The present invention relates generally to a door urging apparatus. More particularly, it relates to an apparatus for urging a hatch door to a substantially fully open positional state and suspending the hatch door in the open position and further to help urge the hatch door into closed positional state.
Vehicles of all types typically have storage compartments or areas that are accessible either from the interior of the vehicle or the exterior of the vehicle, normally the access to these storage compartment areas is from the exterior of the vehicle which is accommodated through a door or alternatively termed a hatch, wherein this hatch on a land-based vehicle is typically mounted in a vertical wall and on a marine vehicle a horizontal wall, typically termed a deck. In either case the hatch typically has a locking latch to lock it in the closed operational state and also has some form of retainer to secure the hatch door in the open operational state as with the vehicle having movement it is preferred that the hatch be secured in either the closed operational state or the open operational state. For securing the hatch door and the open operational state a clasp is typically used to secure the door on an adjacent area on the vertical or horizontal surface adjacent to the hatch as in the case of the land or marine vehicle respectively.
Specifically in the case of a land-based vehicle, wherein as previously stated the hatch doors mounted on a vertical wall the clasp that holds the hatch door in the open operational state is holding the hatch door open as against the forces of gravity such that a failure of the clasp could result in injury to a person who is utilizing the access of hatch into and out of the storage compartment, such that a failure of the clasp would result in the hatch door falling and coming in contact with the person possibly causing injury, this as opposed to the marine vehicle application wherein on a horizontal surface the hatch door would typically stay open in place against a horizontal surface even if the clasp failed. So for the land vehicle vertical mounting configuration for the door hatch, the clasp for securing the door into the open operational state becomes even more important for the previously mentioned safety issues and further for the process of opening the door hatch, i.e. in going from the closed operational state to the open operational state wherein the process of manually moving the door hatch could also result in harm the person opening door hatch if it were to slip out of their hand while lifting as it could cause physical harm as the force of gravity is always acting upon the door hatch causing it to fall during the opening process, this as opposed to for example to a conventional building entrance door that opens laterally being hinged vertically that is not affected by gravity. Wherein, if the conventional building entrance door were let go of during the process of going from the closed to the opened state or from the open state to the closed state, the door would not fall from the force of gravity on to the person using it. Thus the vertically mounted door hatch that typically hinges upon the upper surface is more critical in the area of the particular apparatus that urges the door from the closed state to the open state and then returning to the closed state, while at the same time suspending the hatch door securely in the open state.
The prior art in this area in so far as hatch doors is primarily associated with the marine arts, in other words the hatch doors are typically mounted horizontally wherein the effects of gravity in going from the closed state the open state are not as much of a consideration outside of some need for retaining the door in the open state due to the inherent movement of the marine vehicle or vessel. Further, a lot of the priority in the marine area on the hatch door apparatus is to accommodate moving the hatch door from the closed state to the open state and back to the closed state, are concerned with the ability of opening the door for a full 180° to maximize hatch opening access, which can require special hinges on the hatch door and also on the urging apparatus for helping the door open under its own power need to have extra hinged joints where expansions and decoupling are needed to allow the hatch door to open the 180°.
Looking specifically at the typical prior art in the above mentioned areas and in particular starting with the marine hatch door arts, in U.S. Pat. No. 4,811,680 to Genth, disclosed is a deck hatch assembly for marine craft that is formed in the upper deck surface of the marine craft on the port and starboard sides. In Genth, a submerged surface is integrally formed in the upper deck surface, being provided with a hatch opening surrounded by a raised peripheral ridge. The raised ridge in Genth, together with the submerged surface and the upper deck surface, forms a drain channel for directing water away from the stern of the marine craft. A pivotably mounted hatch cover in Genth is provided for normally sealing and closing off the hatch opening. The hatch cover in Genth may be raised upwardly from the bulkhead of the marine craft toward the stern for the purpose of providing ventilation to below deck compartments and for allowing access to the upper deck surface from below deck areas. A pair of gas spring assemblies in Genth is provided for positively and automatically retaining the hatch cover in the closed, or any one of a number of open positions. The hatch cover in Genth, in the closed position, is completely flush with the upper deck surface and is adapted to conform to the configuration of any deck, including styling lines thereof. Note that in particular in Genth in FIG. 2, that the gas spring assemblies 54 have simple pivotal attachments to the frame side walls 20 and the door 42, thereby restricting the door movement in the fully open position to about what is shown in FIG. 1, being less than ninety degrees, thus restricting the utility of Genth. Note that Genth does not urge the hatch door also into a closed operational state.
