Doorbell communities

Information

  • Patent Grant
  • 11651665
  • Patent Number
    11,651,665
  • Date Filed
    Tuesday, August 31, 2021
    3 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
Doorbells can send data to each other to enable a first doorbell user to warn a second doorbell user regarding a suspicious visitor. A first user can indicate a first trait of a visitor via a first remote computing device. The first user can create a user group to enable the members of the user group to use their doorbells to take pictures of suspicious visitors and to send the pictures of the suspicious visitors to other members of the user group.
Description
BACKGROUND
Field

Various embodiments disclosed herein relate to doorbells. Certain embodiments relate to doorbell communities.


Description of Related Art

Doorbells can enable a person located outside of an entry point, such as a door, to alert a person inside of an entry point that someone outside would like to talk to someone inside. Doorbells sometimes include a button located near a door, such as a front door, side door, or back door of a home, office, dwelling, warehouse, building, or structure. Doorbells are sometimes used near a gate or some other entrance to a partially enclosed area. Pushing the doorbell sometimes causes a chime or other alerting sound to be emitted.


SUMMARY

Data from multiple doorbells can be shared among a doorbell user group. Information regarding a visitor to a first building can be shared with other members of the doorbell user group. For example, a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection). Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices. Thus, the system enables a user to selectively decide what visit information to share with members of the doorbell user group.


In some embodiments, the doorbell system can comprise a first remote computing device communicatively coupled to a first doorbell having a first camera. The method for using the doorbell system can comprise sending a first picture, taken by the first doorbell, of a first visitor to the first remote computing device. A doorbell user group can be created and can comprise a first user, of the first remote computing device, and a second user, of a second remote computing device. A second remote computing device can be communicatively coupled to a second doorbell, but may not necessarily be communicatively coupled to the first doorbell. The method for using the doorbell system can comprise sharing the first picture of the first visitor with the doorbell user group, such that the second remote computing device can receive the first picture.


In several embodiments, the first remote computing device may not be communicatively coupled to the second doorbell. The method can comprise receiving, by the first remote computing device, a second picture taken by the second doorbell. The second picture can be taken in response to the second doorbell sending the second picture to a database. The database can be configured to provide visitor information to the doorbell user group.


In some embodiments, the method for using the doorbell system can comprise the indication of a first trait of the first visitor via the first remote computing device. The method can comprise sharing the first picture of the first visitor with the doorbell user group in response to the first trait of the first visitor.


In several embodiments, the method can comprise the indication of a first trait of the first visitor via the first remote computing device. The method can send the first trait and the first picture of the first visitor to a database. The database can be configured to provide information regarding the first visitor to the doorbell user group. The method can provide a time, at which the first visitor visited the first doorbell, to the database.


In some embodiments, the first remote computing device cannot be communicatively coupled to the second doorbell. The method for using the doorbell system can comprise receiving, by the first remote computing device, data from the doorbell user group regarding the second doorbell. The second doorbell can comprise a second camera. In some cases, a third doorbell can comprise a third camera. The second doorbell can be coupled to a second building, and the third doorbell can be coupled to a third building.


In several embodiments, the doorbell system can comprise a database configured to share visitor information with the doorbell user group. The method can comprise selecting, via the first remote computing device, to receive the visitor information from at least one of the second doorbell and the third doorbell.


In some embodiments, the first doorbell can be coupled to a first building. The first building, the second building, and the third building can be located apart from each other. Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building.


In several embodiments, the first picture can comprise a first video. The first picture can also be a still image (although many users prefer pictures that are videos).


In some embodiments, creating the doorbell user group can comprise adding a first email address and a second email address to a database. The first email address can be associated with the first doorbell, and the second email address can be associated with the second doorbell.


In several embodiments, the method for using the doorbell system can comprise displaying a map on the first remote computing device. The map can display a second location of the second doorbell and a third location of a third doorbell. The method can comprise displaying information, regarding the second doorbell, in response to selecting a map icon, representing the second doorbell, while the map icon is displayed on the first remote computing device. Selecting the map icon can be used to add the second user of the second doorbell to the doorbell user group. Methods can include sending an invitation (to join the user group) to the second user in response to selecting the second doorbell on the map.


In some embodiments, the method can comprise selecting a first button on the first remote computing device to alert law enforcement and/or to alert the doorbell user group.


In several embodiments, the first doorbell can be coupled to a first building. The second doorbell can be coupled to a second building. A third doorbell can be coupled to a third building. The buildings can be located remotely relative to each other. The method can comprise analyzing information collected from the first, second, and third doorbells, and then sending an alert in response to analytics based on the information. Analytics can include visitor identity, visit frequency (e.g., during a timeframe), time of visits, and facial recognition of visitors.


In some embodiments, a method of using a doorbell system can comprise coupling a first doorbell having a first camera to a first building, configuring the first doorbell to wirelessly communicate with a first remote computing device, and joining, by the first remote computing device, a doorbell user group. The doorbell user group can comprise a second user and a third user. The second user can comprise a second doorbell having a second camera coupled to a second building. A third user can comprise a third doorbell having a third camera coupled to a third building. The second doorbell can be configured to wirelessly communicate with a second remote computing device.


In several embodiments, the method of using the doorbell system can comprise receiving, by the first remote computing device, a first visitor picture. The second doorbell or the third doorbell can take the first visitor picture. The method can comprise receiving, from the doorbell user group by the first remote computing device, a first visitor picture taken by the second doorbell. The first remote computing device may not be communicatively coupled to the second doorbell.


In some embodiments, the method can comprise receiving, by the first remote computing device, a first trait. The first trait can be regarding a first visitor in response to the second user inputting the first trait into the second remote computing device.


In several embodiments, the method of using the doorbell system can comprise taking a second visitor picture, by the first doorbell, and sending the second visitor picture to the doorbell user group. The second remote computing device can display the second visitor picture, even though the second remote computing device may not be communicatively coupled to the first doorbell.


In some embodiments, the doorbell user group can comprise a database having a first visitor picture taken by the second doorbell of the second building. The method can comprise taking, by the first doorbell of the first building, a second visitor picture. The method can comprise determining, by a portion of the doorbell system, that the first visitor picture and the second visitor picture show a visitor.


In several embodiments, the method can comprise labeling the visitor with solicitor information. The members of the doorbell user group can then see the first visitor picture associated with the solicitor information. The method can comprise alerting the members regarding at least a portion of the solicitor information.


In some embodiments, the method can comprise receiving a solicitor alert. The alert can be in response to the second doorbell, of the second building, and the third doorbell, of the third building, detecting a visitor.


In several embodiments, the method can comprise adding solicitation information regarding the visitor to the doorbell user group.


In some embodiments, the method can comprise sending an alert to members of the doorbell user group in response to detecting, by a remote burglar detection system, a burglary of the first building.


In several embodiments, a doorbell system can comprise a first doorbell that can have a first camera that can be coupled to a first building. The first doorbell can be communicatively coupled to a first remote computing device. A second doorbell can have a second camera that can be coupled to a second building. The second doorbell can be communicatively coupled to a second remote computing device. The doorbell system can have a doorbell user group that can comprise a database that can have images taken by the first camera and the second camera. The doorbell user group can be communicatively coupled to the first remote computing device and the second remote computing device.


In some embodiments of the doorbell system, the first doorbell may not be communicatively coupled to the second remote computing device. The second doorbell may not be communicatively coupled to the first remote computing device. The system can be configured such that the first remote computing device can receive a first visitor picture taken by the second doorbell via the doorbell user group.


In several embodiments, the doorbell system can comprise a second visitor picture taken by the first doorbell. The picture can be displayed by the second remote computing device.


In some embodiments, the doorbell system can comprise a remote sensor. The remote sensor can be configured to monitor the first building and can detect an unauthorized building intrusion. An alert can be sent to the doorbell user group in response to the remote sensor detecting the unauthorized building intrusion.


In several embodiments, the system can comprise a solicitor alert. A solicitor alert can be sent to the doorbell user group in response to a visitor being detected by the first doorbell, at the first building, and by the second doorbell, at the second building.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages are described below with reference to the drawings, which are intended to illustrate, but not to limit, the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.



FIG. 1 illustrates a front view of a doorbell system, according to some embodiments.



FIG. 2 illustrates a front view of a computing device running software to communicate with the doorbell from FIG. 1, according to some embodiments.



FIG. 3 illustrates a diagrammatic view of an embodiment in which the doorbell from FIG. 1 is connected to a building, according to some embodiments.



FIG. 4 illustrates a back view of the doorbell from FIG. 1 without a mounting bracket, according to some embodiments.



FIG. 5 illustrates a diagrammatic view of a group of doorbells, according to some embodiments.



FIG. 6 illustrates a front view of a remote computing device displaying a map, according to some embodiments.



FIG. 7 illustrates a diagrammatic view of picture being communicated, according to some embodiments.



FIG. 8 illustrates a diagrammatic view of a doorbell that is communicatively coupled to multiple remote computing devices, according to some embodiments.



FIG. 9 illustrates a diagrammatic view of a remote computing device that is communicatively coupled to multiple doorbells, according to some embodiments.



FIGS. 10 and 11 illustrate diagrammatic views of doorbell user groups, according to some embodiments.





DETAILED DESCRIPTION

Although certain embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.


For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.


System Embodiments

Communication systems can provide a secure and convenient way for a remotely located individual to communicate with a person who is approaching a sensor, such as a proximity sensor or motion sensor, or with a person who rings a doorbell, which can be located in a doorway, near an entrance, or within 15 feet of a door. Some communication systems allow an individual to hear, see, and talk with visitors who approach at least a portion of the communication system and/or press a button, such as a doorbell's button. For example, communication systems can use a computing device to enable a remotely located person to see, hear, and/or talk with visitors. Computing devices can include computers, laptops, tablets, mobile devices, smartphones, cellular phones, and wireless devices (e.g., cars with wireless communication). Example computing devices include the iPhone, iPad, iMac, MacBook Air, and MacBook Pro made by Apple Inc. Communication between a remotely located person and a visitor can occur via the Internet, cellular networks, telecommunication networks, and wireless networks.


Referring now to FIG. 1, doorbell systems can be a portion of a smart home hub. In some embodiments, the doorbell system 200 forms the core of the smart home hub. For example, the various systems described herein enable complete home automation. In some embodiments, the doorbell 202 controls various electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors). In some embodiments, the computing device 204 controls the doorbell 202 and other electrical items in a home (e.g., lights, air conditioners, heaters, motion sensors, garage door openers, locks, televisions, computers, entertainment systems, pool monitors, elderly monitors).



FIG. 1 illustrates a front view of a communication system embodiment. The doorbell system 200 can include a doorbell 202 (e.g., a security system) and a computing device 204. Although the illustrated doorbell 202 includes many components in one housing, several doorbell embodiments include components in separate housings. The doorbell 202 can include a camera assembly 208 and a doorbell button 212. The camera assembly 208 can include a video camera, which in some embodiments is a webcam. The doorbell 202 can include a diagnostic light 216 and a power indicator light 220. In some embodiments, the diagnostic light 216 is a first color (e.g., blue) if the doorbell 202 and/or the doorbell system 200 is connected to a wireless Internet network and is a second color (e.g., red) if the doorbell 202 and/or the doorbell system 200 is not connected to a wireless Internet network. In some embodiments, the power indicator 220 is a first color if the doorbell 202 is connected to a power source. The power source can be supplied by the building to which the doorbell 202 is attached. In some embodiments, the power indicator 220 is a second color or does not emit light if the doorbell 202 is not connected to the power source. The doorbell 202 can include an outer housing 224, which can be water resistant and/or waterproof. The outer housing can be made from metal or plastic, such as molded plastic with a hardness of 60 Shore D. In some embodiments, the outer housing 224 is made from brushed nickel or aluminum.


Rubber seals can be used to make the outer housing 224 water resistant or waterproof. The doorbell 202 can be electrically coupled to a power source, such as wires electrically connected to a building's electrical power system. In some embodiments, the doorbell 202 includes a battery for backup and/or primary power.


