The present invention relates to door systems installation and monitoring, and more particularly to utilizing one or more sensors to monitor the proper installation and/or operation of the door system, and notifying a user of sensor data related to the installation or operation of the door system.
Door systems may include door operators, door closers, or other like systems that control or aid in the operation of opening and/or closing a door. A door operator is a device that is able to open and/or close a door or other barrier, or that aids in opening and/or closing a door or other barrier. Door operators typically include a motor that is connected to a door via a linkage to control motion of the door. Door operators come in a variety of styles and configurations. Alternatively, door closers may only be used to close a door or aid in closing a door. Door closers may have motors, springs, or other features for closing a door. In existing door systems, the doors are installed, the operating parameters are set in order to meet operating requirements set by governmental authorities, standards bodies, entities that purchased the door systems, or the like. While the operating parameters may be set by the installer after installation, it is difficult for installers to determine that the door system is meeting the installation and/or operating requirements.
In some embodiments a door system comprises a controller for controlling at least one operating parameter of the door system. A user computer system (e.g., a mobile device, such as a smartphone, remote control, and/or the like) may communicate with the controller over a wireless interface directly or indirectly. Alternatively, or additionally, a user may communicate with the controller through input and/or output devices operatively coupled to the door system. A drive system, including a motor assembly, drive train, and/or other components, is controlled by the controller where the drive system operates under the at least one operating parameter. The door systems may be door operators, door closers, or other like systems for controlling the operation of a door. As such, it should be understood that when describing features or functions related to a door operator, the same or similar features or functions may relate to a door closer or other systems that control the operation of a door. Consequently, when discussing a door operator, the phrase door operator may be substituted with door closer or other door system, which may operate in the same or similar way.
The controller of the door system may comprise a processor for operating the controller and communicating with other components of the controller and/or door system. The controller may also comprise a memory for storing instructions and data, such as the instructions and data for operating the door system. The controller may further comprise a communication interface for allowing communication with the controller and/or between the components of the controller and/or the door system. The communication interface may be a wireless communication interface that may use at least one of WiFi, Bluetooth, BLE, z-wave, Zigbee, 2G, 3G, 4G, 5G, LTE, WPAN, WirelessHD, WiGig, NFC protocols, and/or any other protocols, including any custom protocols. The controller may receive an authentication code or employ an authentication mechanism for allowing access to and/or changing the operation of the door system. The wireless communication interface may operate over short or long range, and such ranges may be adjustable to limit access to the door systems. The wireless communication interface may be on at all times, or it may require an action with respect to an input of the controller, such as activation using a physical input (e.g., key, button, touchscreen, or other like selection) to enable wireless capability of the controller. The controller may act as a server with user interfaces (e.g. web pages, application interfaces, or the like) accessible over the wireless communication interface. The user interfaces can be used for setup, diagnostics, input and output programming, settings, etc. The controller may collect data for tracking, mapping, sensors, communication with other devices, alerts/notifications of door activity, performance, maintenance, faulty accessories, installation, or the like. The wireless interface and/or the control of the door systems may allow for the transfer of operating parameters of one door system to another door system directly between door systems and/or through the use of user computer systems. The wireless communication interface may be used to communicate with other systems for various features/functions such as vestibule, door interlock systems, HVAC control, door synchronization, or the like. The wireless communication interface may be used to communicate with other devices such as locks, exit devices, wall plates, sensors, access control/security systems, or the like.
The door systems may comprise one or more input devices (e.g., toggle switches, touch screen, ports, or the like) for providing control features (e.g., on/off switches, entering characters, other parameters, or the like). The input devices (e.g., switches, or the like) can be used for standard functionality and/or turning wireless capability on and off. The door systems may further comprise sensors (e.g., accelerometers, force detectors, strain detectors, or the like) for additional data collection. For example, an accelerometer may detect an orientation of the door system where the accelerometer communicates with the controller or a force detection sensor that detects the force required to close or open a door where the force detection sensor communicates with the controller.
In some embodiments a door set up system (e.g., door operator set up system, door closer set up system, or the like) comprises a controller for controlling at least one operating parameter (e.g., for opening, closing, setting up, and/or trouble shooting) of the door system. A wireless interface may allow for communication (e.g., directly or indirectly) between the controller and a user computer system over an air interface. A drive system may be controlled by the controller where the drive system operates under the at least one operating parameter. A user computer system may communicate with the wireless communication interface through a wireless connection over a network.
The user computer system may communicate with the controller using at least one of a WiFi, Bluetooth, BLE, z-wave, Zigbee, 2G, 3G, 4G, 5G, LTE, WPAN, WirelessHD, WiGig, NFC protocols, and/or any other protocols, including any custom protocols. The drive system may comprise a motor assembly, including a motor, controlled by the at least one operating parameter.
In some embodiments a method of operating a door system comprise utilizing a controller, and/or a user computer system to operate a drive system based on one or more operating parameters. The method may comprise establishing a wireless connection, directly or indirectly, between the controller and the user computer system; receiving at least one operating parameter of the door system at the controller over the wireless connection; saving the at least one operating parameter; and controlling the drive system using the at least one operating parameter. The method may comprise receiving an action through an input device at the controller before establishing the wireless connection. The method may further comprise utilizing an authentication mechanism at the controller before establishing the wireless connection. The wireless communication interface may operate over short or long range, which may be set and/or established by a user. The door system may further comprise receiving a signal at the controller from a sensor that senses an installation condition of the door operator.
During installation of the door system one or more sensors may be utilized in order to determine if the door system has been installed properly and meets any installation requirements (e.g., orientation requirements, operating requirements, or the like) set by any entity, as will be described herein in further detail. The door system may be operatively coupled to one or more sensors (e.g., sensors that may be used for orientation, operation, or the like, such as accelerometers, force sensors, or the like). As such, the one or more sensors may be located within the door system or located outside of the door system, and moreover, may or may not be removable (e.g., may be permanently coupled with the door system or may be removable from the door system). Consequently, the one or more sensors may remain a part of the door system or may be removed after installation and testing.
The one or more sensors may be used to identify if the door system is mounted level (e.g., with respect to a horizonal and/or vertical orientation) and/or plum (e.g., parallel) with respect to the door, the door frame, the wall, or the like. Moreover, the one or more sensors may be utilized to determine if the door system accelerates the door open and/or closed in accordance with the desired operating parameters. Furthermore, the one or more sensors may be utilized to determine if the door system was properly installed based on the vibration of the door system and/or components thereof as the door system operates to open and/or close the door. Additionally, the door system may be utilized in order to determine the force required to open and/or the close the door in order to determine if the door system, door, door frame, hinges, thresholds, or the like were properly installed and/or if any of the forgoing or components thereof are increasing the force required to open and/or close the door in a way that is outside of the installation requirements. It should be further understood that the one or more sensors may also be utilized to identify any installation issues (e.g., in the door system, or other components of the door assembly) and correct such issues by removing components (e.g., thresholds, hinges, or the like), disengaging components (e.g., linkages, or the like), and/or adjusting components (e.g., aligning hinges, linkages, or the like) and retesting the door operation using the one or more sensors in order to meet the installation requirements.