Continuing, in the marine hatch door arts in looking at U.S. Pat. No. 3,976,024 to Fillery disclosed is a hatch assembly for a boat that has a hatch cover and a hatch mounting frame to which the cover is hinged by releasable hinges, there being two espagnolette bolts serving the dual functions of hinging and latching the hatch cover to the mounting frame. Retraction of either espagnolette bolt at will from an associated hinge receiver on the mounting frame enables the hatch cover to be swung open left or right handedly, and retraction of both bolts from their receivers enabling the hatch cover to be lifted clear of the mounting frame. Thus, Fillery recognizes the problem identified in Genth or the restricted hatch door opening movement, being limited to about ninety degrees at the most, as Fillery has the espagnolette bolts that essentially allow the hatch door to be removed from its frame, while the stay members 18 are detachable all therefore allowing the hatch door to lay flat on the horizontal surface, see FIG. 4.
Continuing, in a much similar invention, in U.S. Pat. No. 6,105,529 to Kyle disclosed is a hatch assembly that has a function very much like Fillery, in that in Kyle being also for a marine vessel includes an outer frame and a hatch cover hingedly attached to the outer frame on one side thereof. The Kyle assembly also includes an elongated hatch adjuster comprising a telescoping rod assembly which includes an outer tube, a tubular extension and a flexible coupling which connects the tubular extension and outer tube in axial alignment when in a first position, see FIG. 3A in particular. The rod in Kyle is slidably received within the outer tube and tubular extension and maintains the assembly in axial alignment as the hatch cover is rotated from a closed position to an angle of at least about 135 degrees, being far more that Genth's opening limitation of being less that ninety degrees. As the hatch cover in Kyle approaches 180 degrees, the rod is withdrawn out of the outer tube which permits the flexible coupling to bend so that the hatch cover can be rotated a full 180 degrees, thus the has a moveable joint at 18, see FIG. 3B, that allows the telescoping rod assembly (being designed for securing the door at any position between fully open and fully closed) bend an additional amount via spring 18 as shown in FIG. 3A, plus an additional telescoping of rod 16 to completely facilitate the full 180 degree door opening, as shown in FIGS. 3A and 3B. The hatch assembly in Kyle also includes a clamp for fixing the rod 20 and outer tube 14 in a fixed position to thereby maintain the cover in a preselected position with respect to the frame. Although Kyle does accomplish the function of allowing the door to fully open to the 180 degrees, it has a high degree of mechanical complexity in requiring a higher number of parts in the assembly.
Moving away from the marine hatch door arts and into the general hatch door arts for a vehicle roof for an escape hatch in U.S. Pat. No. 6,572,182 to Lamparter, et al. disclosed is a motorized vent and escape hatch assembly has a mounting ring fastened to a vehicle roof around a hatch hole, and a hatch cover that is attached to the mounting ring by a first over center hinge linkage mechanism pivotally connecting one side of the hatch cover to the mounting ring and a second over center mechanism pivotally connecting an opposite side of the hatch cover to the mounting ring. Each over center hinge linkage mechanism in Lamparter, et al., has first and second lever members pivotally connected to the mounting ring at one end, first and second plungers that are connected to the respective first and second plungers at the opposite end and that extend into opposite ends of a tube that is connected to the hatch cover. A compression spring in Lamparter, et al., located in the tube, biases the first and second plungers away from each other. Each over center hinge linkage mechanism in Lamparter, et al. is associated with a drive mechanism that pivots the first and second lever members toward or away from each other to raise or lower its side of the hatch cover with respect to the mounting ring. Each drive mechanism in Lamparter, et al. includes first and second gear housings attached to the mounting ring, first and second gear sets disposed inside the respective gear housings, first and second electric motors attached to the respective gear housings for driving the first and second gear sets, and first and second output shafts that are driven by the first and second gear sets and that extend out of the first and second gear housings respectively with the first and second lever members being keyed to the first and second output shafts respectively. The gear sets in Lamparter, et al. are compound gear trains that reduce speed and increase torque.