Wireless communication 230 can enable the doorbell 202 to communicate with the computing device 204. Some embodiments enable communication via cellular and/or WiFi networks. Some embodiments enable communication via the Internet. Several embodiments enable wired communication between the doorbell 202 and the computing device 204. The wireless communication 230 can include the following communication means: radio, WiFi (e.g., wireless local area network), cellular, Internet, Bluetooth, telecommunication, electromagnetic, infrared, light, sonic, and microwave. Other communication means are used by some embodiments. In some embodiments, such as embodiments that include telecommunication or cellular communication means, the doorbell 202 can initiate voice calls or send text messages to a computing device 204 (e.g., a smartphone, a desktop computer, a tablet computer, a laptop computer).


Several embodiments use near field communication (NFC) to communicate between the computing device 204 and the doorbell 202. The doorbell 202 and/or the computing device 204 can include a NFC tag. Some NFC technologies include Bluetooth, radio-frequency identification, and QR codes.


Some embodiments include computer software (e.g., application software), which can be a mobile application designed to run on smartphones, tablet computers, and other mobile devices. Software of this nature is sometimes referred to as “app” software. Some embodiments include software designed to run on desktop computers and laptop computers.


The computing device 204 can run software with a graphical user interface. The user interface can include icons or buttons. In some embodiments, the software is configured for use with a touch-screen computing device such as a smartphone or tablet.



FIG. 2 illustrates a computing device 204 running software. The software includes a user interface 240 displayed on a display screen 242. The user interface 240 can include a doorbell indicator 244, which can indicate the location of the doorbell that the user interface is displaying. For example, a person can use one computing device 204 to control and/or interact with multiple doorbells, such as one doorbell located at a front door and another doorbell located at a back door. Selecting the doorbell indicator 244 can allow the user to choose another doorbell (e.g., the back door's doorbell rather than the front door's doorbell).


The user interface 240 can include a connectivity indicator 248. In some embodiments, the connectivity indicator can indicate whether the computing device is in communication with a doorbell, the Internet, and/or a cellular network. The connectivity indicator 248 can alert the user if the computing device 204 has lost its connection with the doorbell 202; the doorbell 202 has been damaged; the doorbell 202 has been stolen; the doorbell 202 has been removed from its mounting location; the doorbell 202 has lost electrical power; and/or if the computing device 204 cannot communicate with the doorbell 202. In some embodiments, the connectivity indicator 248 alerts the user of the computing device 204 by flashing, emitting a sound, displaying a message, and/or displaying a symbol.


In some embodiments, if the doorbell 202 loses power, loses connectivity to the computing device 204, loses connectivity to the Internet, and/or loses connectivity to a remote server, a remote server 206 sends an alert (e.g., phone call, text message, image on the user interface 240) regarding the power and/or connectivity issue. In several embodiments, the remote server 206 can manage communication between the doorbell 202 and the computing device. In some embodiments, information from the doorbell 202 is stored by the remote server 206. In several embodiments, information from the doorbell 202 is stored by the remote server 206 until the information can be sent to the computing device 204, uploaded to the computing device 204, and/or displayed to the remotely located person via the computing device 204. The remote server 206 can be a computing device that stores information from the doorbell 202 and/or from the computing device 204. In some embodiments, the remote server 206 is located in a data center.


In some embodiments, the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202. If the computing device 204 and/or the remote server 206 is unable to communicate with the doorbell 202, the computing device 204 and/or the remote server 206 alerts the remotely located person via the software, phone, text, a displayed message, and/or a website. In some embodiments, the computing device 204 and/or the remote server 206 attempts to communicate with the doorbell 202 periodically; at least every five hours and/or less than every 10 minutes; at least every 24 hours and/or less than every 60 minutes; or at least every hour and/or less than every second.


In some embodiments, the server 206 can initiate communication with the computing device 204 and/or with the doorbell 202. In several embodiments, the server 206 can initiate, control, and/or block communication between the computing device 204 and the doorbell 202. In several embodiments, a user can log in to an “app,” website, and/or software on a computing device (e.g., mobile computing device, smartphone, tablet, desktop computer) to adjust the doorbell settings discussed herein.


In some embodiments, a computing device can enable a user to watch live video and/or hear live audio from a doorbell due to the user's request rather than due to actions of a visitor. Some embodiments include a computing device initiating a live video feed (or a video feed that is less than five minutes old).


In some embodiments, the user interface 240 displays an image 252 such as a still image or a video of an area near and/or in front of the doorbell 202. The image 252 can be taken by the camera assembly 208 and stored by the doorbell 202, server 206, and/or computing device 204. The user interface 240 can include a recording button 256 to enable a user to record images, videos, and/or sound from the camera assembly 208, microphone of the doorbell 202, and/or microphone of the computing device 204.


In several embodiments, the user interface 240 includes a picture button 260 to allow the user to take still pictures and/or videos of the area near and/or in front of the doorbell 202. The user interface 240 can also include a sound adjustment button 264 and a mute button 268. The user interface 240 can include camera manipulation buttons such as zoom, pan, and light adjustment buttons. In some embodiments, the camera assembly 208 automatically adjusts between Day Mode and Night Mode. Some embodiments include an infrared camera and/or infrared lights to illuminate an area near the doorbell 202 to enable the camera assembly 208 to provide sufficient visibility (even at night).


In some embodiments, buttons include diverse means of selecting various options, features, and functions. Buttons can be selected by mouse clicks, keyboard commands, or touching a touch screen. Many embodiments include buttons that can be selected without touch screens.


In some embodiments, the user interface 240 includes a quality selection button, which can allow a user to select the quality and/or amount of the data transmitted from the doorbell 202 to the computing device 204 and/or from the computing device 204 to the doorbell 202.


In some embodiments, video can be sent to and/or received from the computing device 204 using video chat protocols such as FaceTime (by Apple Inc.) or Skype (by Microsoft Corporation). In some embodiments, these videos are played by videoconferencing apps on the computing device 204 instead of being played by the user interface 240.


The user interface 240 can include a termination button 276 to end communication between the doorbell 202 and the computing device 204. In some embodiments, the termination button 276 ends the ability of the person located near the doorbell 202 (i.e., the visitor) to hear and/or see the user of the computing device 204, but does not end the ability of the user of the computing device 204 to hear and/or see the person located near the doorbell 202.


In some embodiments, a button 276 is both an answer button (to accept a communication request from a visitor) and a termination button (to end communication between the doorbell 202 and the computing device 204). The button 276 can include the word “Answer” when the system is attempting to establish two-way communication between the visitor and the user. Selecting the button 276 when the system is attempting to establish two-way communication between the visitor and the user can start two-way communication. The button 276 can include the words “End Call” during two-way communication between the visitor and the user. Selecting the button 276 during two-way communication between the visitor and the user can terminate two-way communication. In some embodiments, terminating two-way communication still enables the user to see and hear the visitor. In some embodiments, terminating two-way communication causes the computing device 204 to stop showing video from the doorbell and to stop emitting sounds recorded by the doorbell.


In some embodiments, the user interface 240 opens as soon as the doorbell detects a visitor (e.g., senses indications of a visitor). Once the user interface 240 opens, the user can see and/or hear the visitor even before “answering” or otherwise accepting two-way communication, in several embodiments.


Some method embodiments include detecting a visitor with a doorbell. The methods can include causing the user interface to display on a remote computing device 204 due to the detection of the visitor (e.g., with or without user interaction). The methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts two-way communication with the visitor. The methods can include displaying video from the doorbell and/or audio from the doorbell before the user accepts the visitor's communication request. The methods can include the computing device simultaneously asking the user if the user wants to accept (e.g., answer) the communication request and displaying audio and/or video of the visitor. For example, in some embodiments, the user can see and hear the visitor via the doorbell before opening a means of two-way communication with the visitor.


In some embodiments, the software includes means to start the video feed on demand. For example, a user of the computing device might wonder what is happening near the doorbell 202. The user can open the software application on the computing device 204 and instruct the application to show live video and/or audio from the security device 202 even if no event near the doorbell 202 has triggered the communication.


In several embodiments, the security device 202 can be configured to record when the security device 202 detects movement and/or the presence of a person. The user of the computing device 204 can later review all video and/or audio records from when the security device 202 detected movement and/or the presence of a person.


Referring now to FIG. 1, in some embodiments, the server 206 controls communication between the computing device 204 and the doorbell 202, which can be a doorbell with a camera, a microphone, and a speaker. In several embodiments, the server 206 does not control communication between the computing device 204 and the doorbell 202.


In some embodiments, data captured by the doorbell and/or the computing device 204 (such as videos, pictures, and audio) is stored by another remote device such as the server 206. Cloud storage, enterprise storage, and/or networked enterprise storage can be used to store video, pictures, and/or audio from the doorbell system 200 or from any part of the doorbell system 200. The user can download and/or stream stored data and/or storage video, pictures, and/or audio. For example, a user can record visitors for a year and then later can review conversations with visitors from the last year. In some embodiments, remote storage, the server 206, the computing device 204, and/or the doorbell 202 can store information and statistics regarding visitors and usage.



FIG. 3 illustrates an embodiment in which a doorbell 202 is connected to a building 300, which can include an entryway 310 that has a door 254. Electrical wires 304 can electrically couple the doorbell 202 to the electrical system of the building 300 such that the doorbell 202 can receive electrical power from the building 300. The building can include a door lock 250 to lock the door 254.


A wireless network 308 can allow devices to wirelessly access the Internet. The doorbell 202 can access the Internet via the wireless network 308. The wireless network 308 can transmit data from the doorbell 202 to the Internet, which can transmit the data to remotely located computing devices 204. The Internet and wireless networks can transmit data from remotely located computing devices 204 to the doorbell 202. In some embodiments, a doorbell 202 connects to a home's WiFi.


As illustrated in FIG. 3, one computing device 204 (e.g., a laptop, a smartphone, a mobile computing device, a television) can communicate with multiple doorbells 202. In some embodiments, multiple computing devices 204 can communicate with one doorbell 202.


In some embodiments, the doorbell 202 can communicate (e.g., wirelessly 230) with a television 306, which can be a smart television. Users can view the television 306 to see a visitor and/or talk with the visitor.



FIG. 4 illustrates an internal view of the doorbell 202. Doorbells 202 can include a chip 480 (e.g., integrated circuits, microprocessor, computer) and a memory 492. Doorbells 202 can also include a microphone 484 and a speaker 488. The speaker 488 can comprise a flat speaker and a sound chamber 460 configured to amplify an emitted sound. The flat speaker can be located in the sound chamber. Some doorbell embodiments include a proximity sensor 500. In several embodiments, doorbells 202 include a wireless communication module 504, such as a WiFi module. The communication module 504 can have an integrated antenna. In some embodiments, an antenna is contained within the outer housing 224.


The doorbell 202 can include one or more heating elements 508 configured to regulate the temperature of the doorbell 202. For example, doorbells 202 can be used in very cold environments, such as in Alaska. The heating element 508 can be used in various methods to protect temperature sensitive portions of the doorbell 202 from cold weather.


While protecting the doorbell 202 from cold weather can be important in some embodiments, protecting visitors from excessive heat can also be important in some embodiments. Excessive heat could burn visitors as they “ring” the doorbell (e.g., press the doorbell button 212 shown in FIG. 10). The doorbell 202 can include a thermometer 512 to enable the system to determine the temperature inside a portion of the doorbell 202 and/or outside the doorbell 202.


Several embodiments can be configured for 9 to 40 volts alternating current (“VAC”) and/or 9 to 40 volts direct current (“VDC”). Some embodiments convert input electricity into direct current (DC), such as 12 VDC. Several embodiments include a converter 494 for power conversion (e.g., converting electrical energy from one form to another). The converter 494 can convert input power (e.g., from wiring in a building) to a suitable power form for the doorbell 202. The power conversion can convert between AC and DC, change the voltage, and/or change the frequency. The converter 494 can include a transformer and/or a voltage regulator. In several embodiments, the converter 494 can include an AC to DC converter, a DC to DC converter, a voltage stabilizer, a linear regulator, a surge protector, a rectifier, a power supply unit, a switch, an inverter, and/or a voltage converter. In some embodiments, the converter 494 converts 50 Hertz (“Hz”) power into 60 Hz power.