The one or more sensors may also be used to monitor the door assembly (e.g., door systems, movement of the door, or the like) during the operation of the door assembly. The one or more sensors (e.g., accelerometers, force sensors, or the like) capture sensor information from the door assembly during operation. The one or more sensors may capture the sensor information at one or more specific points in time (e.g., within specific time periods, when the door is operating, continuously over time, or the like) automatically according to a pre-defined schedule, upon the occurrence of an event (e.g., movement of the door, particular type of movement of the door, identifying a person is in the area of the door, a person is trying to access the door, or the like). The door system may automatically send a notification (e.g., an operation notification, a troubleshooting notification, a service notification, a security notification, or the like). Alternatively, the one or more sensors may capture sensor information upon a specific monitoring request from a user accessing the door system (e.g., through remote access and/or through a control on the door system). That is, a user may be able to access the door system in order to run diagnostics, troubleshoot a door system issue, send or receive service requests (e.g., replacement, maintenance, and/or other like requests), to perform a security review, or the like. The functions described herein may be provided through one or more applications (e.g., web-based, internal network, external network, dedicated applet, or the like) through which the door system may communicate with different users, such as a provider entity user (e.g., original manufacturer, third-party installer, third-party service provider, or the like), an operator entity user (e.g., owner of the building, tenant of the building, third-party management company, or the like), or the like. Consequently, users may determine if the door system operates the door in accordance with the desired operating parameters by reviewing the movement, vibration, speed, acceleration, force, or the like based on the sensor information captured and use the information to adjust the door assembly. As will be described herein, communication between the door system and the users (e.g., a user computer system) will allow for improved monitoring and service of the door systems before, during, and/or after door system issues arise, and through the use of one or more sensors and/or one or more interfaces (e.g., graphical user interfaces, or the like) of one or more applications.
Embodiments of the invention comprise a door system comprising a controller having one or more processors, one or more memories, and one or more communication interfaces, wherein the controller is configured to control the door system. The door system further comprises one or more sensors, wherein the one or more sensors are configured to capture sensor information of the door system or a door to which the door system is operatively coupled.
In further accord with embodiments of the invention, a notification is sent to one or more user computer systems regarding the door system or the door based on the one or more sensors.
In some embodiments, the notification is a service notification that relates to a preventative action for the door system.
In other embodiments, the notification is an operation notification that relates to the sensor information that is inconsistent with stored operating information.
In still other embodiments, the notification is a troubleshooting notification that provides one or more potential causes of the sensor information failing to meet stored operating information.
In yet other embodiments, the notification is a security notification that relates to potential unauthorized access of the door system or the door.
In other embodiments, the one or more sensors comprise at least one orientation sensor. The controller determines a change in door system orientation based on the orientation sensor and sends the notification regarding the change in the door system orientation.
In further accord with embodiments of the invention, the change in door system orientation is a determination of when a current orientation of the door system fails to meet an orientation requirement of the door system.
In other embodiments of the invention, the one or more sensors comprise at least one operation sensor. The controller determines vibration of the door system during operation based on the operation sensor, wherein the controller compares the vibration of the door system to a target vibration and sends the notification when the vibration of the door system does not meet the target vibration.
In still other embodiments, the target vibration is based on a motor type, a door type, or installation requirements.
In yet other embodiments, the one or more sensors comprise at least one operation sensor. The controller determines a force as the door system is opening and/or closing based on the at least one operation sensor, wherein the controller compares the force to a target force for the opening and/or the closing of the door system and sends the notification when the force does not meet the target force.
In other embodiments, the target force is based on a motor, a door type, or an installation requirement.
In further accord with embodiments of the invention, the controller further comprises one or more output devices, and the notification is provided on the one or more output devices of the door system.
In other embodiments, the one or more communication interfaces comprise at least a wireless communication interface that establishes a wireless connection with a user computer system, and providing the notification comprises transmission of the notification to the user computer system using the wireless connection.
In yet other embodiments, upon operation of the door system the one or more sensors automatically collect the sensor information.
In still other embodiments, the one or more communication interfaces comprise at least a wireless communication interface that establishes a wireless connection with a user computer system, and the controller receives a monitoring request from the user computer system through the one or more communication interfaces.
In some embodiments, the one or more sensors are activated in response to the monitoring request from the user computer system.
In other embodiments, the one or more communication interfaces comprise at least a wireless communication interface that establishes a wireless connection with a user computer system, and the controller receives a change request from the user computer system to change at least one operating parameter of the door system.
Embodiments of the invention comprise a door assembly. The door assembly comprises a door frame, a door operatively coupled to the door frame, and a door system operatively coupled to the door or door frame. The door system comprises a controller comprising one or more processors, one or more memories, and one or more communication interfaces, and configured to control the door system. The door assembly, further comprising one or more sensors operatively coupled to the door or the door system. The one or more sensors are configured to capture sensor information of the door system or the door.
Embodiments of the invention comprise a method of monitoring operation of a door assembly. The door assembly comprises a door frame, a door operatively coupled to the door frame, and a door system operatively coupled to the door or door frame. The door system comprises a controller having one or more processors, one or more memories, and one or more communication interfaces. The door assembly further comprising one or more sensors operatively coupled to the door or the door system. The method comprises controlling the door system based on the controller, capturing sensor information of the door system or the door, and sending a notification regarding the operation of the door system or the door of the door assembly.
To the accomplishment the foregoing and the related ends, the one or more embodiments comprise the features hereinafter described and particularly pointed out in the claims. The following description and the annexed drawings set forth certain illustrative features of the one or more embodiments. These features are indicative, however, of but a few of the various ways in which the principles of various embodiments may be employed, and this description is intended to include all such embodiments and their equivalents.
The following drawings illustrate embodiments of the invention and are not necessarily drawn to scale, wherein:
The following detailed description teaches specific example embodiments of the invention. Other embodiments do not depart from the scope of the present invention. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes” and/or “including” when used herein, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, words such as “upper,” “lower,” “left,” “right,” “horizontal,” “vertical,” “upward,” and “downward” merely describe the configuration shown in the figures. The referenced components may be oriented in an orientation other than that shown in the figures and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise. It will be understood that when an element is referred to as being “connected,” “coupled,” or “operatively coupled” to another element, the elements can be formed integrally with each other, or may be formed separately and put together. Furthermore, “connected,” “coupled,” or “operatively coupled” to can mean the element is directly connected, coupled, or operatively coupled to the other element, or intervening elements may be present between the elements. When two elements are connected, coupled, or operatively coupled to one another without intervening elements, the elements are referred to as directly connected, directly coupled, or directly operatively coupled. Furthermore, “connected,” “coupled,” or operatively coupled” may mean that the elements are detachable from each other, or that they are permanently coupled together.