Next, moving to the land based vehicle arts for a hatch door that opens primarily at an upward angle looking in at U.S. Pat. No. 5,667,268 to Bump disclosed is a protective door system and its complementary box-type structurally-secure service compartment mounted on a firm base, which comprises a slanted roof as a modification of the service compartment on a door side wherein the angle of slant is between about 30 and 60 degrees below horizontal and represents no more than one-third of the total roof area. Further, in Bump a structurally-secure door opening as a modification of the service compartment on a door side, wherein the opening extends from within two feet of the horizontal roof to a location along the vertical wall of the service compartment, and a structurally-secure protective door fitting into the door opening is matched with a weather-type seal, fastened with hinges overhead at its junction with the roof, and secured with a latch at its junction with the vertical wall, wherein the door was made with the same dimensions and slant angle as the slanted roof and vertical side openings. Finally, Bump has a pivoting brace attached in a structurally-secure manner between the protective door and said service compartment to allow multiple open door positions, and the brace pivots at its service compartment attachment. Here in Bump the maximum raised position of the upper slanted portion of said protective door allowance is no more than about 60 degrees above the horizontal, see column 2, lines 43-65 and FIG. 4, or for a total door opening angle of about ninety degrees that the member 33 allows for, being much the same as Genth for not having any special member 33 mountings other than is assumed as a conventional pivotal mounting attachment for the lifter member 33, as there is no teaching evident in Bump relating to unique pivotal attachments of lifter member 33 pivotal mounting.
The prior art has simply not solved the problems encountered while moving the hatch door in a vertically mounted position from the closed to the open operating states to facilitate an assisted door opening function with a door urging apparatus that provides for nearly 180 degrees of opening while suspending the door safely in the open positional operating state, being suspended vertically upward. Furthermore, when the door is closed from the open positional state to the closed positional state, the closing movement should be dampened to counter balance the weight of the door, thus resulting in the door being pushed downward to close until the door is nearly closed, wherein the door urging apparatus then reverses itself to pull the door shut, making the door security latching an easy process, as opposed to the door urging apparatus fighting the ability of the user to close and latch the door securely shut, which would require the user to continuously apply force to hold the door in the fully closed position to effectuate the latching to secure or lock the door in the closed operating position state.
The present invention is a door urging apparatus, that is for use with an existing door hingedly mounted in a frame, with the door moving via the hinged mount about a hinge axis relative to the frame between a closed operational state, a crossover operational state, and an open operational state, with the door urging apparatus including an offset bracket that has a base forming a plane, with the base having a centrally positioned base axis that is perpendicular to the plane. Further included is an arcuate planar element having a proximal end portion and a distal end portion, wherein the proximal end portion extends substantially perpendicularly therefrom the base and the distal end portion terminating in a first pivotal attachment, the first pivotal attachment having a first pivotal axis, wherein the first pivotal axis is parallel to the plane and perpendicular to the base axis, forming a first distance from the plane to the first pivotal axis and a second distance from the base axis to the first pivotal axis. Wherein the first distance is in the range of about zero point five (0.5) to one point five (1.5) times the second distance, wherein the base is affixed to the door such that the first pivotal axis and the hinge axis are parallel and adjacent to one another.
Also included is a plate with a second pivotal attachment projecting therefrom, the second pivotal attachment has a second pivotal axis that is positioned parallel to the first pivotal axis, wherein the plate is affixed to a frame portion opposite of the hinged mount. A connective axis is formed from the first pivotal axis to the second pivotal axis, wherein the connective axis is parallel to each of the first and second pivotal axes. Further a relational axis is formed from the second pivotal axis to the hinge axis, wherein the relational axis is parallel to each of the second pivotal axis and the hinge axis. Further included is a gas spring assembly having a lengthwise cylinder with a rod telescoping therefrom, wherein the gas spring assembly provides a dampened force extending the rod outward. The gas spring assembly is pivotally attached as between the first pivotal attachment and the second pivotal attachment, wherein operationally the door is in the cross over operational state when the connective axis and the relational axis are in alignment to one another, wherein the door is urged into the closed operational state in going from the cross over operational state to the closed operational state. Further, the door is urged into the open operational state in going from the cross over operational state to the open operational state. The first and second distances are also sized to have the connective axis intersect the base and the base axis intersection when the door is in the open state resulting in no moment loading translating from the base to the door when the door is secured in the open operational state.