The electrical components of the doorbell 202 (e.g., the camera assembly 208, the memory 492, the chip 480, the speaker 488, the converter 494, the microphone 484, the lights 458, the rectifier 524, the proximity sensor 500, the communication module 504, the heating element 508, the electrical connectors 510, the thermometer 512, the image analysis system 520, and the battery 642) can be electrically coupled to a printed circuit board (“PCB”) 516 and can receive electrical power from the PCB 516.


The PCB 516 and the electrical components of the doorbell 202 can be the electrical system 456 of the doorbell 202. Additional details regarding the PCB 516 and the electrical components of the doorbell 202 are described in U.S. Nonprovisional patent application Ser. No. 14/612,376; filed Feb. 3, 2015; and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS. The entire contents of patent application Ser. No. 14/612,376 are incorporated by reference herein.


Although some embodiments are described in the context of methods, the method embodiments can also be formulated as devices and systems. Methods described herein can be applied to the devices and systems incorporated by references herein.


Systems with Multiple Doorbells


Multiple doorbells can share data to “watch” over a neighborhood by letting people connect with neighbors and share information regarding suspicious visitors. The shared information can include pictures of visitors and the time of suspicious activity. As a result, sharing data between multiple doorbell users can help reduce crime and theft in neighborhoods around the world. Suspicious activity can be “tagged” and shared with members of a user group (e.g., a group of neighbors). The shared data can include photos and information regarding suspicious visitors. The information can include written descriptions, recorded descriptions, and videos. For example, a first doorbell can take a picture of a visitor. The doorbell can send the picture to a remote computing device. A user of the remote computing device can see the visitor. Then, the user can enter information regarding the suspicious visitor into the remote computing device. The doorbell system can then share the information and the picture of the visitor with a user group, which can include other doorbell users.


An administrator of the user group can be a “master user” who has the ability to add other users to the user group. One way of adding users to a user group is to enter email addresses of prospective users into a remote computing device (e.g., into an “app” running on the remote computing device). This app can be the same app used by the administrator to configure her doorbell.


In a user group section (e.g., a “neighborhood section”) of the app, a user can see who else is in her neighborhood. In some embodiments, the home locations of prospective or current users are displayed on a map. Selecting prospective users can enable the administrator to add new users to the user group.


When a user thinks a visitor is suspicious, the user can report the visitor and the nature of the suspicious activity to the user group. Thus, the user can enter the visitor into an activity log such that the event has a “suspicious” tag. The event can then be shared with the other users via email, text message, a push notifications, or any suitable means. The event can be recorded in a user group activity list, which in some embodiments, is only visible to members of the user group (or at least is not visible to the general public). The event can also be listed in a history of events reported by a specific individual. Thus, users can see events they reported, and users can see events reported by all members of a user group.


Each event can include an icon. Selecting the icon can cause the event to be shared with the user group. In some embodiments, icons are shown on a map that is displayed on a remote computing device. In this manner, users can see where suspicious visitors have been reported by members of the user group, and in some embodiments, by members of other user groups. In some embodiments, a user group is limited to a particular neighborhood. In other embodiments, user groups are not limited to a particular neighborhood.


Visitor data from a user (or from a user group) can be shared with law enforcement (e.g., police officers) or other safety personnel to help keep neighborhoods safe. A suspicious event reported by a first user can be shared with a second user. The second user can then share the event with law enforcement. In some embodiments, the user who reports the event to the user group also reports the event to law enforcement (e.g., by selecting a button in the app).


The app can include a “distress button” configured to enable a user to alert law enforcement and user group members that something is wrong. Pressing the button on a remote computing device can cause a doorbell system to send a push notification to other users to notify them that help is needed. The push notification can also communicate the nature of the event and can enable users to see a picture of the visitor causing the trouble.



FIG. 5 illustrates a neighborhood, which can include many buildings 300a, 300b, 300c. The buildings 300a, 300b, 300c can be individual homes or individual buildings (e.g., multiple single-family homes, multiple apartments coupled together, offices). The buildings 300a, 300b, 300c can be located next to each other or they can be separated by other homes or buildings. Embodiments can include diverse ways of using a doorbell system 386, which can include multiple doorbells 202a, 202b, 202c and multiple remote computing devices 204a, 204b, 204c. Each doorbell 202a, 202b, 202c can be coupled to an exterior wall of a different building 300a, 300b, 300c. A different remote computing device 204a, 204b, 204c can configure each doorbell 202a, 202b, 202c. Each building 300a, 300b, 300c can have its own wireless network 308a, 308b, 308c. Another network 308d (e.g., a cellular network, the Internet) can enable a first doorbell 202a to send a picture of a visitor 388a to a second doorbell 202b and/or to a second remote computing device 204b.


A first doorbell 202a can send a visitor notification (e.g., an alert as shown in FIG. 1) to a first computing device 204a via a first wireless network 308a. In some embodiments, however, it is advantageous for a doorbell 202a or a remote computing device 204a associated with a first building 300a to send information regarding a visitor 388a to a doorbell 202b or a remote computing device 204b associated with a second building 300b. In several embodiments, it is advantageous for a doorbell 202a or a remote computing device 204a associated with a first building 300a to receive information regarding a visitor 388b from a doorbell 202b or a remote computing device 204b associated with a second building 300b. An external network 308d can facilitate this sending and receiving of information regarding visitors 388a, 388b. This way, the doorbell system 386 can enable notifying a second remote computing device 204b regarding a visitor detected by a first doorbell 202a even though the second remote computing device 204b is not configured to control the first doorbell 202a.


Each of the doorbells 202a, 202b, 202c illustrated in FIG. 5 can include a camera assembly 208 (as labeled in FIG. 1). Some embodiments of using the doorbell system 386 include taking a first picture of a first visitor 388a with the first doorbell 202a; sending the first picture to the first remote computing device 204a; and indicating a first trait (e.g., identity, suspicious behavior, bodily characteristics) of the first visitor 388a via the first remote computing device 204a.


The first remote computing device 204a can be used to categorize the visitor. For example, the user of the first remote computing device can indicate whether the first visitor 388a is a salesperson, a fundraiser, or a potential criminal. The first remote computing device 204a can share this categorization with other members of the user group, which can include users of the remote computing devices 204a, 204b, 204c.


A first user of the first remote computing device 204a (e.g., the owner of the first doorbell 202a) can create a user group. The user group can include the first user of the first remote computing device 204a and a second user of a second remote computing device 204b. Note that in FIG. 5, the first remote computing device 204a is located remotely relative to the first doorbell 202a because the first remote computing device is not electrically or mechanically coupled to the first doorbell 202a (even though the first remote computing device 204a and the first doorbell 202a are located in the same building 300a).


Embodiments can also include sharing the first picture of the first visitor 388a with the user group. The sharing of the first picture of the first visitor 388a with the user group can be in response to the first trait of the first visitor 388a. For example, the first trait can be that the first visitor 388a is acting suspiciously by peaking over fences or looking through windows.


Several embodiments include sending the first trait and the first picture of the first visitor 388a to a database 390 configured to provide information regarding the first visitor 388a to the user group. The first doorbell 202a can also determine a time at which the first visitor 388a visited the first doorbell 202a. A portion of the doorbell system 386 can provide this time to the database 390.


Some embodiments include receiving data with the first remote computing device 204a regarding a second doorbell 202b that comprises a second camera and regarding a third doorbell 202c that comprises a third camera. As illustrated in FIG. 5, the first doorbell 202a is coupled to a first building 300a. The second doorbell 202b is coupled to a second building 300b. The third doorbell 202c is coupled to a third building 300c. Doorbells can be mounted near a door in an entryway. The buildings 300a, 300b, and 300c can be located apart from each other such that each building is a separate residential dwelling or a separate office space. The database 390 can be configured to share visitor information with the user group. Embodiments can include selecting (via the first remote computing device 204a) to receive the visitor information from at least one of the second doorbell 202b and the third doorbell 202c. Receiving the data can comprise receiving the visitor information from a different location than a first location of the first building 300a.


Each doorbell 202a, 202b, and 202c can include a camera assembly 208 (labeled in FIG. 1). In several embodiments, a camera assembly 208 can take videos or stationary images. Thus, a “picture” taken by a camera of a doorbell can actually be a video. In some embodiments, the “picture” is a stationary image (rather than a video).


There are many ways to create user groups. In some embodiments, creating a user group comprises adding a first email address and a second email address to a database. The first email address can be associated with the first doorbell 202a. The second email address can be associated with a second doorbell 202b. In some embodiments, a first user of a first doorbell 202a sends an invitation to join a doorbell user group to a second user of a second doorbell 202b. The first user can send the invitation via a first remote computing device 204a (that is authorized to configure the first doorbell 202a) to a second remote computing device 204b (that is authorized to configure the second doorbell 202b). The second user can then accept or decline the invitation via the second remote computing device 204b. In some embodiments, the second user accepts or declines the invitation to join the doorbell user group at least partially in response to seeing the location of the first doorbell 202a on the display of the second computing device 204b. For example, if the first and second users are neighbors, then the second user could be more likely to accept the invitation than if the first and second users live much farther away from each other.



FIG. 6 illustrates a map 392 that is displayed by the first remote computing device 204a. The map 392 displays a first location of the first doorbell 202a, a second location of the second doorbell 202b, and a third location of the third doorbell 202c. The map 392 can also include other items such as street names. Several embodiments include displaying information regarding the second doorbell 202b in response to a person using the first computing device 204a to select a second icon representing the second doorbell 202b while the second icon is displayed on the first remote computing device 204a. (In FIG. 6, doorbells 202a, 202b, 202c are represented by icons that look like doorbells.) This information can include an address of the second doorbell 202b, contact information (e.g., a name, a phone number, an email) of a user of the second doorbell 202b, and/or a picture of the user of the second doorbell 202b. Selecting the second icon can add a second user of the second doorbell 202b to the doorbell user group.


Not all members of a doorbell user group necessarily have a doorbell. Members of the user group who have not yet purchased a doorbell with a camera can still receive visitor information, including visitor pictures, on their remote computing devices. For example, a picture taken by the first doorbell 202a can be sent to the remote computing devices of people who have not purchased a doorbell with a camera.


Several embodiments include selecting a first button 394 on the display of the first remote computing device 204a to alert law enforcement and/or to alert the user group. The button 394 can be a portion of the graphical user interface of an app.


A first user can also join a user group that was previously created by another user. This first user can couple a first doorbell having a first camera to a first building; configure the first doorbell to wirelessly communicate with a first remote computing device; and/or join a user group via the first remote computing device. This user group can comprise a second user of a second doorbell having a second camera and a third user of a third doorbell having a third camera. The second doorbell can be configured to wirelessly communicate with a second remote computing device. This first user can receive a first picture and a first trait of a first visitor with the first remote computing device. This first picture could have been taken previously by the second doorbell or the third doorbell. This first user can take a second picture of a second visitor with the first doorbell; and/or send the second picture of the second visitor to the user group such that the second remote computing device can display the second picture. This first user can detect a second visitor with the first doorbell. This first user can determine that the second visitor is the first visitor by a portion of the doorbell system analyzing the first picture from the second doorbell or the third doorbell. This analysis can include the doorbell system comparing the first picture to the second picture. Embodiments can also include alerting a first user of the first doorbell that the second visitor is the first visitor (i.e., the first visitor is the same person as the second visitor).



FIG. 7 illustrates that a first doorbell 202a can take a picture 398. Then, the first doorbell 202a can send the picture 398 to a first remote computing device 204a. (The doorbell 202a can send the picture 398 directly to the first remote computing device 204a or indirectly to the first remote computing device 204a via an intermediary device such as a router, server, network, and/or the Internet.) Then, the first remote computing device 204a can send the picture 398 to a second remote computing device 204b. This approach enables the second remote computing device 204b to receive the picture 398 even though the second remote computing device is not communicatively coupled to the doorbell 202a.