It is understood that a door system (e.g., door operator, door closer, or the like) as described herein can be any system that controls (e.g., moves, aids in moving, or the like) a door or other barrier to an entry, an exit, a window or the like. The door system may control a barrier that, for example, swings, slides, or rolls between the open and closed positions. For convenience only, the barrier will be referred to herein as a door and the device will be referred to as a door system (e.g., door operator, door closer, or the like); however, the invention applies to, and can be used with, other types of barriers and the use of the terms “door” and “door system”, including the use of “door operator” and “door closer” are not meant to be limiting.
As used herein, the term “open position” for a door or other barrier means a door position other than a closed position, including any position between the closed position and a fully open position (e.g., one or more “open positions”). The term “closed position” for a door or other barrier means a position in which the door or other barrier is completely shut and may be the position where the door or other barrier engages a frame and a lock or latch may be engaged.
Referring now to the figures, wherein like reference numerals designate corresponding or similar elements throughout the several views, embodiments of a door system (e.g., illustrated as a door operator) in which the setup system (e.g., smart setup system) and methods are used is shown in
The door system 40 may comprise a casing 48, otherwise described as a housing, that includes a back plate 50 and a cover 51. A drive system 52 (e.g., comprising a drive train 60 and a motor assembly 62), a closer assembly 54, and/or a controller 58 are mounted in the casing 48 (or at least partially within the casing 48). A linkage assembly 56 operably couples the door system 40 to the door 42. The casing 48 is shown mounted to the door frame 44, however, in other embodiments the casing 48 may be mounted to the door 42, and the linkage assembly 56 operatively couples the door system 40 to the door frame 44. The casing 48 is typically mounted in a particular orientation, such as horizontally, with respect to the door frame 44. The cover 51 attaches to the back plate 50 and surrounds and encloses the components of the door system 40 to reduce dirt and dust contamination, and to provide a more aesthetically pleasing appearance. It is understood that door system 40 may also be concealed within the door 42, the wall 38 (e.g., above the door frame 44), or the door frame 44, or it may be installed in the floor.
The motor assembly 62 may include a motor 64 (e.g., a reversible electric motor, unidirectional motor, or the like). The motor 64 may include a motor drive shaft 68. The drive train 60 is shown as including a drive gear 70 connected to drive shaft 68, a driven gear 74 connected to output shaft 82 and a chain 72 connecting the drive gear 70 to the driven gear 74. Alternatively, other types of drive trains 60, such as only gears (e.g., no chains), alternatives to chains (e.g., bands, ribbons, or the like), cam and follower, screw mechanism, mechanical linkages, or any type of drive train 60 may be used with a motor assembly 62, or other mechanical, electromechanical, hydraulic, pneumatic, or the like device to open or close the door 42. In some embodiments, operation of the motor 64 rotates the output shaft 82 to drive the linkage assembly 56 to open and/or close the door 42 or to assist in the opening and/or closing of the door 42.
To close the door 42, a closer assembly 54 may be provided for returning the door 42 to the closed position after the door 42 has been opened. The closer assembly 54 may include a closer 80 of standard construction which provides a closing force on the door 42 when the door 42 is in an open position. The closer 80 may comprise a spring system, hydraulic system, pneumatic system, and/or other systems, or combinations of such systems, for providing the closing force. In other embodiments, the closing force may be supplied by the motor 64 that is used to open the door 42 or by a second motor (e.g., a closing motor).
The linkage assembly 56 is shown comprising a first rigid connecting arm link 86 and a second rigid connecting arm link 87. The first connecting arm link 86 is fixed at one end to the lower end of output shaft 82 such that the first connecting arm link 86 is rotated by the output shaft 82. The second end of the first connecting arm link 86 is pivotally connected to a first end of the second connecting arm link 87. The second end of the second connecting arm link 87 is pivotally joined to a door 42 directly or through a mounting bracket 92 fixed to the door 42. While a rigid two-arm linkage assembly 56 is shown, the linkage assembly 56 may be different than that illustrated and may include a greater or fewer number of arm linkages, sliding elements, shock absorbing arms, mounting brackets 92, or the like.
While a specific embodiment of a door system 40 is shown, the door system 40 may comprise any suitable mechanisms and may use mechanisms other than, or in addition to, the illustrated components, and thus, is not limited to the embodiment shown in
The controller 58 is in electrical communication with the drive system 52 (e.g., the motor assembly 62, or the like). The controller 58, which is described in detail below, controls the operation of the motor 64 (and/or other components of the door system 40) and functions to transmit appropriate control signals to the drive system 52 for actuating the motor 64 and the drive train 60. The controller 58 operates to control the drive system 52 in accordance with operating parameters stored in the door system 40 or remotely from the door system 40. By way of example, the controller 58 may control the drive system 52 to maintain the door 42 in an open position for a selected period of time in order to allow sufficient time for a person to pass through the door opening. The controller 58 may also control the speed of the motor 64 for controlling the speed of opening or closing the door 42. Other operating parameters for controlling the operation of the door system 40 will be described in further detail herein later. It is to be understood that although the controller 58 is shown mounted in the casing 48, the controller 58 could also be housed separately from the door system 40 such as within the wall 38, a ceiling, in or on the door itself, in or on the floor, or remotely, such as in a mechanical room, for example.
The controller 58 is part of an overall control system which may include an activation device 136 in electrical communication with the controller 58 for allowing a user to selectively control actuation of the motor 64, and thus, the opening and/or closing of the door 42. The activation device 136 is operable to generate and transmit a door movement signal to the controller 58 which, in turn, is responsive to receiving the door movement signal to control operation of the motor 64 so as to control powered opening and/or closing of the door 42. The activation device 136 may be of any known or desired type. For example, the activation device 136 may consist of a manual push pad switch mounted on the wall 38, or a post, adjacent to the door 42. This arrangement is such that a user need only press the push pad to activate the door operator 40 to automatically open the door 42. In other embodiments, the activation device 136 may comprise a pressure pad such as in a switch-type floor mat. Various other activation devices are also suitable for use according to the present invention, including any type of switch, sensor, and/or actuator, including mechanical switching device, infrared motion sensors, radio frequency sensors, photoelectric cells, ultrasonic presence sensor switches, laser, and the like. As a result of the operation of some of these activation devices, an automatically operable door is caused to open by mere proximity of a person to the door. Such proximity may cause the door to operate by virtue of the activation device 136, such as interruption of a light beam (e.g., single beam, light curtain, or the like), distortion of an electrical field, by the actual physical closing of the switch by contact with the person or in response to the weight of the person approaching the door, or the like. The particular manner for generating a door movement signal to the controller 58 for energizing the drive system 52, such as the motor 64, may be accomplished by any suitable activation device.