With initial reference to
Further,
Yet further,
In looking at
Further included in the door urging apparatus 50, in the form of a kit 50 is the plate 230 including the second pivotal attachment 210 projecting therefrom, the second pivotal attachment 210 has a second pivotal axis 215 that is positioned parallel to the first pivotal axis 205, see
Additionally included in the door urging apparatus 50, is the gas spring assembly 275 having a lengthwise cylinder 280 with a rod 285 telescoping therefrom, wherein the gas spring assembly 275 provides a dampened force 290 extending said rod outward, see
Alternatively, the door apparatus 50 can further include the reinforcing element 170 affixed between the base 135 and the door 85, wherein the reinforcing element 170 is at least three (3) times the area 155 of the base 135, wherein operationally the reinforcing element 170 reduces a per unit loading of the base 135 to the door 85 by a factor of at least three (3) stemming from the dampened force 290, see in particular
Note that the door urging apparatus 50 is designed to be used with an existing door 85, that is hinged 70 to the frame 60 and already installed in the recreational vehicle 310 vertical wall 315 as shown in
The door apparatus 55, includes the frame 60 forming a perimeter 65 having the hinge 70 having a hinge axis 75, with the hinge 70 being affixed 80 to a portion of the frame 60. Also included is the door 85 that is affixed 90 to the hinge 70, with the door 85 sized and configured 100 to slidably fit within the frame 60 perimeter 65 when the door 85 is in a closed operational state 105, see
With the door 85 moving from the closed operational state 105, to the crossover operational state 115, and to the open operational state 120, looking at particular to
Further included in the door apparatus 55, is the plate 230 including the second pivotal attachment 210 projecting therefrom, the second pivotal attachment 210 has a second pivotal axis 215 that is positioned parallel to the first pivotal axis 205, see
Additionally included, in the door apparatus 55 is the gas spring assembly 275 having a lengthwise cylinder 280 with a rod 285 telescoping therefrom, wherein the gas spring assembly 275 provides a dampened force 290 extending said rod outward, see
Alternatively, the door apparatus 55 can further include the reinforcing element 170 affixed between the base 135 and the door 85, wherein the reinforcing element 170 is at least three (3) times the area 155 of the base 135, wherein operationally the reinforcing element 170 reduces a per unit loading of the base 135 to the door 85 by a factor of at least three (3) stemming from the dampened force 290, see in particular
Note that for the installed version as applying to either the door urging apparatus 50 or the door apparatus 55, the reinforcement element 170 is preferably 4 inches square and of 22 gauge in thickness, for fasteners 160 are preferably #6 by ½ inch long self-piercing screws, and for fasteners 236 are preferably #10 by ⅝ inches long self tapping screws, the door 85 is typically 2 feet square by 1 inch thick being constructed of a foam core with an outer surface laminate of fiberglass sheet and an inner laminate of LAMILUX plastic sheet or other equivalent materials, note that the door size could be larger or smaller, the abrasive 305 is preferably SCOTCHBRITE, the adhesive 180 is preferably a 3M brand number 5925, the primer 181 is preferably a 3M brand number 94, and the gas spring assembly 275 has dampened force 290 of about thirty pounds. The first distance 220 is preferably about two point two-five (2.25) inches and the second distance 225 is preferably about two point seven-five (2.75) inches, further the acute angle 260 is preferably about twenty (20) degrees and the adjacent angle 265 is preferably about fifteen (15) degrees.
Accordingly, the present invention of a door urging apparatus 50 and door apparatus 55 has been described with some degree of particularity directed to the embodiments of the present invention. It should be appreciated, though, that the present invention is defined by the following claims construed in light of the prior art so modifications or changes may be made to the exemplary embodiments of the present invention without departing from the inventive concepts contained therein.
Number | Name | Date | Kind |
---|---|---|---|
3976024 | Fillary | Aug 1976 | A |
4075788 | Anderson | Feb 1978 | A |
D292511 | Brown et al. | Oct 1987 | S |
4811680 | Genth | Mar 1989 | A |
5667268 | Bump | Sep 1997 | A |
5829098 | Alonso | Nov 1998 | A |
6105529 | Kyle | Aug 2000 | A |
6167589 | Luedtke | Jan 2001 | B1 |
6572182 | Lamparter et al. | Jun 2003 | B2 |
6634059 | Seiferd | Oct 2003 | B2 |
6640387 | Alonso | Nov 2003 | B2 |
6789293 | Habegger et al. | Sep 2004 | B2 |
7146766 | Finkelstein | Dec 2006 | B2 |
20070209160 | Darscheid et al. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20120110910 A1 | May 2012 | US |