Thus, while the second member may retract quickly due to an increased bias of the second spring 260, the duration of existence of the gap can be made slightly longer using material with a durometer which absorbs punishment and transmission of damaging force to the housing, and provides a bounce or rebound separation through movement in a direction away from the door jamb, before the door 1000 returns to its former directional movement to a normal closure at a normal speed between 1-3 feet per second approach speed of the door to the jamb, where both members retract concurrently. Currently a shore of between 45 and 120 works well for the material such as nylon or delron which are on the higher side of the shore scale.
Shown in
Here again, the dwell time of the second member 232 in an extended position, maintains the gap for a duration of time substantially equal to the dwell time of the second member if not slightly longer. Thereafter, the biasing force of the spring and then a controlled closure of the door 1000, shown in the final closed position in
It is must be noted, and is highly emphasized, that in the case of conventional slow closure of the door 1000, the first and second members 228, 232 will tend to translate in unison due to frictional engagement therebetween and the lack of energy to accelerate the first member 228 using the force vector caused by the contact of the door jamb with the ramped distal end. A high speed contact between the ramped distal end and door jamb translates the first member 228 with sufficient force and speed that frictional contact with the second member 232 is overcome thereby leaving the second member 232 in the extended position for contact to maintain a gap.
However, during a slow closure of the door 1000, with the device 10 in the starting first position of
As an additional note, the device 10 in any of the preferred modes shown may employ means for locking or otherwise securing the bump stop and closure components in any of the positions shown. For example, through the provision of a locking pin, locking button, frictional lock, or other suitable means (not shown), the device 10 can be securely maintained in the position shown in 46 with the second member 232 is positioned to always contact the strike plate 300 when the door 1000 approaches the door jamb. Alternatively, the securing means can lock or otherwise secure the first and second member 228, 232 in the closed or stored positioned of
The first elongated member 282 has a ramped portion 286 and the second elongated member 288 is shown in the assembled mode therewith engaged via similar components as shown previously in
Further, in this current mode the first member 282 includes a side cavity 290 for housing a adjustable projection stopper 296 and threadably engaged adjustment screw 294. As is shown the adjustable stopper 296 includes a threaded aperture 297 for threaded engagement with the screw 294. In use, as shown in the side view of
For example, in
Additionally preferred, the adjustable stopper 296 allows the user to adjust the projection of the elongated members 282, 288 to a position substantially flush with the right angled extension 276 as shown in
In
However, to ensure that the device 10 is reset to the as used position upon an opening of the door 1000, a failsafe reset means is provided through the employment of a flexible planar member 300 engaged onto the contact surface of the door jamb stop 1020. The planar member 300 is shown in front and side views of
It is anticipated that the elongated members of the device 10 will encounter high impact forces. As such, in
As shown in
The first 322 and second 324 elongated members are also shown. In this mode, the first member 322 includes an ramped portion 323 which additionally comprises a transverse convex curvature communicating from one side edge to the other, as can be seen in
This curvature is preferred for the as used mounting of the device 10 in all modes at the top edge of the door, since the rotating door will be closing in an arc toward the door jamb yielding a contact between the two at a slight or moderate angle, were the surface of the second member 32 planar. Thus, the curvature accommodates this angle, and provides a means to increase the surface contact between the door jamb and first member 322. The increased surface area of contact, helps prevent marring of the door jamb, and also prevents damage to the first member 322 by distributing the force of contact over a larger area.
Further, there is shown and preferably included a friction enhancing component 332 which is engaged within a cavity 338 (
Thus, this engagement serves as a “toe hold” which will inhibit the retraction and translation of the second member 324 relative the first member 322 during operative translation of the first member 322 into the housing 312 after contact with the door jamb frame and/or stop as shown in previous modes. Tightening of the adjustment screw 328 will increase the resistance of the second member 324 to translate, thereby maintaining the second member 324 in an extended position for a longer period of time therefor providing a means for increasing the likelihood of a bump stop prior to closure of the door.
An additional adjustment screw 326 is also provided and communicates through an aperture 340 of the second member 324 to at least one booster spring 330. In use, the screw 326 provides a means for adjusting the compression of the spring 330 in its engagement with the first 322 and second 324 member. In use, the booster spring 330 is compressed when the first member 322 is translated into the housing 312, such as during the impact with the door jamb frame.
As can be seen in
Experimentation has shown that the configuration of these type doors requires slight modification from the previous modes of the device 10 already disclosed. In this mode the second elongated member 354 includes at least one curved or ramped portion 358 which in the as used mode provides a means for deflecting or otherwise rotating the member 354 during high velocity impact with the door jamb frame 4000 (
Briefly, following
Finally, upon closure of the door 4100 (
It is noted that upon reading this disclosure that those skilled in the art may readily understand various other ways to achieve translation or rotation of a stopper to and away from a door edge as is the intended scope of the present invention. As such those skilled will appreciate that the above description are provided merely to portray the overall purpose of the device and should therefor not limited to the exact mechanical and electronic operations described. Further it is noted and anticipated that the operations of the device 10, while not preferred for esthetics and other reasons, as shown could be employed through an engagement or retrofitting of operative components directly to a door frame, as opposed to the door, and the actions of the bump stop and dwell time of the second member to yield a gap and subsequent controlled closure will similarly be accomplished through the contact of the door to the frame, without the need to engage the device to the door.
The above descriptions of the preferred modes have been provided to portray the intent and overall scope of the present invention. The invention provides a means for preventing injuries to users or bystanders from contact between the leading edge of a door and a door dam during a high velocity door closure from compression and/or pinching between the door and jamb. Further it provides a means for protecting the structural integrity of a door jamb stop which may be damaged from high impact forces. The device concurrently allows for normal controlled closure of the door into the door jamb.
While all of the fundamental characteristics and features of the invention have been shown and described herein, with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosure and it will be apparent that in some instances, some features of the invention may be employed without a corresponding use of other features without departing from the scope of the invention as set forth. It should also be understood that various substitutions, modifications, and variations may be made by those skilled in the art without departing from the spirit or scope of the invention. Consequently, all such modifications and variations and substitutions are included within the
This application Claims Priority to U.S. Provisional Application Ser. No. 61/557,852 filed on Nov. 9, 2011, and to U.S. Provisional Application Ser. No. 61/576,790 filed on Dec. 16, 2011, and to U.S. Provisional Application Ser. No. 61/588,104 filed on Jan. 18, 2012, of which all are herein incorporated in their respective entirety by reference.
Number | Date | Country | |
---|---|---|---|
61557852 | Nov 2011 | US | |
61576790 | Dec 2011 | US | |
61588104 | Jan 2012 | US |