One example door operator in which the system of the present disclosure may be used is shown in U.S. Pat. No. 8,499,495, titled “Door Operator,” issued on Aug. 6, 2013 to Houser et al., which is incorporated by reference herein in its entirety. Another example door operator in which the system of the present disclosure may be used is shown in U.S. Pat. No. 8,407,937, titled “Door Operator,” issued on Apr. 2, 2013 to Houser, which is incorporated by reference herein in its entirety. Another example door operator in which the system of the present disclosure may be used is shown in U.S. Pat. No. 9,514,583, titled “Controller for a Door Operator,” issued on Dec. 6, 2016 to Zasowski et al., which is incorporated by reference herein in its entirety. Another example door operator in which the system of the present disclosure may be used is shown in U.S. Patent Application Publication No. US 2014/0325911, titled “Door Operator Assembly,” published on Nov. 6, 2014 to Hass, which is incorporated by reference herein in its entirety.
The door systems 40 and the various components described herein may derive power from the power grid. The door systems 40 and the various components described herein may also be battery operated. In some embodiments, the door systems 40 and the various components described herein may use a battery and derive power from the power grid. In some embodiments, the door operator 40 may use a rechargeable battery. A power grid interface derives power from a power line and in turn supplies current to the door systems 40. The power supply feeds power to various components of the door systems 40 including the controller 58, motor 64, charger, battery, sensors 8 and/or the like.
While embodiments of door systems 40 are described and shown herein, the door systems 40 may come in a variety of styles and may utilize a variety of operating parameters. It should be understood that a door operator 40 may both open and close the door, while a door closer may only close the door such that manual opening is used. Door systems 40 may also include manual assist where under certain conditions the door system 40 assists in the manual opening and/or closing of the door. Door systems 40 may be controlled to adjust the opening and closing speeds of the door 42, they may be adjusted for the size and/or weight of the door 42, to compensate for wind and/or stack pressure, latch retry, electronic dampening, left/right opening and they may include various sensors 8 to control the safe operation of the door 42, such as motion detectors.
At least some of the parameters and/or features used to control the door system 40 and/or the components therein (hereinafter “operating parameters”) are adjustable such that when a door system 40 is installed at a door 42, the user (e.g., installer, or the like) is required to set the operating parameters as part of the installation process. Some of the operating parameters may be user selected, some of the operating parameters may be manufacturer defined, and some of the operating parameters may be set in response to building codes, or the like. In existing door systems (e.g., door operators, door closers, or the like), after the door system is installed, the case must be opened and the operating parameters set by push buttons, potentiometers, dip switches and various interactive hardware devices. This requires the installer to manually access the door operator, typically on a ladder, open the case 48 and manually set the operating parameters for each door operator at the controller 58. In commercial settings this operation may require the installer to manually set a large number of door operators individually. Moreover, the user that sets the operating parameters may be different than the user that physically installs the door system such that multiple people must physically access each door system. The set up operation may also require the installer to rely on wiring diagrams to determine the appropriate controller input for each operating parameter. Moreover, anytime an operating parameter needs adjusting a user (e.g., technician, maintenance provider, or the like) must access the door system to adjust the operating parameters, in the same or similar way the installer was required to access the door system (e.g., using a ladder, rely on wiring diagrams, or the like). Moreover, when the user (e.g., installer, technician, or the like) is defining (e.g., setting, adjusting, or the like) the operating parameters of the door system, the doors may require blocking off the doorway and/or hallway, thus preventing use of the doorway so that the user can set up a ladder, manually access the hardware to set or adjust the operating parameters. In some embodiments, manual access may be required just to check the operating parameters of the door system.
In some of the embodiments of the systems and methods provided herein, information is sent to and received from the door system 40 to allow controlling, monitoring and adjusting of information pertaining to the operation of the door system 40. The systems of the present disclosure may be used by any user (e.g., an installer, technician, or the like), for example, to configure, adjust, command, test, troubleshoot, upgrade and/or monitor a door system 40. Referring to
The door systems 40 (e.g., door operator, door closer) can include computer program code which, when executed by the processor 22, causes the door systems 40 (e.g., door operator or door closer) to perform as described herein. A computer program product can include a medium with non-transitory computer program code that when executed causes the door system 40 to operate as described herein. The present invention may be embodied as a method, device, article, system, computer program product, or a combination of the foregoing. Any suitable computer usable or computer readable medium may be utilized for a computer program product to implement all or part of the system. The computer usable or computer readable medium may be, for example but not limited to, a tangible electronic, magnetic, optical, electromagnetic, or semiconductor system, apparatus or device. More specific examples of the computer readable medium may include, but is not limited to, the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), or an optical storage device.
Computer program code for carrying out operations of the present invention or for assisting in the carrying out of a method according to an example embodiment of the invention may be written in an object oriented, scripted or unscripted programming language such as Java, Peri, python, C++ or the like. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer program code may also be written in HTML5 or similar languages that are commonly used for applications or “apps” intended to be run on mobile computing devices such as smart phones, tablets, and the like. While specific examples of programming languages are described herein, these examples are not exhaustive, and the computer program code may be written in any suitable programming language.
Computer program instructions may be provided to the controller 58 to produce a machine, such that the instructions, which execute via the processor 22 of the controller 58, create a device for implementing the functions necessary to carry out the embodiments as described herein. Computer program instructions may also be provided as firmware for an embedded controller or a plurality of embedded controllers.
Referring to
While in some embodiments, the communication interface 26 communicates directly with the user computer system 30 over a short range via a wireless connection 32 such as WiFi, Bluetooth or other wireless access technology, a wireless connection 33 may operate over long or intermediate ranges and may include intervening networks 35, as shown in
The wireless communication interface 26 may be on at all times or a user may be required to take an action with respect to an input device 208 to the controller (e.g., action with respect to a physical “key”, button, touchscreen, or the like) may be required to enable wireless capability. As such, the user may enter a wireless authentication input into the door system 40. For example, a user may need to turn an on/off switch two, three, four, or other like times in order to enable the wireless communication interface 26 of the door system 40. Other actions may include selecting a pattern of physical input keys or touchscreen inputs, entering the authentication code (e.g., static, dynamic, or the like character code of numbers, letters, and/or symbols, scan a barcode, QR code, or other like code, or the like), holding multiple inputs at the same time, or the like. It should be understood that any action with respect to any input may be required, but that such an action is utilized to provide a layer of security that restricts unauthorized users from accessing the door system 40, in part, by requiring an authorized user to take an action to which only the authorized users are aware.