In contrast, FIG. 8 illustrates an embodiment in which multiple remote computing devices 204a, 204b, 204c are communicatively coupled with one doorbell 202a. Thus, the doorbell 202a can send a picture that it takes to all of the remote computing devices 204a, 204b, 204c. In some cases, a first user might not want her doorbell to be communicatively coupled with a neighbor's remote computing device (e.g., because communicatively coupling her doorbell with her neighbor's remote computing device could enable the neighbor to see visitors and/or talk with visitors to the home of the first user without the first user's permission). As a result, the first user might want to be able to share a visitor picture and/or visitor information with a neighbor without the neighbor's remote computing device being communicatively coupled with the first user's doorbell. The first user's remote computing device, a user group, a server and/or a database can act as a gatekeeper that enables the first user to control what visitor information she shares with other members of a user group (e.g., with neighbors or members of other households).


In some embodiments, a homeowner can share information from her doorbell with neighbors' remote computing devices via the doorbell user group 400 (shown in FIG. 10) even though the neighbors' remote computing devices are not configured to receive visitor alerts from the homeowner's doorbell each time the homeowner's doorbell detects a visitor (e.g., via motion detection or button press detection). Some embodiments include the homeowner (e.g., a user) choosing to send a first visit information (regarding a first visitor) to neighbor's remote computing devices and choosing not to send a second visit information (regarding a second visitor) to neighbor's remote computing devices. This choosing step can be after and in response to seeing (e.g., displaying) the visitors on a remote computing device. Thus, the system 408 (shown in FIG. 10) enables a user to selectively decide what visit information to share with members of the doorbell user group.


In contrast, the configuration illustrated in FIG. 8 does not enable selectively deciding what visit information to share. Instead, all the remote computing devices 204a, 204b, 204c receive the visit information. While the configuration illustrated in FIG. 8 may work well for one household, it typically does not work well with multiple households (e.g., an entire neighborhood) due to privacy concerns and due to the fact that most neighbors would not want to receive a notification every time a person approaches any home in the neighborhood. The number of unhelpful notifications would be very bothersome. Imagine how many uneventful notifications a user would receive each day after school as dozens of children come home. Thus, the system 408 illustrated in FIG. 10 works much better than the system illustrated in FIG. 8 when multiple households, homes, and/or buildings are involved in the visitor information sharing.


For example, as shown in FIG. 11, the remote computing device 204b and/or the user group 400 can act as a gatekeeper system to enable a user to select which visitor information is shared other remote computing devices 204a, 204c after the user's remote computing device 204b receives the visitor information. This approach allows a user to share (e.g., by selecting a button on the device 204b) information regarding some visitors (e.g., suspicious visitors) with other remote computing devices 204a, 204c after seeing (or displaying) the visitors on the computing device 204b. This approach also allows the user to not share information regarding other visitors (e.g., trusted friends) with other remote computing devices 204a, 204c after seeing (or displaying) the other visitors on the computing device 204b. Thus, the “share decision” can be in response to the user seeing (e.g., analyzing) the visitors on her remote computing device 204b.


In contrast, the system shown in FIG. 8 does not include a visitor by visitor “share decision.” Instead, a user simply adds several computing devices 204a, 204b, 204c to a system such that the computing devices 204a, 204b, 204c receive a visitor notification (e.g., an alert) each time the doorbell 202a detects a visitor in response to the computing devices 204a, 204b, 204c being communicatively coupled with the doorbell 202a.



FIG. 9 illustrates an embodiment in which a remote computing device 204a is communicatively coupled (e.g., wirelessly) with multiple doorbells 202a, 202b, 202c. For example, a first user could be able to see and/or talk with visitors detected by her own doorbell 202a or detected by neighbors' doorbells 202b, 202c. This approach raises privacy concerns.



FIG. 10 illustrates a diagrammatic view of an embodiment that includes a user group 400. The user group 400 can include a database 390, a server 404, and user information 406 such as email addresses, user profiles, and user doorbell locations.


Thus, many embodiments enable members of a user group to share visitor information with each other without granting doorbell control to members of the user group. For example, a first user can alter at least one setting (e.g., a chime tone, a greeting, a silent mode, on-demand video modes) of her doorbell but typically cannot alter settings of neighbors' doorbells (e.g., of other doorbells in the user group). These embodiments enable a first user to determine what visitor pictures and information her doorbell shares with a user group.


The doorbell system 408 can include a first remote computing device 204a communicatively coupled to a first doorbell 202a that has a first camera 208 (labeled in FIG. 1). Some embodiments include sending a first picture 410, taken by the first doorbell 202a, of a first visitor 402a to the first remote computing device 204a. An arrow indicates the first doorbell 202a is communicatively coupled with the first remote computing device 204a. This communicatively coupling can be wireless and can include two-way communication to enable the first remote computing device 204a to send data and doorbell setting parameters to the first doorbell 202a.


The first doorbell 202a is not communicatively coupled to the second remote computing device 204b even though the second remote computing device 204b can receive a picture taken by the first doorbell 202a from at least a portion of the user group 400. This way, the second remote computing device 204b can receive information regarding a visitor detected by the first doorbell 202a, but the second remote computing device 204b cannot alter settings of the first doorbell 202a, initiate on-demand videos from the first doorbell 202a, or talk with the first visitor 402a via the first doorbell 202a.


Embodiments can include creating a doorbell user group 400 comprising a first user of the first remote computing device 204a and a second user of the second remote computing device 204b, which is communicatively coupled to a second doorbell 202b (as shown by the arrow) but is not communicatively coupled to the first doorbell 202a. The remote computing devices 204a, 204b, 204c can be communicatively coupled with the user group 400 to enable sharing visitor information (e.g., pictures, audio files, visitor descriptions) detected by one of the doorbells 202a, 202b, 202c (and/or recorded by one of the remote computing devices 204a, 204b, 204c) with all of the remote computing devices 204a, 204b, 204c communicatively coupled with the user group 400. This way, visitor information can be shared with members of the user group 400 without users being concerned that other members of the user group 400 might hear private visitor conversations and/or see confidential visitors. Embodiments can enable a user to control what visitor information members of the user group receive from the user's doorbell.


Embodiments can include sharing the first picture 410 of the first visitor 402a with the doorbell user group 400 such that the second remote computing device 204b receives the first picture 410 taken by the first doorbell 202a. Sharing the first picture 410 with the doorbell user group 400 can require the user of the first remote computing device 204a to authorize sharing the first picture (and/or other information regarding the first visitor 402a) with the user group 400. As illustrated in FIG. 10, the first remote computing device 204a is not communicatively coupled to the second doorbell 202b. Embodiments can include receiving, by the first remote computing device 204a, a second picture 412 taken by the second doorbell 202b in response to the second doorbell 202b sending the second picture 412 to a database 390 configured to provide visitor information 406 to the doorbell user group 400.


The visitors 402a, 402b, 402c can be the same person. For example, a solicitor knocking on doors of buildings 300a, 300b, 300c in a neighborhood can be detected by motion sensors of many doorbells 202a, 202b, 202c. In some cases, visitors 402b, 402c can be different people. FIG. 11 illustrates a diagrammatic view of an embodiment that includes a user group 400. Using a doorbell system 408 can include coupling a first doorbell 202a having a first camera 208 (labeled in FIG. 1) to a first building 300a. The first building 300a can include a first wireless network 308a that communicatively couples the first doorbell 202a to the first remote computing device 204a, but does not communicatively couple the first doorbell 202a to a second remote computing device 204b.


In some embodiments, the doorbell 202a is connected to the first wireless 308a, which connects to the Internet and/or to a cellular network to enable the first doorbell 202a to be communicatively coupled to the first remote computing device 204a even when the first remote computing device 204a is many miles away from the first building 300a. In some cases, when the first remote computing device 204a is located within range of the first wireless network 308a (e.g., inside the first building 300a), the first wireless network 308a can directly communicatively couple the first doorbell 202a to the first remote computing device 204b. The second building 300b can include a second wireless network 308b, which can communicatively couple the second doorbell 202b to the second remote computing device 204b. The third building 300c, to which the third doorbell 202c can be mechanically coupled, can include a third wireless network 308c.


Several embodiments include configuring the first doorbell 202a to wirelessly communicate with the first remote computing device 204a. Some embodiments include joining, by the first remote computing device 204a, a doorbell user group 400 that comprises a second user of the second doorbell 202b having a second camera coupled to the second building 300b. The doorbell user group 400 can also include a third user of a third doorbell 202c having a third camera coupled to the third building 300c. The second doorbell 202b can be configured to wirelessly communicate with the second remote computing device 204b.


Some embodiments include receiving, by the first remote computing device 204a, a first visitor picture 410 that was taken by the second doorbell 202b or the third doorbell 202c. For example, arrow 416 shows how the first visitor picture 410 from the second doorbell 202b can be sent to the second remote computing device 204b and/or to the user group 400 (in some cases without passing through the second remote computing device 204b). Arrow 418 represents that the second remote computing device 204b can send the first picture 410 to the user group 400 and/or can send permission for members of the user group 400 to view the first picture 410 to the user group 400. Arrow 420 represents how the user group 400 can send the first picture 410 to the first remote computing device 204a and/or to the third remote computing device 204c.


As used herein, “user groups” often do not include humans, but instead include devices owned by various humans. For example, a neighborhood association may decide to purchase doorbells 202a, 202b, 202c. Creating a doorbell user group can include communicatively coupling the doorbells 202a, 202b, 202c and the remote computing devices 204a, 204b, 204c as shown in FIG. 10. As a result of this communicatively coupling, members of the neighborhood association can share visitor information. A doorbell user group can include the doorbells 202a, 202b, 202c and/or the remote computing devices 204a, 204b, 204c. User groups 400 can include databases 390, servers 404, and information 406 regarding the owners of the doorbells 202a, 202b, 202c and the remote computing devices 204a, 204b, 204c. User groups 400 can include the locations of each doorbell in the user group 400. User groups 400 can store visitor pictures and visitor information for future reference by members of the user groups 400.


Referring now to FIG. 11, embodiments can include receiving from the doorbell user group 400, by the first remote computing device 204a, the first visitor picture 410 taken by the second doorbell 202b even though the first remote computing device 204a is not communicatively coupled to the second doorbell 202b. Embodiments can also include receiving, by the first remote computing device 204a, a first trait regarding a first visitor 402a in response to a second user of the second remote computing device 204b inputting the first trait into the second remote computing device 204b. For example, the second user can label the first visitor 402 as “suspicious” and/or can record a description of the first visitor 402a.


Several embodiments include taking a second visitor picture 412, by the first doorbell 202a, and sending the second visitor picture 412 to the doorbell user group 400 such that the second remote computing device 204b and the third remote computing device 204c can display the second visitor picture 412 even though the second remote computing device 204b and the third remote computing device 204c are not communicatively coupled to the first doorbell 202a The doorbell user group 400 can comprise a database 390 that includes many visitor pictures taken by more doorbells that are communicatively coupled to the doorbell user group 400. The database 390 can include a first visitor picture 410 taken by the second doorbell 202b of the second building 300b. The first doorbell 202a of the first building 300a can take a second visitor picture 412. At least a portion of the doorbell system 408 can determine that the first visitor picture 410 and the second visitor 412 picture show a visitor (i.e., show the same person). Embodiments can include labeling the visitor with solicitor information such that members of the doorbell user group 400 can see the first visitor picture 410 associated with the solicitor information. For example, the remote computing devices 204a, 204b, 204c can download the first visitor picture 410 (or another visitor picture) and information regarding the visitor's solicitation behavior. The remote computing devices 204a, 204b, 204c can display the solicitor information along with the picture of the solicitor.


Users can type information regarding visitors into their remote computing devices 204a, 204b, 204c. The user group 400 can then share this information with members of the user group 400. Some embodiments include alerting the members regarding at least a portion of the solicitor information. This alert 422 can include a picture of the solicitor and other information regarding the solicitor. Several embodiments include receiving a solicitor alert 422 in response to the second doorbell 202b of the second building 300b and the third doorbell 202c of the third building 300c detecting a visitor (e.g., detecting the same person within a predetermined time, which can be within 24 hours).


