The invention is directed to a finger pinch protector device for a door. In particular, the invention is directed to a door stop for a door that may be installed and removed without any tools or other equipment, that will not mar or otherwise damage a door, and that may be activated by engagement of the door with the doorjamb.
Accidental closing of doors can cause pinched fingers. Young children may be at risk of accidental closing of doors and finger injury. A number of devices in the past have been directed to controlling door closing. Commercial door closer devices will often prevent a door from closing at a rapid pace. These require considerable installation effort, are typically permanent installations, and mar both the door and the doorframe.
Other simple devices include bumpers which may be slipped over a side edge of the door. These devices can be slipped onto a door once it is opened but then require removal of the device before the door can close again.
There remains a need for a door stop for a door that may be easily installed and easily removed as desired. There also remains a need for a door stop for a door that may be installed and removed without any tools or equipment and will not mar or damage the door or the doorframe. There also remains a need for a door stop that may be activated by engagement of the door with a doorjamb.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented elsewhere herein.
The invention is directed to a door stop for a door. According to embodiments of the invention, the device includes a clamp which is configured to fit over and secure over a first side edge of a door. The width of the clamp may be slightly less than the width of the door and such that it may be secured to the door by spring force. The clamp has an elongated planar body with two parallel guide rails extending from the planar body of the clamp. Each guide rail extends outward from the planar body of the clamp at an acute angle. The elongated latch includes a pair of parallel tracks which align with and receive the parallel guide rails of the clamp. The elongated latch includes one beveled end which is utilized to engage the doorjamb and activate the device. A latch spring mechanism urges the elongated latch along the guide rails of the clamp toward the doorjamb. Spring tension from an elastic band of the latch spring mechanism urges and pulls the latch along the guide rails of the clamp until the clamp engages a shoulder of the latch. The beveled edge of the clamp will extend beyond the clamp when the latch spring mechanism has urged the latch on the clamp. When the beveled edge of the latch of the device comes in contact with a doorjamb, the force will urge the latch against and overcome the force of the latch spring mechanism.
A rotor of the device has an extending post with a tubular opening which is received over a cylinder extending from the planar body of the clamp. A fastener fastens into the tubular opening of the post and engages the cylinder. The extending post and cylinder act as an axis of rotation for the rotor. The rotor rotates approximately 90 degrees between a vertical position and a safety horizontal position which is substantially parallel to both the latch and the clamp.
A rotor spring mechanism having an elastic band extends between the rotor and the latch. The rotor spring mechanism urges the rotor toward the horizontal safety position. An underside of the rotor contains a pair of locating pins which mate with corresponding recesses in the latch.
When the latch engages the doorjamb, the latch is urged or moved with respect to the clamp. At the same time, the rotor locating pins are forced from the locating recesses on the latch.
The force of the rotor spring mechanism thereby forces the rotor from the vertical position to move to the horizontal safety position. As the rotor projects beyond the edge of the open door, the rotor thereby prevents a door from closing.
According to one embodiment, a door stop for a door includes a clamp that is securable over a first side edge of a door. The clamp has a guide. An arm has a receiving portion for receiving the guide to permit movement of the arm on the clamp between an open position and a closed position. A spring mechanism is operably coupled to the clamp and the arm, and urges the arm on the guide of the clamp toward the closed position. In the closed position, the arm prevents the door from engaging with a respective door jamb.
According to another embodiment, a method of preventing a door from closing, includes securing a door stop to a first side edge of a door hingedly attached to a door frame. The door stop has a clamp with a guide and a biasing member. The door stop further includes a rotating member having a joining assembly. The joining assembly has a receiving portion that is configured to receive and rotate about the guide between an open and closed position, and a channel formed in an outer surface of the joining assembly that further defines a wall and a gap adjacent the wall. An arm extends from the joining assembly. A spring mechanism is operably secured to the clamp and the rotating member, and urges the arm toward the closed position. A first portion of the biasing member engages with the channel in the arm to rotate the arm between the closed and open positions. In the open position, the first leg is disposed in the gap such that it abuts the wall thus preventing rotation of the arm from the open position to the closed position. The method further includes moving the arm into the open position. When the first side edge of the door reaches the door jamb, the door jamb exerts a force on a second portion of the biasing member, the force causing the first portion of the biasing member to enter the channel in the joining assembly, whereby the arm rotates from the open position to the closed position thus preventing the door from closing.