Additionally, or alternatively, other security measures may be provided to restrict (e.g., prevent, reduce the chance of, or the like) unauthorized access to the door system controller 58 to reduce the chance of tampering with the operating system and/or the operating parameters of the door system 40. Furthermore, to enhance the security of the system and to restrict unauthorized access to the door system 40, the wireless communication interface 26 may have a limited range such that the user computer system 30 must be in within the limited range (e.g., in close proximity) of the door system 40 in order to access the system. In some embodiments, the wireless communication interface 26 may be limited to a range of approximately 100 feet or less, 50 feet or less, 20 feet or less, or approximately 10 feet or less and may have a range of approximately 10 feet. In some embodiments, the range may be even less than 10 feet, although in a preferred embodiment the range is sufficient to allow an authorized user to gain access to the system over wireless connection 32 without the need to climb a ladder. The range may be selected such that the user computer system 30 may program a plurality of door systems 40 at one time. For example, the range may be selected such that the user computer system 30 can access and program a plurality of door systems 40 located along a hallway in a building. Providing the interface 124 with a limited range prevents remote unauthorized access to the system and requires any individual accessing the system to be in relatively close physical proximity to the door systems 40. While specific ranges have been set forth above, it is to be understood that the range of the wireless communication interface device 26 may be increased in certain applications where a greater range is required to access the door systems 40 and/or where unauthorized remote access is not an issue. As such, the wireless communication interface 26 of the door systems 40 may be programmable (e.g., set, adjusted, or the like) by an authorized user in order to optimize the range of the wireless communication for the needs of the particular customer.
Moreover, additional security may be implemented such that the user may be required to log into the system and gain access to the controller 58. For example, the system may require that the user's identity be authenticated using a username, a passcode, a cookie, a biometric identifier, a private key, a token, and/or another authentication mechanism. The door operator system 40 may display an authentication interface on the user computer system 30, which requires the input for user authentication. A suitable authentication response may be provided by the user, such as an access code may be provided by the user to the controller 58 via the authentication interface on the user computer system 30 (e.g., remote control, or other mobile device, or the like). The authentication system may use any suitable security measures that may or may not be specifically described herein.
To further enhance security of the system, the door system 40 may be provided with an on/off input 34 (e.g., a toggle switch) located on the exterior of the casing 48, or a remote location, such that the communication interface 26 is operable only when the input 34 is turned on. The input 34 may be located in a position on the casing 48 or off of the casing 48 such that the input is accessible to an authorized user but is not readily available to the general public, such as on top of the casing 48, within a access panel (e.g., cover or the like) on the casing 48, within an access panel off of the casing (e.g., on a wall, post, frame, or the like), or the like.
The controller 58 may communicate with the user computer system 30 (e.g., a mobile device, such as a remote control, smartphone, or the like) over a wireless connection 32, directly or through an external network. The user computer system 30 is used to program the door system 40 to define (e.g., set, adjust, remove, or the like) the operating parameters of the door system 40 after the door system 40 is physically installed on the door/door frame. The user computer system 30 may comprise a mobile device, such as a cellular phone, tablet, dedicated terminal, laptop, remote control, or the like. The wireless connection 32 between the user computer system 30 and the controller 58 may be implemented using dedicated applications (e.g., apps, applet, or the like), portions of dedicated applications, a web browser based interface, and/or the like, or combinations of such systems. The controller 58 may act as a web server providing user interfaces (e.g., web pages, or the like) that may be accessed by the user computer system 30 over the wireless connection 32. The user interfaces can be used for setup, diagnostics, input and output programming, settings, or the like. The controller 58 may collect data for tracking, mapping, sensors, and communication with other devices, notifications (e.g., alerts, messages, or the like) of door activity, performance, maintenance, faulty accessories, installation, or the like.
Referring to
As used herein, the memory 102, as previously described with respect to the memory 24 of the controller 58, includes any computer readable medium (as defined herein) configured to store data, code, or other information. The memory 102 may include volatile memory, such as volatile Random Access Memory (RAM) including a cache area for the temporary storage of data. The memory 102 may also include non-volatile memory, which can be embedded and/or may be removable. The non-volatile memory 102 can additionally or alternatively include an electrically erasable programmable read-only memory (EEPROM), flash memory or the like.
The memory 102 can store any of a number of applications or code thereof, which comprise computer-executable instructions/code executed by the processor 100 to implement the functions of the user computer system 30 and/or the door system 40, and/or one or more of the process/method steps described herein. For example, the memory 102 may include system specific applications or APPs or such applications as a conventional web browser application. In some embodiments, the user computer system 30 is capable of providing graphical and/or character depictions of the operating parameters of the door system 40. The graphical and/or character representations allow the user to set or adjust the operating parameters of the door system 50.
In some embodiments, the user computer system 30 includes a wireless communication interface 106, such as a wireless communication chip, that communicates with a wireless communication interface 26 over a wireless connection 32, such that the user computer system 30 communicates with controller 58 directly without requiring access to an external network (e.g., Wi-Fi network, the cellular network or other network), or otherwise, through such an external network. As previously described, the controller 58 may be directly coupled to and may directly communicate with the user computer system 30 over wireless connection 32. The communication interface 106 may communicate using a wireless networking protocol such as WiFi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards, Bluetooth short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz, a proprietary interface or other wireless access technology that is compatible with the protocol used by the controller 58 whether or not such protocol is described herein.