The alerts 422 shown in FIG. 11 can also be burglary alerts. Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to detecting a burglary of the first building 300a. A remote burglar detection system (e.g., a remote sensor 242 of an alarm system), can detect the burglary. The remote sensor 424 can also be a fire alarm or smoke alarm. Some embodiments include sending an alert 422 to members of the doorbell user group 400 in response to a remote sensor 424 detecting fire and/or smoke.


A doorbell system 408 can comprise a first doorbell 202a having a first camera coupled to a first building 300a, wherein the first doorbell 202a is communicatively coupled to a first remote computing device 204a; a second doorbell 202b having a second camera coupled to a second building 300b, wherein the second doorbell 202b is communicatively coupled to a second remote computing device 204b; and a doorbell user group 400 comprising a database 390 having images 410, 412 taken by the first camera and the second camera. The doorbell user group 400 can be communicatively coupled to the first remote computing device 204a and the second remote computing device 204b.


In several embodiments, the first doorbell 202a is not communicatively coupled to the second remote computing device 204b, and the second doorbell 202b is not communicatively coupled to the first remote computing device 204a while the system 408 is configured such that the first remote computing device 204a receives a first visitor picture 410 taken by the second doorbell 202b via the doorbell user group 400. A second visitor picture 412 can be taken by the first doorbell 202a and displayed by the second remote computing device 204b.


The doorbell system 408 can also include a remote sensor 424 configured to monitor the first building 300a and detect an unauthorized building intrusion. The doorbell system 408 can include at least one alert 422 sent to the doorbell user group 400 in response to the remote sensor 424 detecting the unauthorized building intrusion.


Several embodiments include a solicitor alert sent to the doorbell user group 400 in response to a visitor being detected by the first doorbell 202a at the first building 300a and by the second doorbell 202b at the second building 300b.


Information collected from the doorbells 202a, 202b, 202c can be analyzed (e.g., by the system). An alert 422 can be send to remote computing devices 204a, 204c in response to analytics based on the collected information.


Aggregated doorbell information can be analyzed to look for trends and abnormal behaviors that might be correlated with crime or other unwanted behavior. Analytics can include the number of visits or visitors to a particular building, group of buildings, or area. For example, a high number of unique visitors could suggest an illegal business is being operated out of a home (e.g., drug dealing). Analytics can also evaluate how long visitors wait at a door before leaving. In some cases, analytics include determining whether a person with a criminal history or arrest warrant is contacting more than one building in an area within a predetermined time.


Several embodiments include taking, by the second doorbell 202b, a first visitor picture 410; sending, by the second doorbell 202b, the first visitor picture to the user group; and comparing, by the user group 400, the first visitor picture 410 to criminal pictures of a database 390. A moderator (e.g., a person who acts as an administrator of the user group 400) can compare visitor pictures to determine if the pictures show the same person (e.g., a solicitor) or show a criminal. Some embodiments use computer image recognition to compare images.


The first building 300a can include an alarm 434 that can be located remotely relative to the first doorbell 202a. In some embodiments, the doorbell 202a is communicatively coupled to the alarm 434. The alarm 434 can include a speaker and electronics configured to enable the speaker to emit an alarm sound.


A button on the user interface of the first remote computing device 204a can enable a user to active the alarm 434. In response to a signal from the remote sensor 424, the system 408 can enter an Alarm State, which can include recording, by the first doorbell 202a, a video; blinking a light 216, 220 (shown in FIG. 1) of the first doorbell 202a; and emitting an alarm sound from a speaker 488 (shown in FIG. 4) of the first doorbell 202a. Other members of the user group 400 can receive an alert 422 regarding the Alarm State. Other members can also see a flashing light and hear the alarm sound from the first doorbell 202a. As a result, the first doorbell 202a can serve as a beacon to first responders, which can include neighbors, medical personnel, and law enforcement officers.


Each member of the user group 400 can choose which members receive alerts, visitor pictures, and visitor information from the choosing member. This approach enables sub-groups within a larger user group.


Interpretation


None of the steps described herein is essential or indispensable. Any of the steps can be adjusted or modified. Other or additional steps can be used. Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one embodiment, flowchart, or example in this specification can be combined or used with or instead of any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different embodiment, flowchart, or example. The embodiments and examples provided herein are not intended to be discrete and separate from each other.


The section headings and subheadings provided herein are nonlimiting. The section headings and subheadings do not represent or limit the full scope of the embodiments described in the sections to which the headings and subheadings pertain. For example, a section titled “Topic 1” may include embodiments that do not pertain to Topic 1 and embodiments described in other sections may apply to and be combined with embodiments described within the “Topic 1” section. Some of the devices, systems, embodiments, and processes use computers. Each of the routines, processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computers, computer processors, or machines configured to execute computer instructions. The code modules may be stored on any type of non-transitory computer-readable storage medium or tangible computer storage device, such as hard drives, solid state memory, flash memory, optical disc, and/or the like. The processes and algorithms may be implemented partially or wholly in application-specific circuitry. The results of the disclosed processes and process steps may be stored, persistently or otherwise, in any type of non-transitory computer storage such as, e.g., volatile or non-volatile storage.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state, or process blocks may be omitted in some implementations. The methods, steps, and processes described herein are also not limited to any particular sequence, and the blocks, steps, or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than the order specifically disclosed. Multiple steps may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.


The term “and/or” means that “and” applies to some embodiments and “or” applies to some embodiments. Thus, A, B, and/or C can be replaced with A, B, and C written in one sentence and A, B, or C written in another sentence. A, B, and/or C means that some embodiments can include A and B, some embodiments can include A and C, some embodiments can include B and C, some embodiments can only include A, some embodiments can include only B, some embodiments can include only C, and some embodiments can include A, B, and C. The term “and/or” is used to avoid unnecessary redundancy.


While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein.

Claims
  • 1. A doorbell system comprising: a first doorbell having a first housing, a first microphone, a first speaker, a first camera, a first transmitter, and a first button, the first doorbell coupled to a first building, and the first doorbell communicatively coupled to a first remote computing device;a second doorbell having a second housing, a second microphone, a second speaker, a second camera, a second transmitter, and a second button, the second doorbell coupled to a second building, and the second doorbell communicatively coupled to a second remote computing device;a doorbell user group comprising a database having images taken by the first camera and the second camera, wherein the doorbell user group is communicatively coupled to the first remote computing device and the second remote computing device; anda display, on the first remote computing device, configured to show a map that indicates a location of the second doorbell, the display further configured to show information regarding the second doorbell in response to a first selection, on the first remote computing device, of a first map icon representing the second doorbell while the first map icon is shown on the display, the display providing an interface by which to add the second doorbell to the doorbell user group.
  • 2. The system of claim 1, further comprising a third doorbell having a third housing, a third microphone, a third speaker, a third camera, a third transmitter, and a third button, the third doorbell coupled to a third building, and the third doorbell communicatively coupled to a third remote computing device, wherein the display is further configured show the map, wherein the map indicates a location of the third doorbell, the display being further configured to show information regarding the third doorbell in response to a second selection, on the first remote computing device, of a second map icon representing the third doorbell while the second map icon is shown on the display, the display providing the interface by which to add the third doorbell to the doorbell user group.
  • 3. The system of claim 1, wherein the first doorbell is not communicatively coupled to the second remote computing device, and the second doorbell is not communicatively coupled to the first remote computing device while the system is configured such that the first remote computing device receives a first visitor picture taken by the second doorbell via the doorbell user group, the system further comprising a second visitor picture taken by the first doorbell and displayed by the second remote computing device.
  • 4. The system of claim 1, further comprising a remote sensor configured to monitor the first building and detect an unauthorized building intrusion, and an alert sent to the doorbell user group in response to the remote sensor detecting the unauthorized building intrusion.
  • 5. The system of claim 1, further comprising a solicitor alert sent to the doorbell user group in response to a visitor being detected by the first doorbell at the first building and by the second doorbell at the second building.
  • 6. A method of using a doorbell system, the method comprising: sending a first picture, taken by a first doorbell, of a first visitor to a first remote computing device;creating a doorbell user group comprising the first remote computing device and a second remote computing device that is communicatively coupled to a second doorbell but is not communicatively coupled to the first doorbell;sharing the first picture of the first visitor with the doorbell user group;displaying a map on the first remote computing device, wherein the map displays a second location of the second doorbell and a third location of a third doorbell, the method further comprising displaying information regarding the second doorbell in response to selecting a map icon representing the second doorbell while the map icon is displayed on the first remote computing device; andselecting the map icon to add the second doorbell to the doorbell user group.
  • 7. The method of claim 6, wherein the first remote computing device is not communicatively coupled to the second doorbell, the method further comprising receiving, by the first remote computing device, a second picture taken by the second doorbell in response to the second doorbell sending the second picture to a database configured to provide visitor information to the doorbell user group.
  • 8. The method of claim 6, further comprising indicating a first trait of the first visitor via the first remote computing device, and sharing the first picture of the first visitor with the doorbell user group in response to the first trait of the first visitor.
  • 9. The method of claim 6, further comprising: indicating a first trait of the first visitor via the first remote computing device, and sending the first trait and the first picture of the first visitor to a database configured to provide information regarding the first visitor to the doorbell user group; andproviding a time, at which the first visitor visited the first doorbell, to the database.
  • 10. The method of claim 6, wherein the first remote computing device is not communicatively coupled to the second doorbell, the method further comprising receiving, by the first remote computing device, data from the doorbell user group regarding the second doorbell and regarding a third doorbell, wherein the second doorbell is coupled to a second building, and the third doorbell is coupled to a third building, wherein the doorbell system comprises a database configured to share visitor information with the doorbell user group, the method further comprising selecting via the first remote computing device to receive the visitor information from at least one of the second doorbell and the third doorbell, andwherein the first doorbell is coupled to a first building, and the first building, the second building, and the third building are located apart from each other such that receiving the data comprises receiving the visitor information from a different location than a first location of the first building.
  • 11. The method of claim 6, wherein creating the doorbell user group comprises adding a first email address and a second email address to a database, wherein the first email address is associated with the first doorbell, and the second email address is associated with the second doorbell.
  • 12. The method of claim 6, further comprising selecting a first button on the first remote computing device to alert law enforcement and to alert the doorbell user group.
  • 13. The method of claim 6, wherein the first doorbell is coupled to a first building, the second doorbell is coupled to a second building, and a third doorbell is coupled to a third building, the method further comprising analyzing information collected from the first, second, and third doorbells, and then sending an alert in response to analytics based on the information.
  • 14. A method of using a doorbell system, the method comprising: coupling a first doorbell, coupled to a first button, to a first building;configuring the first doorbell to wirelessly communicate with a first remote computing device;joining, by the first remote computing device, a doorbell user group that comprises a second doorbell, the second doorbell coupled to a second building, and a third doorbell coupled to a third building, wherein the second doorbell is configured to wirelessly communicate with a second remote computing device;displaying a map on the first remote computing device, wherein the map displays a second location of the second doorbell and a third location of a third doorbell, the method further comprising displaying information regarding the second doorbell in response to selecting a map icon representing the second doorbell while the map icon is displayed on the first remote computing device; andselecting the map icon to add the second doorbell to the doorbell user group.
  • 15. The method of claim 14, further comprising receiving, by the first remote computing device, a first visitor picture, wherein the second doorbell or the third doorbell took the first visitor picture.
  • 16. The method of claim 14, further comprising: receiving from the doorbell user group, by the first remote computing device, a first visitor picture taken by the second doorbell even though the first remote computing device is not communicatively coupled to the second doorbell; andtaking a second visitor picture, by the first doorbell, and sending the second visitor picture to the doorbell user group such that the second remote computing device can display the second visitor picture even though the second remote computing device is not communicatively coupled to the first doorbell.
  • 17. The method of claim 14, further comprising receiving, by the first remote computing device, a first trait regarding a first visitor in response to the second remote computing device receiving the first trait.
  • 18. The method of claim 14, wherein the doorbell user group comprises a database having a first visitor picture taken by the second doorbell of the second building, the method further comprising taking, by the first doorbell of the first building, a second visitor picture, and determining, by a portion of the doorbell system, that the first visitor picture and the second visitor picture show a visitor, the method further comprising: labeling the visitor with solicitor information such that members of the doorbell user group can see the first visitor picture associated with the solicitor information; andalerting the members regarding at least a portion of the solicitor information.
  • 19. The method of claim 14, further comprising: receiving a solicitor alert in response to the second doorbell of the second building and the third doorbell of the third building detecting a visitor; andadding solicitation information regarding the visitor to the doorbell user group.
  • 20. The method of claim 14, further comprising sending an alert to members of the doorbell user group in response to detecting, by a remote burglar detection system, a burglary of the first building.
CROSS-REFERENCE TO RELATED APPLICATIONS