According to still another embodiment a door stop broadly includes a clamp, a rotating member, and a biasing member. The clamp is securable over a side edge of a door and includes first, second, and third sides generally having a “U” configuration, the first and second faces being adjacent. A projection extends from the first face, and has a vertical opening formed along an outside edge thereof, a cavity, and a horizontal groove defined along a portion of a circumference of the projection. A track is defined in the first face along an outside edge of the first face. The clamp further includes a spring having a first portion and a second portion. The first portion is situated within the cavity, and the second portion extends into the horizontal groove and away from the projection. The rotating member is secured to the clamp and includes a joining assembly having a bottom face. The joining assembly comprises a receiving portion having a protrusion and a cutout. The joining assembly further includes a channel formed along an outside edge between the bottom face and a lip. The channel further defines a wall and a gap adjacent the wall. A pin extends from the bottom face, and an arm extends outwardly from the joining assembly. The protrusion of the receiving portion is received into the vertical opening of the projection of the clamp to mate the rotating member with the clamp. When mated, the second portion of the spring is received into the cutout in the receiving portion and biases the rotating member between an open and closed position, and the pin extends into the track in the clamp. The biasing member includes a first leg and a second leg generally having an “L” configuration. The biasing member engages with the crossbar of the clamp. In the closed position, the first leg of the biasing member engages with the channel in the joining assembly. In the open position, the first leg of the biasing member is disposed in the gap in the joining assembly such that the first leg abuts the wall, thus preventing the arm from moving from the open position to the closed position. When closing the door, and the first edge of the door reaches the door jamb, the door jamb exerts a force on the second leg of the biasing member, the force causing the first leg of the biasing member to leave the gap and enter the channel in the joining assembly, whereby the arm rotates from the open position into the closed position.
The embodiments discussed herein are merely illustrative of specific manners in which to make and use the invention and are not to be interpreted as limiting the scope.
While the invention has been described with a certain degree of particularity, it is to be noted that many modifications may be made in the details of the invention's construction and the arrangement of its components without departing from the scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification.
Referring to the drawings in detail,
The clamp 12 has an elongated planar body 18. The clamp 12 has at least one guide rail 16 extending from the planar body 18. In the embodiment shown in
An elongated latch 26 includes at least one track 28 to receive the guide rail of the clamp 12. In the embodiment shown in
The elongated latch 26 also includes one beveled end 36. As will be explained, the beveled end 36 is utilized to engage the doorjamb and activate the device 10.
As best seen in the perspective, exploded view in
As best seen in the perspective view in
The extending post 42 and cylinder 44 act as an axis of rotation for the rotor 40. The rotor 40 rotates approximately 90 degrees between a vertical position and a safety horizontal position which is substantially parallel to both the latch 26 and the clamp 12.
A rotor spring mechanism extends between the rotor 40 and the latch 26. In the embodiment shown, the rotor spring mechanism is an elastic band 48 which is installed by being 15 threaded through an opening in the post 42 and thereafter looped or hooked around opposed extending pins 50 extending from the latch. The extending pins 50 may best be seen in
The rotor 40 can rotate between a horizontal safety position shown in the top view in
An underside of the rotor 40 contains a pair of locating pins 60. The locating pins 60 mate with corresponding recesses 62 in the latch 26. The pins 60 in the recesses 62, thus, retain the rotor 40 in the vertical position.
When the latch 26 engages the doorjamb, the latch 26 is urged or moved with respect to the clamp 12. At the same time, the rotor locating pins 60 of the rotor are forced from the locating recesses 62 on the latch 26. Once the pins 60 are removed from the recesses, the force of the rotor spring mechanism thereby forces the rotor 40 to rotate from the vertical position and move back to the horizontal safety position. As the rotor 40 projects beyond the edge of the door, the rotor 40 thereby prevents a door from closing.