The user computer system 30 may also be configured to communicate with an external source such as a help desk associated with the door system 40 over a wider communications network. In this regard, the user computer control 30 may be configured to operate with one or more air interface standards, communication protocols, modulation types, and access types. By way of illustration, the communication interface 106 of the user computer system 30 may include a transceiver 108 that may be configured to operate in accordance with any of a number of first, second, third, fourth, and/or fifth-generation communication protocols and/or the like. For example, the user computer system 30 may be configured to operate in accordance with second-generation (2G) wireless communication protocols IS-136 (time division multiple access (′PUMA)), GSM (global system for mobile communication), and/or IS-95 (code division multiple access (CDMA)), or with third-generation (3G) wireless communication protocols, such as Consolidated Mobile Telecommunications System (UMTS), CDMA2000, wideband CDMA (WCDMA) and/or time division-synchronous CDMA (TD-SCDMA), with fourth-generation (4G) wireless communication protocols, with LTE protocols, with 3GPP protocols, fifth-generation (5G) wireless communication protocols, and/or the like. The user computer system 30 may also be configured to operate in accordance with non-cellular communication mechanisms, such as via a wireless local area network (WLAN) or other communication/data networks. While the communication interface 106, the display 103, and/or the transceiver 108 are shown as separate blocks in
Providing the user computer system 30 with the functionality to communicate over a wider network may not be required for communicating with the controller 58 in order to set up the operating parameters of the door system 30. However, providing such functionality allows the user computer system 30 to communicate with a help desk, retrieve installation instructions from the door system manufacturer over the internet and otherwise send and retrieve information to a node other than the door system 40. Referring to
In the embodiments described above, a user computer system 30 is used to connect to the door system 40 through one or more user interfaces 104 in a display 103 of the user computer system 30. However, the user may not have a wireless enabled user computer system 30, or access to a user computer system 30. In these situations, it may be desirable to provide components (e.g., devices, interfaces, or the like) that allow a user to communicate with the door system 40 directly (e.g., without the need for the user computer system 30). As shown in
It should be understood that the control 204, such as the one or more output devices 206 and/or the one or more input devices 208, allows for the functionality of the setup system as described herein even if a wireless connection and/or user computer system 40 are not available to the user. As such, the user may utilize the one or more output devices 206 and/or the one or more input devices 208, and the other components of the controller 58 in order to define the operating parameters (e.g., make initial set-up configurations, adjust the present configurations, and/or the like), as will be described herein.
The door system 40 may be provided with default settings for the operating parameters such that absent instructions from the user computer system 30 through the control 204, the default settings control the operation of the door system 40. The default settings may be changed by the user using the user computer system 30 and/or the door system 40 itself (e.g., through the control 204), such that the door system 40 may be programmed to have customized operating parameters. In some embodiments, the user may change each individual operating parameter and/or may select from a plurality of operating parameter sets, which provide different pre-selected operating parameters based on the type of door system 40, the type of installation, the regulations which the door system 40 should meet. In some embodiments, in order to define the operating parameters, a menu is displayed on a user interface of the user computer system 30 and/or the one or more output devices 206 of the door system 40 that leads the user through a menu of operating parameters that may be programmed by the user to control operation of the door system 40, as will be described in further detail below.
A wide variety of operating parameters may be controlled using the systems of the present disclosure. Example operating parameters are described herein; however, the list is not exhaustive and other operating parameters in addition to, or in place of, those described herein may be controlled. The door system 40 may be controlled to adjust the opening and closing speed of the door. The door system 40 may be controlled to adjust for the size and/or weight of the door. The door system 40 may be controlled to compensate for wind and/or stack pressure caused by the flow of air through a building. The door system 40 may be controlled for latch retry. The door system 40 may be controlled for electronic dampening. The door system 40 may be controlled for left/right opening doors. The door system 40 may be controlled to communicate with various sensors (within the door system and/or operatively coupled to the door system outside of the door system), such as motion detectors, to control the safe operation of the door. The door system 40 may be controlled for whether the door system 40 operates based on an external activation device 136 (e.g., a switch) or operates with a slight movement of the door toward the open position, such as when a user pushes or pulls on the door. The door system 40 may be controlled to operate on both activation of an external activation device 136 and movement of the door. The system 40 may be controlled for obstruction detection, and delay sensitivity may be set and/or adjusted. For example, during the opening cycle, the door may be controlled to press against an obstruction for the obstruction delay time set and then to close normally. During the closing cycle, the door may be controlled to press against an obstruction for the time set and then to attempt to reclose. If the obstruction is still present, power to the motor may be turned off such that only a spring force (or other closing force) pushes the door against the obstruction. The door system 40 may be controlled so that a “latch boost” feature can be adjusted such as to “Off”, “Low”, or “High.” For example, if during the last few inches of door closing, the door does not close due to mechanical door issues, environment issues, and the like, additional closing force can be added to close the door. The additional force may be adjustable. The door system 40 may be controlled to adjust the time the door is held at the fully open position. The door system 40 may be controlled to have a delayed start where the delay to the motor start can be set in increments to allow unlocking of electric hardware. The door system 40 may be controlled for alarm delay. The door system 40 may be controlled to set the closed and open position of the door. While a number of operating parameters have been described above, any operating parameter of the door system 40 may be defined (e.g., set and/or adjusted) using the user computer system 30 over the wireless connection 32, or through the use of the one or more output devices 206 and/or the one or more input devices 208 of the door system 40.
In addition to defining the operating parameters, the door system 40 may communicate with the user computer system 30 and/or other systems (e.g., door system owner systems, maintenance provider systems, or the like) to track and monitor operation of the door system 30. For example, the number of open/close cycles the door system 40 has experienced can be recorded and transmitted to the user computer system 30 and/or other systems. The battery performance can be recorded and transmitted to the user computer system 30 and/or other systems. Other operating performance issues may be tracked, monitored and transmitted to the user computer system 30 and/or other systems, using sensors 8, as will be described in further detail herein.
To monitor the proper installation of the door system 40 and door 42, the door system 40 may include sensors 8 that provide feedback to the user computer system 30 and/or the one or more output devices 206 of the door system 40 (
A process flow 500 for setting up and operating a door system 40 is described in
To further enhance security, or in the alternative to taking an action as described above, the system may further receive a user authentication at the controller 58 through the control 204 and/or through the user computer system 30 (or through another system that communicates with the controller 58) to authenticate the user, as illustrated in block 503 of
Information regarding at least one operating parameter may be transmitted to and received by the door system 40, as illustrated by blocks 504 and 505 of
As illustrated in block 506 of
As previously discussed herein, the user computer system 30 and/or the one or more output devices 206 or input devices 208 may display various menus, icons, and other information to the user on one or more user interfaces. It should be understood that the user interfaces, such as on the door system 40 itself (e.g., on the output device 206 or input device 208 of the control 204, or the like) or on the user computer system 30 (e.g., on the display 103), may be graphical user interfaces (GUIs), or any other type of interface. The user can access (e.g., scroll through, or the like) menus and icons displayed on a user interface to input information to, and receive information from, the controller 58. Referring to
The user may access the control system using the menu 300. For example, assuming that the door system 40 has been installed properly, the user may want to change one or more of the operating parameters. The user may access the “Settings” menu to change the operating parameters by selecting (e.g., on a touchscreen, depressing a virtual or physical icon, or the like) the “Settings” button 310 on the home screen. In the illustrated embodiment, the buttons are soft buttons provided on a touch screen; however, any suitable user input may be used.
From the “Home” page,
From the “Home” page,
From the “Home” page,
In the embodiments described above with respect to
In some embodiments, the user may set-up the door system 40 as previously described with respect to
Block 606 of
As illustrated in block 608 of
Alternatively, and/or additionally, the user may access one or more installation interfaces (e.g., an operation interface) in order access other sensors (e.g., the accelerometers, the force sensors, or the like) to run other tests related to the orientation and/or operation of the door system 40 or other components of the door assembly.