The entire contents of the following application are incorporated by reference herein: U.S. Provisional Patent Application No. 62/143,032, filed Apr. 4, 2015, and entitled DOORBELL COMMUNITIES. The entire contents of the following applications are incorporated by reference herein: U.S. Nonprovisional patent application Ser. No. 14/612,376, filed Feb. 3, 2015, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/502,601, filed Sep. 30, 2014, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/492,809, filed Sep. 22, 2014, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/275,811, filed May 12, 2014, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/142,839, filed Dec. 28, 2013, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; U.S. Nonprovisional patent application Ser. No. 14/099,888, filed Dec. 6, 2013, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS; and U.S. Nonprovisional patent application Ser. No. 14/098,772, filed Dec. 6, 2013, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS. The entire contents of the following application are incorporated by reference herein: International Application No. PCT/US14/47622, filed Jul. 22, 2014 with the U.S. Patent and Trademark Office and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS. The entire contents of the following application are incorporated by reference herein: International Application No. PCT/US14/53506, filed Aug. 29, 2014 with the U.S. Patent and Trademark Office, and entitled DOORBELL COMMUNICATION SYSTEMS AND METHODS.

US Referenced Citations (559)
Number Name Date Kind
1647558 Best Nov 1927 A
1647708 Monica Nov 1927 A
3240113 Stechemesser Mar 1966 A
3480727 Moore et al. Nov 1969 A
3708742 Gunn Jan 1973 A
4075659 Desanti Feb 1978 A
4370675 Cohn Jan 1983 A
4468439 Ohara Aug 1984 A
4523193 Levinson Jun 1985 A
4524384 Lefkowitz et al. Jun 1985 A
D283130 Boenning Mar 1986 S
D297222 Rauch Aug 1988 S
4764953 Chern et al. Aug 1988 A
4843461 Tatsumi Jun 1989 A
4959713 Morotomi et al. Sep 1990 A
4982092 Jehle Jan 1991 A
5151945 Lee et al. Sep 1992 A
5210520 Housley May 1993 A
5428388 Von Bauer Jun 1995 A
5493618 Stevens Feb 1996 A
5521578 Delvalle May 1996 A
D371086 Collins Jun 1996 S
5602580 Tseng Feb 1997 A
5623280 Akins Apr 1997 A
D381638 Kruse Jul 1997 S
5717379 Peters Feb 1998 A
5774569 Waldenmaier Jun 1998 A
5781108 Jacob Jul 1998 A
5784446 Stuart Jul 1998 A
5799130 Hoshi Aug 1998 A
5822542 Smith et al. Oct 1998 A
D404673 Gordon Jan 1999 S
5861804 Fansa et al. Jan 1999 A
5878283 House et al. Mar 1999 A
5907352 Gilley May 1999 A
5995139 Lee Nov 1999 A
6028626 Aviv Feb 2000 A
D421727 Pierson Mar 2000 S
D422521 Morrow Apr 2000 S
6060994 Chen May 2000 A
6064303 Klein et al. May 2000 A
6069655 Seeley et al. May 2000 A
6073192 Clapp Jun 2000 A
6094213 Mun Jul 2000 A
6097429 Seeley et al. Aug 2000 A
6104785 Chen Aug 2000 A
6117575 Dinsdale Sep 2000 A
6134303 Chen Oct 2000 A
6185294 Chornenky Feb 2001 B1
6226031 Barraclough May 2001 B1
6313743 Abraham-Fuchs Nov 2001 B1
6323897 Kogane et al. Nov 2001 B1
6359560 Budge et al. Mar 2002 B1
6375366 Kato Apr 2002 B1
6385772 Courtney May 2002 B1
6400265 Saylor et al. Jun 2002 B1
6414589 Angott Jul 2002 B1
6421080 Lambert Jul 2002 B1
6424371 Wen Jul 2002 B1
6429893 Xin Aug 2002 B1
6476858 Diaz et al. Nov 2002 B1
6535243 Tullis Mar 2003 B1
6542078 Script Apr 2003 B2
6590604 Tucker Jul 2003 B1
6661340 Saylor Dec 2003 B1
6727811 Fendis Apr 2004 B1
6753899 Lapalme Jun 2004 B2
6778084 Chang Aug 2004 B2
6812970 Mcbride Nov 2004 B1
6816085 Haynes et al. Nov 2004 B1
6828909 Script Dec 2004 B2
D500751 Yukikado Jan 2005 S
D501652 Pierson Feb 2005 S
6870488 Compton Mar 2005 B1
6928461 Tuli Aug 2005 B2
6930599 Naidoo Aug 2005 B2
6943682 Dowens et al. Sep 2005 B1
6956478 Oyagi et al. Oct 2005 B2
6993123 Allen Jan 2006 B1
7012523 Stuart Mar 2006 B2
7015943 Chiang Mar 2006 B2
7019770 Katz Mar 2006 B1
D519100 Shioya Apr 2006 S
D522490 Yukikado Jun 2006 S
7062291 Ryley et al. Jun 2006 B2
D525963 Yukikado Aug 2006 S
7113090 Saylor et al. Sep 2006 B1
7113578 Unger Sep 2006 B2
D531160 Yukikado Oct 2006 S
7119609 Naidoo et al. Oct 2006 B2
7123142 Bohbot et al. Oct 2006 B2
7139716 Gaziz Nov 2006 B1
7154531 Laird Dec 2006 B2
7187279 Chung Mar 2007 B2
7193644 Carter Mar 2007 B2
7218220 Bovsun May 2007 B1
7242295 Milnusic et al. Jul 2007 B1
7262690 Heaton et al. Aug 2007 B2
7277010 Joao Oct 2007 B2
7310111 Ramirez-Diaz et al. Dec 2007 B2
D562306 Jeong Feb 2008 S
7330112 Emigh Feb 2008 B1
7330649 Finizio Feb 2008 B2
7375492 Calhoon May 2008 B2
7403116 Bittner Jul 2008 B2
D577301 Johnson Sep 2008 S
7429924 Langer Sep 2008 B2
7440025 Cheng Oct 2008 B2
7444287 Claudatos et al. Oct 2008 B2
7460149 Donovan Dec 2008 B1
7477134 Langer Jan 2009 B2
7486271 Hershkovitz Feb 2009 B2
7492303 Levitan Feb 2009 B1
D588574 Takahata Mar 2009 S
7526102 Ozer Apr 2009 B2
7529485 Farmer et al. May 2009 B2
D595260 Takahata Jun 2009 S
7583191 Zinser Sep 2009 B2
7609941 Matsukawa et al. Oct 2009 B2
7701171 Defant Apr 2010 B2
7738917 Ryley Jun 2010 B2
7746223 Howarter Jun 2010 B2
7751285 Cain Jul 2010 B1
7752070 Hatcher Jul 2010 B2
7786891 Owens et al. Aug 2010 B2
7809966 Imao Oct 2010 B2
7826729 Cullen Nov 2010 B2
7952609 Simerly et al. May 2011 B2
7956576 Neu Jun 2011 B2
7956739 Hong et al. Jun 2011 B2
7991381 Dunne Aug 2011 B1
7991575 Vogel Aug 2011 B2
8016676 Carter Sep 2011 B2
8125329 Hirou Feb 2012 B1
8138098 Yu et al. Mar 2012 B2
8139098 Carter Mar 2012 B2
8144183 Carter Mar 2012 B2
8144184 Carter Mar 2012 B2
8154581 Carter Apr 2012 B2
8164614 Carter Apr 2012 B2
D660819 Chen May 2012 S
8193919 Langer Jun 2012 B2
8224311 Majmundar Jul 2012 B2
8237574 Anderson Aug 2012 B2
8334656 Weiss Dec 2012 B2
8354914 Buckingham Jan 2013 B2
8504103 Ficquette Aug 2013 B2
8520068 Naidoo et al. Aug 2013 B2
D689828 Pierson Sep 2013 S
8562158 Chien Oct 2013 B2
8565399 Siminoff Oct 2013 B2
D692847 Barley Nov 2013 S
8619136 Howarter et al. Dec 2013 B2
8630452 Mardirossian Jan 2014 B2
8665333 Sharma Mar 2014 B1
8669876 Anderson Mar 2014 B2
D707147 Crippa Jun 2014 S
8780201 Scalisi Jul 2014 B1
D710727 Siminoff Aug 2014 S
D710728 Siminoff Aug 2014 S
D711275 Scalisi Aug 2014 S
8823795 Scalisi Sep 2014 B1
8842180 Kasmir Sep 2014 B1
8866598 Collins Oct 2014 B2
8872915 Scalisi Oct 2014 B1
8875208 Abkairov Oct 2014 B1
8937659 Scalisi Jan 2015 B1
8941736 Scalisi Jan 2015 B1
8947530 Scalisi Feb 2015 B1
8948245 Henson et al. Feb 2015 B2
8953040 Scalisi Feb 2015 B1
8976244 Felt Mar 2015 B2
9013575 Scalisi Apr 2015 B2
9021134 Patel Apr 2015 B1
9049352 Scalisi Jun 2015 B2
9053622 Scalisi Jun 2015 B2
9055202 Scalisi Jun 2015 B1
9057210 Dumas Jun 2015 B2
9058738 Scalisi Jun 2015 B1
9060103 Scalisi Jun 2015 B2
9060104 Scalisi Jun 2015 B2
9065987 Kasmir Jun 2015 B2
9071923 Zhang Jun 2015 B2
9113051 Scalisi Aug 2015 B1
9113052 Scalisi Aug 2015 B1
9142214 Scalisi Sep 2015 B2
9143741 Fu Sep 2015 B1
9172922 Kasmir Oct 2015 B1
9196104 Dumas Nov 2015 B2
9218696 Dumas Dec 2015 B2
9230424 Scalisi Jan 2016 B1
9250267 Jackson et al. Feb 2016 B1
9282665 Ladanyi Mar 2016 B1
9300921 Naidoo et al. Mar 2016 B2
9336637 Neil May 2016 B2
9338594 Onnen May 2016 B1
9414030 Carter Aug 2016 B2
9432638 Carter Aug 2016 B2
9485478 Carter Nov 2016 B2
9516284 Carter Dec 2016 B2
9554090 Carter Jan 2017 B1
9584775 Siminoff Feb 2017 B2
9615199 Haney Apr 2017 B1
9635323 Carter Apr 2017 B2
D788061 Siminoff May 2017 S
9648290 Carter May 2017 B2
D789404 Modestine Jun 2017 S
D789820 Siminoff Jun 2017 S
9674433 De La Cruz Jun 2017 B1
D791165 Modestine Jul 2017 S
D791240 Lemberger Jul 2017 S
D791241 Lemberger Jul 2017 S
D791243 Loew Jul 2017 S
D791878 Loew Jul 2017 S
9697723 Ladanyi Jul 2017 B1
9706178 Carter Jul 2017 B2
9734675 Siminoff Aug 2017 B2
D798177 Siminoff Sep 2017 S
9761092 Chen Sep 2017 B2
9810887 Abdala Nov 2017 B1
9866802 Carter Jan 2018 B2
9924141 Carter Mar 2018 B2
9955090 Yang et al. Apr 2018 B2
9978260 Lee May 2018 B2
10097796 Carter Oct 2018 B2
10097797 Carter Oct 2018 B2
10200660 Carter Feb 2019 B2
10289917 Fu May 2019 B1
10367814 Walker Jul 2019 B2
10523906 Carter Dec 2019 B2
10674120 Carter Jun 2020 B2
10863147 Carter Dec 2020 B2
10977797 Carter Apr 2021 B2
20010010555 Driscoll Aug 2001 A1
20010022627 Bernhardt Sep 2001 A1
20020016971 Berezowski et al. Feb 2002 A1
20020030583 Jang et al. Mar 2002 A1
20020067259 Fufidio et al. Jun 2002 A1
20020071031 Lord et al. Jun 2002 A1
20020076049 Alexander et al. Jun 2002 A1
20020097161 Deeds Jul 2002 A1
20020118283 Guerrero Aug 2002 A1