Referring now to
Best illustrated in
Referring to
An opening 108 is defined in the front face 103 and the corresponding side face 105 of the clamp 102 for receiving the biasing member 150. A crossbar 110 extends across the opening 108 at a location of the front face 103 just ahead of the transition 104 between the front face 103 and the side face 105. In some embodiments, the crossbar includes a wider portion 111 for engaging with the biasing member 150 as described below. A wing 112 extends outwardly (i.e., away from the center of the clamp 102) at an angle from an end 108a of the opening 108. The wing 112 may be integrally formed as part of the clamp 102 (e.g., molded, co-extruded, etc.) or the wing 112 may be formed separately from the clamp 102 and adhered to the edge of the opening 108a.
A track 114 may be defined near a leading edge 103a of the front face 103. The track 114 may have a curved configuration, and may generally follow the curve of the leading edge 103a, although this is not required. In some embodiments, the track 114 may be configured as approximately a 180-degree curve. In other embodiments, the curve of the track 114 may be less than 180-degrees, and may be, for example about 170-, 160-, 150-, 140-, 130-, 120-, 110-, 100-, or even 90-degrees. In still further embodiments, the curve of the track 114 may be about 80-, 70-, 60-, 50-, or 40-degrees.
Moving on, and with reference to
As shown in
Optionally, openings 132 may be formed in the bottom face 121a of the joining assembly 121. The openings 132 may reduce the amount of material required for the rotating member 120, thus reducing material cost. Finally, a pin 134 may protrude from the bottom face 121a. The pin 134 may be configured to fit within the track 114 on the clamp 102 when the rotating member 120 is secured to the clamp 102. When engaged within the track 114, the pin 134 prevents the rotating member 120 from rotating beyond the degree of the curve of rotation of the track 114.
Moving on to
When the clamp 102 is placed on a side edge of a door, a force is exerted on the biasing member 150 causing the biasing member 150 to rotate in the direction of the arrow shown in
When the door is shut, the side of the door with the door stop 100 meets the door jamb. However, before the door can shut, the door jamb pushes against the second leg 154 of the biasing member 150, forcing the first leg 152 out of the gap 130 and into the channel 128. The spring 118 then forces the arm 140 to rotate into the closed position, wherein the arm 140 is forced between the door and the door jamb, thus preventing the door from closing. The door stop 100 may be reloaded by rotating the arm 140 back into the open position as described above.
The arm 140 may take any shape and be formed of any appropriate material. In embodiments, the arm 140 is generally rectangular, and the edges of the arm 140 may optionally be rounded. In further embodiments, the arm 140 may be ovular, for example. Further configurations of the arm 140 may be appropriate and are considered to be within the scope of this disclosure. The arm material is preferably a material that is strong enough to prevent the door from closing but will not damage the door and/or the door jamb. In some embodiments, the arm 140 is constructed of a pliable or elastic material including but not limited to various types of polymers, foams, rubbers, plastics, et cetera.
As described herein, the invention provides a door stop for a door that may be installed or removed without any tools, that will not mar or otherwise damage a door, and that will be activated by engagement of the door with the jamb. The invention has been described in relation to the drawings attached hereto; however, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the scope of this invention.
This application claims the benefit of priority of U.S. Application No. 62/791,241 filed Jan. 11, 2019.
Number | Name | Date | Kind |
---|---|---|---|
1044728 | Basler | Nov 1912 | A |
2249294 | Kohler | Jul 1941 | A |
2709615 | Barnes, Jr. | May 1955 | A |
2739005 | Naffziger | Mar 1956 | A |
3357732 | Seal | Dec 1967 | A |
4310947 | Salerno | Jan 1982 | A |
4982474 | Kjellstrom | Jan 1991 | A |
6327743 | Rashid | Dec 2001 | B1 |
6510587 | Urschel | Jan 2003 | B2 |
8028376 | Karapetyan | Oct 2011 | B2 |
8595899 | McRoskey | Dec 2013 | B2 |
8656555 | Brown | Feb 2014 | B2 |
8776316 | McRoskey | Jul 2014 | B2 |
8893351 | Payson | Nov 2014 | B2 |
10822854 | Lee | Nov 2020 | B2 |
20060162255 | Lee | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2258270 | Feb 1993 | GB |
2016098585 | May 2016 | JP |
Number | Date | Country | |
---|---|---|---|
62791241 | Jan 2019 | US |