Block 610 illustrates that in some embodiments the door system 40 may be activated (e.g., turned on during set-up) such that the door is operated (e.g., door operator may be activated to open and/or close, or a door closer may be manually opened and allowed to close) in order to perform one or more installation tests (e.g., orientation tests, operating tests, or the like). For example, a rigidity test, vibration test, acceleration test, speed test, force test, or the like may be performed by allowing the door system 40 to open and/or close (e.g., through the use of the motor, springs, or the like). The opening and/or closing of the door may be performed using different operating parameters based on how the door may operate during any number opening and/or closing cycles (e.g., based on different required operating environments), during maximum operation (e.g., maximum speed, acceleration, or the like), during minimum operation (e.g., minimum speed, acceleration, or the like), and/or based on other operating parameters. In some embodiments the operation testing may only occur after the user sets up the operating parameters based on the operating requirements of the door system 40 that the user is installing (e.g., as described with respect to
Block 612 of
For example, the evaluation of the orientation of the door system 40 may comprise comparing the horizonal and/or vertical location of the accelerometer 10 with a desired orientation as the door opens and/or closes, such as within a percentage, degree, or the like of horizonal, vertical, or the like.
In other examples, the evaluation of the rigidity of the door 42 may include the variation of the movement of the accelerometer 10 in different directions (e.g., oscillation in different directions) as the door is opening and/or closing, which may indicate that the components of the door system 40 may not be installed properly (e.g., may not be tightly assembled, installed in the correct configurations, or the like), and thus, the components of the door system may rattle, or the like. The movement of the accelerometer 10 may be compared against a target movement which may be based on performance testing of a properly installed door system 40.
In still other examples, the evaluation of the vibration of the door system 40 based on an accelerometer 10 may be compared to a target vibration that is based on a motor type, a door type (e.g., weight, or the like), and/or the desired operation of the door (e.g., speed, acceleration, or the like), which may also aid in identifying if one or more components of the door system 40 are installed properly.
In another example, the accelerometer 10 may be used to evaluate the acceleration and/or speed of the door 42 as it opens or closes in comparison to a target acceleration and/or speed based on set operating parameters. The evaluation may aid in determining components of the door assembly (e.g., the door system 40 or components thereof, the door, the door frame, the thresholds, or the like) that may not have been installed properly.
In other examples, the one or more force sensors 12 may be used in order to determine a force required to operate the door 42, which may be used to determine proper installation of various components of the door assembly. The force sensor 12 may be used instead of the accelerometer 10 and/or along with the accelerometer 10 to determine proper installation of the door assembly (e.g., a target force is met).
It should be understood that if the data received from the sensors 8 is outside the target values, the systems and/or associated applications may, for example, determine the cause of such issues, identify mitigation procedures, and/or the like and display the forgoing on a user interface. For example, one or more accelerometers 10 and/or force sensors 12 (or other sensors 8) may be used on the individual components within the door assembly. The evaluation of the sensors 8, alone or in combination with each other, may allow for determination of the cause of the lack rigidity, undesired movement, undesired vibration, acceleration or speed that is too high or too low, increased force required to open and/or close the door, or the like. The cause of the issues may include hinges of the door are binding, the frame may be out of alignment with the door, the door threshold may be out of alignment with the door, the door system 40 or other components thereof may be out of alignment with each other or not installed properly, or the like.
It should be understood that the one or more sensors 8 described herein may be located anywhere within, on, adjacent to, or the like with respect to the door systems 40 and/or the components thereof. Moreover, the one or more sensors 8 may be placed in static location such that they cannot be moved or the one or more sensors 8 may be moveable to different locations during or after installation, as needed during the mounting process or during operation of the door system 40. In some embodiments, the one or more sensors 8 may be mounted on the door instead of the door system 40, either permanently or temporarily.
The data collection and/or evaluation may be performed automatically upon operation of the door system 40, and a corresponding signal may be automatically transmitted to the controller 58. The data collected and the evaluation thereof may be communicated (e.g., in an automatic notification) to the user computer system 30 and/or to the one or more output devices 206 of the control 204 by the controller 58, such that the user (e.g., installer, or the like) can determine if the door system 40 is installed properly. Alternatively, a user may request a specific test using the one or more interfaces, and thereafter, the user receives data and/or an evaluation of the data for the test selected.
It should be understood that the installation of the door system 40 using the sensors 8 (e.g., accelerometer sensors 10, force sensors 12, and/or other sensors) may occur at the same time (e.g., single opening and closing which provides information from multiple types of sensors), or single sensors are reviewed individually (e.g., multiple door cycles are preformed to capture different data from various sensors 8).
Block 616 of
For example, with respect to the evaluation of the accelerometer 10, the notification may include information regarding whether or not the orientation, rigidity, acceleration, speed, and/or the like of the installation of the door system 40 meets orientation requirements (e.g., within a percent degree of horizontal or vertical, plum with a wall, the vibrations in the system are less than target levels, or the like), as well as information regarding how to correct any orientation and/or operation issues. For example, the notification may refer to the installation manual, troubleshooting information for the door system (e.g., alignment issues, installation points to check), testing to check the orientation or vibration issues, or the like. In other examples, with respect to the evaluation of the force sensor 12, the notification may include information regarding the operation of the door system 40 as it relates to potential installation issues. For example, the notification may refer to the installation manual, troubleshooting information for the door system (e.g., linkages not properly installed, drive system 52 issues, hinge issues, door frame issues, threshold issues, or the like), testing to check the force issues (e.g., disengage the motor, linkages, remove the door threshold, or the like and open and/or close the door, or the like), or other like information.
Consequently, depending on the evaluation of the data from the sensors 8, and the notifications related to how to troubleshoot the issues, adjustments to the installation of the door assembly may be made. After the adjustments the process returns to blocks 608-616 to provide additional testing of the door assembly by accessing the one or more sensors 8, activating the door system 40, receiving data, and/or the evaluations of the data, as previously described herein.