20020147982 Naidoo et al. Aug 2002 A1
20030009364 Miyoshi Jan 2003 A1
20030013503 Menard Jan 2003 A1
20030025599 Monroe Feb 2003 A1
20030046557 Miller et al. Mar 2003 A1
20030061344 Monroe Mar 2003 A1
20030062997 Naidoo et al. Apr 2003 A1
20030071724 D'Amico Apr 2003 A1
20030075287 Weik Apr 2003 A1
20030081747 Ahlstrom et al. May 2003 A1
20030081952 Geng May 2003 A1
20030095184 Lin May 2003 A1
20030095185 Naifeh May 2003 A1
20030103138 Assayag et al. Jun 2003 A1
20030117280 Prehn Jun 2003 A1
20030122514 Mercier et al. Jul 2003 A1
20030169178 Jensen Sep 2003 A1
20030171930 Junqua Sep 2003 A1
20030206101 Dixon et al. Nov 2003 A1
20040003051 Krzyanowski et al. Jan 2004 A1
20040036603 Bingham Feb 2004 A1
20040080615 Klein et al. Apr 2004 A1
20040080627 Kroll et al. Apr 2004 A1
20040085205 Yeh May 2004 A1
20040085449 Millet May 2004 A1
20040086093 Schranz May 2004 A1
20040095254 Maruszczak May 2004 A1
20040117039 Hantke Jun 2004 A1
20040178889 Buckingham Sep 2004 A1
20040229569 Franz Nov 2004 A1
20040257336 Hershkovitz Dec 2004 A1
20040257670 Kawakami Dec 2004 A1
20050001717 Bohbot et al. Jan 2005 A1
20050006528 Movsesian Jan 2005 A1
20050007451 Chiang Jan 2005 A1
20050040954 Mcnally Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050057361 Giraldo Mar 2005 A1
20050071879 Haldavnekar Mar 2005 A1
20050097248 Kelley May 2005 A1
20050116480 Deng Jun 2005 A1
20050165612 Van Rysselberghe Jul 2005 A1
20050237208 Wojcik Oct 2005 A1
20050259641 Beninato Nov 2005 A1
20050267605 Lee Dec 2005 A1
20050285934 Carter Dec 2005 A1
20050285944 Watanabe Dec 2005 A1
20060010504 Sharma Jan 2006 A1
20060038663 Steinetz Feb 2006 A1
20060063517 Oh Mar 2006 A1
20060093187 Mittal May 2006 A1
20060095539 Renkis May 2006 A1
20060100002 Luebke May 2006 A1
20060139449 Cheng Jun 2006 A1
20060152365 Kim Jul 2006 A1
20060156361 Wang Jul 2006 A1
20060171453 Rohlfing et al. Aug 2006 A1
20060187034 Styers Aug 2006 A1
20060195872 Seo Aug 2006 A1
20060255931 Hartsfield et al. Nov 2006 A1
20060271678 Jessup Nov 2006 A1
20060273895 Kollin Dec 2006 A1
20070008081 Tylicki Jan 2007 A1
20070012602 Baldassari Jan 2007 A1
20070025712 Jezierski Feb 2007 A1
20070029486 Zhevelev Feb 2007 A1
20070046442 Bartorelli Mar 2007 A1
20070052531 Matthews Mar 2007 A1
20070066316 Hoover Mar 2007 A1
20070103541 Carter May 2007 A1
20070103548 Carter May 2007 A1
20070109441 Cheng May 2007 A1
20070118831 Kondo May 2007 A1
20070126574 Langer Jun 2007 A1
20070132413 Mays Jun 2007 A1
20070146115 Roosli Jun 2007 A1
20070146122 Ratner Jun 2007 A1
20070162748 Okayama et al. Jul 2007 A1
20070176778 Ando Aug 2007 A1
20070194945 Atkinson Aug 2007 A1
20070206510 Morris Sep 2007 A1
20070216764 Kwak Sep 2007 A1
20070237358 Tseng Oct 2007 A1
20080004995 Klingenberg Jan 2008 A1
20080028063 Holmes Jan 2008 A1
20080036862 Lang Feb 2008 A1
20080047287 Ruppert Feb 2008 A1
20080117299 Carter May 2008 A1
20080128586 Johnson Jun 2008 A1
20080129498 Howarter Jun 2008 A1
20080129825 Deangelis Jun 2008 A1
20080136915 Iwamura Jun 2008 A1
20080145050 Mayer Jun 2008 A1
20080157936 Ebrom Jul 2008 A1
20080157956 Radivojevic Jul 2008 A1
20080167072 Berstis Jul 2008 A1
20080198225 Gal Aug 2008 A1
20080291036 Richmond Nov 2008 A1
20080297339 Mathews Dec 2008 A1
20090042604 Ficquette Feb 2009 A1
20090059002 Kim Mar 2009 A1
20090072963 Langer Mar 2009 A1
20090093235 Grealish Apr 2009 A1
20090141939 Chambers Jun 2009 A1
20090167862 Jentoft Jul 2009 A1
20090207249 Erel Aug 2009 A1
20090213208 Glatt Aug 2009 A1
20090224912 Sobol Sep 2009 A1
20090243852 Haupt Oct 2009 A1
20090273670 Tamayo Nov 2009 A1
20090284578 Carter Nov 2009 A1
20090296641 Bienas Dec 2009 A1
20090302995 Park Dec 2009 A1
20090308116 Lambrou Dec 2009 A1
20100087161 Young Apr 2010 A1
20100103300 Jones Apr 2010 A1
20100109903 Carrick May 2010 A1
20100134072 Neu Jun 2010 A1
20100141761 Mccormack Jun 2010 A1
20100195810 Mota Aug 2010 A1
20100225455 Claiborne Sep 2010 A1
20100245060 Tylicki Sep 2010 A1
20100276570 Moser Nov 2010 A1
20100289661 Styers Nov 2010 A1
20100321494 Peterson Dec 2010 A1
20110025852 Tanaka Feb 2011 A1
20110028118 Thomas Feb 2011 A1
20110074570 Feldstein Mar 2011 A1
20110090085 Belz Apr 2011 A1
20110121940 Jones May 2011 A1
20110140845 Sanders Jun 2011 A1
20110156566 Chen Jun 2011 A1
20110176011 Swamidas Jul 2011 A1
20110207509 Crawford Aug 2011 A1
20110221582 Chuey Sep 2011 A1
20110260880 Dean Oct 2011 A1
20110264405 Vogel Oct 2011 A1
20110287718 Abel Nov 2011 A1
20110313775 Laligand Dec 2011 A1
20120011559 Miettinen Jan 2012 A1
20120027248 Feris Feb 2012 A1
20120030133 Rademaker Feb 2012 A1
20120044049 Vig Feb 2012 A1
20120044050 Vig Feb 2012 A1
20120044085 Hung Feb 2012 A1
20120085824 Handshaw Apr 2012 A1
20120098439 Recker Apr 2012 A1
20120105631 Hutchings May 2012 A1
20120108215 Kameli May 2012 A1
20120113253 Slater May 2012 A1
20120127308 Eldershaw May 2012 A1
20120162416 Su Jun 2012 A1
20120182427 Marshall Jul 2012 A1
20120200942 Schmidt Aug 2012 A1
20120229282 Zagami Sep 2012 A1
20120230203 Casey Sep 2012 A1
20120230696 Pederson Sep 2012 A1
20120262581 Carter Oct 2012 A1
20120267962 Hanchett Oct 2012 A1
20120280783 Gerhardt Nov 2012 A1
20120280789 Gerhardt Nov 2012 A1
20120280790 Gerhardt Nov 2012 A1
20120287123 Starner Nov 2012 A1
20120293310 Fitzgibbon Nov 2012 A1
20120320150 Montgomery Dec 2012 A1
20120327225 Barley Dec 2012 A1
20120327246 Senior Dec 2012 A1
20130017812 Foster Jan 2013 A1
20130020875 Wozniak Jan 2013 A1
20130039499 Patenaude Feb 2013 A1
20130045763 Ruiz Feb 2013 A1
20130057695 Huisking Mar 2013 A1
20130057696 Felt Mar 2013 A1
20130091213 Diab Apr 2013 A1
20130094444 Lai Apr 2013 A1
20130128050 Aghdasi May 2013 A1
20130130749 Andersen May 2013 A1
20130136033 Patil May 2013 A1
20130147616 Lambert Jun 2013 A1
20130147964 Frank Jun 2013 A1
20130150686 Fronterhouse Jun 2013 A1
20130169809 Grignan Jul 2013 A1
20130169814 Liu Jul 2013 A1
20130173477 Cairns Jul 2013 A1
20130201316 Binder Aug 2013 A1
20130208123 Lakhani Aug 2013 A1
20130223279 Tinnakornsrisuphap Aug 2013 A1
20130223833 Tenenbaum Aug 2013 A1
20130271261 Ribas Oct 2013 A1
20130286211 Cao Oct 2013 A1
20130293722 Chen Nov 2013 A1
20130328522 Brockman Dec 2013 A1
20130335219 Malkowski Dec 2013 A1
20140009609 Webster Jan 2014 A1
20140015967 Moore Jan 2014 A1
20140070922 Davis Mar 2014 A1
20140077929 Dumas Mar 2014 A1
20140087780 Abhyanker Mar 2014 A1
20140088761 Shamlian Mar 2014 A1
20140118600 Son May 2014 A1
20140125754 Haywood May 2014 A1
20140149706 Shim May 2014 A1
20140167676 Mack Jun 2014 A1
20140188643 Murphy Jul 2014 A1
20140210590 Castro Jul 2014 A1
20140253725 Hsu Sep 2014 A1
20140260449 Uyeda Sep 2014 A1
20140265359 Cheng Sep 2014 A1
20140266669 Fadell Sep 2014 A1
20140266702 Forster-Knight Sep 2014 A1
20140266767 Huang Sep 2014 A1
20140267716 Child Sep 2014 A1
20140267740 Almomani Sep 2014 A1
20140285672 Hogasten Sep 2014 A1
20140292194 Sagal Oct 2014 A1
20140292481 Dumas Oct 2014 A1
20140320663 Chien Oct 2014 A1
20140334684 Strimling Nov 2014 A1
20140340894 Chien Nov 2014 A1
20140368643 Siegel Dec 2014 A1
20150022319 Chutorash Jan 2015 A1
20150022618 Siminoff Jan 2015 A1
20150022620 Siminoff Jan 2015 A1
20150027178 Scalisi Jan 2015 A1
20150029335 Kasmir Jan 2015 A1
20150035987 Fernandez Feb 2015 A1
20150049191 Scalisi Feb 2015 A1
20150054949 Scalisi Feb 2015 A1
20150061859 Matsuoka Mar 2015 A1
20150063559 Siminoff Mar 2015 A1
20150070495 Scalisi Mar 2015 A1
20150077220 Davis Mar 2015 A1
20150084779 Saladin Mar 2015 A1
20150092055 Scalisi Apr 2015 A1
20150109104 Fadell Apr 2015 A1
20150109111 Lee Apr 2015 A1
20150109112 Fadell Apr 2015 A1
20150112885 Fadell Apr 2015 A1
20150120015 Fadell Apr 2015 A1
20150120598 Fadell Apr 2015 A1
20150127712 Fadell May 2015 A1
20150145991 Russell May 2015 A1
20150156030 Fadell Jun 2015 A1
20150156031 Fadell Jun 2015 A1
20150161856 Wilson Jun 2015 A1
20150163463 Hwang Jun 2015 A1
20150179031 Wallace Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150194839 Wojcik Jul 2015 A1
20150208032 Gavney Jul 2015 A1
20150211259 Dumas Jul 2015 A1
20150213658 Dumas Jul 2015 A1
20150228281 Raniere Aug 2015 A1
20150236966 Francini Aug 2015 A1
20150245163 Candelore Aug 2015 A1
20150275564 Rosenthal Oct 2015 A1
20150276266 Warren Oct 2015 A1
20150276820 Floyd Oct 2015 A1
20150309487 Lyman Oct 2015 A1
20150310381 Lyman Oct 2015 A1
20150312531 Samad Oct 2015 A1
20150338812 Miura Nov 2015 A1
20150339895 Chen Nov 2015 A1
20150339912 Farrand Nov 2015 A1
20150347910 Fadell Dec 2015 A1
20150364028 Child Dec 2015 A1