As previously described herein, the one or more sensors 8 may include one or more accelerometers 10, which may be used to monitor if the orientation of the door assembly (e.g., door system 40, or the components thereof, the door, or the like) remain orientated in the proper orientation (e.g., are not broken, out of alignment, or the like). The one or more accelerometers 10 may also be used to evaluate the rigidity of the door assembly (e.g., door system 40, door, or the like) by monitoring the variation of the movement of the accelerometer 10 in different directions (e.g., oscillation in different directions) as the door is opening and/or closing. The movement of the accelerometer 10 may indicate that the components of the door system 40 require service, such as maintenance, replacement, or the like (e.g., may have become loose during operation, broken, or the like), and thus, the components of the door system 40 may rattle, or the like. Moreover, the one or more accelerometers 10 may be used to evaluate the vibration of the door system 40 based on a motor type, a door type (e.g., weight, hinges, frame, or the like), which may also aid in identifying if one or more components of the door system 40 requires service. Furthermore, the one or more accelerometers 10 may be used to evaluate the acceleration and/or speed of the door as it opens or closes to aid in determining if components of the door assembly (e.g., the door system or components thereof, the door, the door frame, the thresholds, hinges, or the like) may require service. In some embodiments, the one or more accelerometers 10 may be used to review the operation of the door assembly over time, such as in order to determine if changes need to be made to the operating parameters of the door system 40, such as a result of increased and/or decreased traffic through a particular door over various time periods (e.g., over months, weeks, days, hours, times of day, or the like). The one or more accelerometers 10 may also be used alone or in combination with object sensors (e.g., cameras, infrared, light curtains, lasers, motion sensors, radar, or the like) to review potential security threats, such as unauthorized access to the door system 40. For example, the accelerometers 10 may detect movement of the door assembly that indicates a person is accessing the door system 40 (e.g., opening the casing, or the like), forcing the door open, or the like without having the proper authentication (e.g., without a badge swipe, without mobile device authorization, tailgating an authorized user, or the like), and one or more object sensors may capture information about users in the area at the same time.
The one or more sensors 8 may also include one or more force sensors 12. As also previously described herein, the one or more force sensors 12 may be used in order to determine a force required to operate the door assembly (e.g., the door system 40, door, or the like). The one ore more force sensors 12 may also be used to determine if the door assembly may require service, to review operation of the door, to review potential security issues, or the like. For example, should the force required to open and/or close the door increase over time, maintenance and/or replacement of the door assembly may be required (e.g., maintenance of the gears, linkages, hinges, or the like). The one or more force sensors 12 may be used instead of the one or more accelerometers 10 and/or along with the one or more accelerometers 10 (and/or other sensors 8) to determine if service is required or a potential security issues exists.
As illustrated in block 704 of
As illustrated by block 708 after the analysis is completed, the one or more applications, automatically and/or with the help of a user (e.g., provider entity user, operator entity user, or the like) may determine a notification to provide based on the analysis of the sensor information. For example, the notification may be determined automatically based on stored pre-defined notifications that correspond to the occurrence of particular sensor information failing to meet stored operating information. In alternative examples, a user may review the analysis of the sensor information by the service application and create and/or select a specific notification in response to the analysis. For example, in the event that the capture and analysis of the sensor information occurred in response to a user request (e.g., request from the operator entity, provider entity, or the like), the user may determine how to escalate the request by aiding in determining a notification.
Regardless of how the determination of the notification is made, as illustrated in blocks 710, 712, 714, 716 the notification may include an operation notification, a troubleshooting notification, a service notification, a security notification, and/or other notification. The types of notifications may be discussed in further detail herein; however, it should be understood that in some embodiments the notification may be sent to one or more particular users, based on the type of notification, and potential actions associated with the notifications. The operation notification of block 710 may be a notification disclosing to one or more users how one or more door assemblies (e.g., the door system 40, door, or the like) are operating. The operation notification may include the information about the usage of the door system 40 (e.g., since installation, during a particular time period—day, week, month, or the like), such as the number of cycles of the door system 40; the average or number of times the door is opened and/or closed at a particular speed, acceleration, or the like; the number of times a door is opened to a particular angle; the duration that a door remains opened and/or closed; the number of times a door changes direction during opening and/or closing; the time it takes for people to pass through the door; the force with which the door is being opened and/or closed; the vibration of the components of the door assembly; and/or any other operating parameter of the door assembly (e.g., door system 40, the door, or the like), or the change of any of the foregoing over a period of time. The operation notification may compare the operation of the door system 40 or the door 42 to stored operating information (e.g., one or more set operating parameters) for the door system 40. As previously described herein, the operation notification may be an automatic notification and/or may be in response to a user request. The operation notification may be sent to one or more users (e.g., provider entity users, operator entity users, or the like) in order to allow the users to monitor traffic throughout the building, determine if the door system 40 operating parameters need to be changed, determine how the door assembly operates over time, or the like.
The troubleshooting notification illustrated in block 712 may be a notification based on when the sensor information is operating outside of the stored operating information for one or more door assemblies (e.g., door systems 40, door, or the like). For example, the troubleshooting notification may be sent when the door assembly is still operating, but it is operating outside of the defined operating parameters. The troubleshooting notification may be sent to specific users based on the type of sensor information that is operating outside of the stored operating information. For example, an issue with the door system 40 may be sent to a provider entity user in order to allow the user to determine the potential issue with the door system 40. In another example, an issue with the door not closing completely may be sent to an operator entity user because the user may be located on site (e.g., facilities user) and can quickly identify why the door may not be closing (e.g., due to an object blocking the door, lock not operating properly, or the like). The troubleshooting notification may be sent to a specific technical support person or team that has experience with the particular door system 40 to which the troubleshooting notification is related.
The service notification illustrated in block 714 in
As illustrated in block 716 of
The notifications are described as separate notifications; however, the information of the notifications may be combined in one or more notifications and provide the same features described herein. Moreover, the notifications may be provided through any type of communication, such as a notification within an application, a text message (e.g., SMS message), e-mail, phone message, pop-up message, or any other type of notification. In some embodiments, the notification may be provided through one or more application interfaces that are used to review, analyze, troubleshoot, preform diagnostics, update operating parameters, or the like. Block 718 of
Block 722 of
The embodiments of the invention disclosed herein provide numerous improvements over current door systems (e.g., door operators, door closers, or the like), such as at least reducing installation time, improving installation quality, reducing component degradation, increasing the life of the door systems and components thereof, providing improved notification of installation and operation issues with the door systems, providing remote set-up or modification of operating parameters during installation or in response to changing operation of the door system, or the like.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention is not limited to the specific constructions and arrangements shown and described, since various other changes, combinations, omissions, modifications and substitutions, in addition to those set forth in the above paragraphs, are possible. Those skilled in the art will appreciate that various adaptations, modifications, and combinations of the just described embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
The present application for a patent is a continuation of, and claims priority to U.S. patent application Ser. No. 17/029,291 entitled “Door System with Active Monitoring”, filed on Sep. 23, 2020, which claims priority to U.S. Provisional Patent Application Ser. No. 62/904,383 entitled “Door System with Active Monitoring,” filed on Sep. 23, 2019, both of which are assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62904383 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17029291 | Sep 2020 | US |
Child | 17859602 | US |