20160001719 Frost Jan 2016 A1
20160019495 Kolchin Jan 2016 A1
20160057199 Aziz Feb 2016 A1
20160058181 Han Mar 2016 A1
20160073479 Erchak Mar 2016 A1
20160078699 Kalb Mar 2016 A1
20160104061 Mcgill Apr 2016 A1
20160105644 Smith Apr 2016 A1
20160125357 Hall May 2016 A1
20160171435 Newton Jun 2016 A1
20160171439 Ladden Jun 2016 A1
20160191864 Siminoff Jun 2016 A1
20160219254 Hu Jul 2016 A1
20160235236 Byers Aug 2016 A1
20160247344 Eichenblatt Aug 2016 A1
20160261425 Horton Sep 2016 A1
20160292936 Palmer Oct 2016 A1
20160300187 Kashi Oct 2016 A1
20160307380 Ho Oct 2016 A1
20160314663 Glencross Oct 2016 A1
20160330403 Siminoff Nov 2016 A1
20160366373 Siminoff Dec 2016 A1
20170023780 Braker Jan 2017 A1
20170064504 Jose Mar 2017 A1
20170109984 Child Apr 2017 A1
20170124510 Caterino May 2017 A1
20170149855 Doshi May 2017 A1
20170160137 Jeong Jun 2017 A1
20170160138 Jeong Jun 2017 A1
20170160144 Jeong Jun 2017 A1
20170162225 Jeong Jun 2017 A1
20170163944 Jeong Jun 2017 A1
20170201725 Siminoff Jul 2017 A1
20170220872 Child Aug 2017 A1
20170251035 Siminoff Aug 2017 A1
20170251173 Siminoff Aug 2017 A1
20170251182 Siminoff Aug 2017 A1
20170272706 Jeong Sep 2017 A1
20170280112 Siminoff Sep 2017 A1
20170280565 Tso Sep 2017 A1
20170293883 Li Oct 2017 A1
20170294694 Tso Oct 2017 A1
20180019889 Burns Jan 2018 A1
20180032979 Siminoff Feb 2018 A1
20180233010 Modestine Aug 2018 A1
20180249134 Siminoff Aug 2018 A1
20180322751 Sacre Nov 2018 A1
20190058720 Lindquist et al. Feb 2019 A1
20190066471 Jeon Feb 2019 A1
20190206243 Siminoff Jul 2019 A1
20210092329 Carter Mar 2021 A1
Foreign Referenced Citations (32)
Number Date Country
2228679 Aug 1999 CA
2131143 Apr 1993 CN
2304927 Jan 1999 CN
1704985 Dec 2005 CN
1902609 May 2010 CN
202872976 Apr 2013 CN
202939738 May 2013 CN
209030325 Jun 2019 CN
0684743 Nov 1995 EP
2759804 Aug 1998 FR
2285365 Jul 1995 GB
2400958 Jul 2005 GB
H 09-107409 Apr 1997 JP
19980039422 Aug 1998 KR
20010074212 Aug 2001 KR
100373449 Sep 2001 KR
1999006976 Feb 1999 WO
2001027763 Apr 2001 WO
2001050731 Jul 2001 WO
2001093220 Dec 2001 WO
2001097524 Dec 2001 WO
2002005220 Jan 2002 WO
2002065420 Aug 2002 WO
2003028375 Apr 2003 WO
2006046234 May 2006 WO
2007111802 Oct 2007 WO
2014062321 Apr 2014 WO
2014107196 Jul 2014 WO
2014144628 Sep 2014 WO
2015023737 Feb 2015 WO
2016032217 Mar 2016 WO
2019028058 Feb 2019 WO
Non-Patent Literature Citations (114)
Entry
CNIPA—China National Intellectual Property Administration; Notification of the Third Office Action of CN Application No. IIE151535; dated Nov. 15, 2019.
Ring—How to Navigate Through the Ring App—YouTube video by user Ring—Available from Internet <URL: https://www.youtube.com/watch?v=0kD_TOeqSVk&ab_channel=Ring>.
VIVANT Doorbell Camera—Downloaded on May 20, 2015 from http://www.vivint.com/company/newsroom/press/Vivint-Introduces-Wi-Fi-Enabled-Doorbell-Camera-into-Its-Smart-Home-Platform.
Myintercom Video System—Downloaded on Jun. 8, 2015 from http://myintercom.de/en/funktionsweise.
KOCCHI's Cobell Wi-Fi Doorbell—Downloaded on Sep. 14, 2015 from http://www.kocchis.com/Cobell_Manual.pdf.
August Doorbell Cam—Downloaded on Nov. 12, 2015 from http://august.com/products/august-doorbell/.
Nest Home Index♯Downloaded on Nov. 12, 2015 from https://nest.com/blog/2015/11/09/the-first-nest-home-index/?utm_medium=paid%20social&utm_source=Facebook&utm_campaign=Nest%20Home%20Index&utm_content=Launch%20post.
ENGADGET—Amazon partners are reportedly exploring in-home deliveries—Downloaded on Oct. 19, 2017 from https://www.engadget.com/2016/09/27/amazon-august-garageio-inhome/; prior art publication at least as of Sep. 27, 2016.
Logittech—Logitech Circle 2—Downloaded on Oct. 19, 2017 from from https://www.logitech.com/en-us/product/circle-2-home-security-camera; prior art publication at least as of Jul. 26, 2017.
NY Times—Was That an Intruder or a Pet? The Security Cams That Can Tell—Downloaded on Oct. 19, 2017 from https://www.nytimes.com/2017/08/09/technology/personaltech/internet-connected-security-cameras-wirecutter.html?rref=collection%2Fsectioncollection%2Fpersonaltech, prior art publication at least as of Aug. 10, 2017.
WISENET—SmartCam D1—Downloaded on Oct. 19, 2017 from http://www.wisenetlife.com/en-us/product/SmartCam/SNH-V6435DN;jsessionid=023065D418C9E9CA7335F6D9B4E2C8DC/faq/?currtPg=4; prior art publication at least as of Sep. 23, 2017.
NORTEK Control—Go Control: Smart Doorbell Camera—Downloaded on Oct. 19, 2017 from https://www.nortekcontrol.com/pdf/literature/GC-DBC-1-GoControl-Smart-Doorbell-Camera-Spec-Sheet.pdf; prior art publication at least as of Dec. 18, 2016.
HSN—Samsung SmartCam High-Definition Video Doorbell—Downloaded on Oct. 25, 2017 from https://www.hsn.com/products/samsung-smartcam-high-definition-video-doorbell/8534791; prior art publication at least as of Oct. 22, 2017.
Wirecutter—The Best Smart Doorbell Camera—Downloaded on Oct. 25, 2017 from https://thewirecutter.com/reviews/best-smart-doorbell-camera/; prior art publication at least as of Oct. 19, 2017.
Newsday—Google's Nest launches video doorbell, new security system—Downloaded on Oct. 25, 2017 from https://www.newsday.com/lifestyle/google-s-nest-launches-video-doorbell-new-security-system-1.14498694; prior art publication at least as of Oct. 18, 2017.
ZD Net—Amazon to develop a smart doorbell to deliver packages inside your home—Downloaded on Oct. 25, 2017 from http://www.zdnet.com/article/amazon-plans-to-develop-smart-doorbell-to-deliver-packages-inside-your-home/; prior art publication at least as of Oct. 11, 2017.
Dealerscope—Petra Named Exclusive Distributor for New Uniden U-Bell DB1 Wireless Video Doorbell—Downloaded on Oct. 25, 2017 from http://www.dealerscope.com/article/petra-named-exclusive-distributor-new-uniden-u-bell-db1-wireless-video-doorbell/; prior art publication at least as of Oct. 3, 2017.
Nest—Say hello to Nest Hello—Downloaded on Oct. 25, 2017 from https://nest.com/blog/2017/09/20/say-hello-to-nest-hello/?utm_campaign=nest%20hello%20preannounce&utm_source=nest%20customers&utm_medium=m-email&utm_content=learn%20more, prior art publication at least as of Sep. 27, 2017.
Gate: Your Personal Doorman—Downloaded on Oct. 25, 2017 from https://www.indiegogo.com/projects/gate-your-personal-doorman#/; prior art publication at least as of Sep. 25, 2017.
Mashable—Walmart is teaming with a smart lock startup to deliver food straight to your fridge—Downloaded on Oct. 25, 2017 from http://mashable.eom/2017/09/24/walmart-smart-lock-grocery-delivery/#7b0i0W4L_mqf; prior art publication at least as of Sep. 24, 2017.
Wired—Review: August Smart Lock—Downloaded on Oct. 25, 2017 from https://www.wired.com/2017/09/review-august-smart-lock/; prior art publication at least as of Sep. 24, 2017.
Amazon—Amazon Key—Downloaded on Oct. 25, 2017 from https://www.amazon.eom/b?ie=UTF8&node=17285120011.
Amazon—Amazon Key In-Home Kit includes: Amazon Cloud Cam (Key Edition) indoor security camera and compatible smart lock—Downloaded on Oct. 25, 2017 from https://www.amazon.com/dp/B00KCYQGXE?locationCheckInvoked=1.
Amazon—Amazon Cloud Cam Indoor Security Camera, works with Alexa—Downloaded on Oct. 25, 2017 from https://www.amazon.com/Amazon-Cloud-Indoor-Security-Camera/dp/B01C4UY0JK/ref=sr_tr_1?s=amazon-devices&ie=UTF8&qid=1508945752&sr=1- &keywords=amazon+cloud+cam.
Best Buy—Vivint Smart Home—Downloaded on Oct. 25, 2017 from https://www.bestbuy.com/site/home-security-solutions/smart-home/pcmcat748302047019.c?id=pcmcat748302047019&ref=P30T29R169&loc=BODY&CampaignID=860152&eut=2387920889; prior art publication at least as of Aug. 25, 2017.
Ring—Chime Pro—Downloaded on Oct. 25, 2017 from https://ring.com/chime-pro; prior art publication at least as of Aug. 23, 2017.
Twice—Samsung Wisenet SmartCam D1 Video Doorbell—Downloaded on Oct. 25, 2017 from http://www.twice.com/news/smart-home/samsung-wisenet-smartcam-d1-video-doorbell/65643; prior art publication at least as of Jul. 31, 2017.
Tech Crunch—Ring adds three connected Spotlight Cams to its Floodlight Cam lineup—Downloaded on Oct. 25, 2017 from https://techcrunch.com/2017/07/31/ring-adds-three-connected-spotlight-cams-to-its-floodlight-cam-lineup/; prior art publication at least as of Aug. 2, 2017.
CNBC—This $200 ‘smart’ doorbell will show you who (or what) is in front of your house at all times—Downloaded on Oct. 25, 2017 from https://www.cnbc.com/2017/07/23/ring-doorbell-2-review.html; prior art publication at least as of Jul. 23, 2017.
ZMODO—Greet Pro with Beam Alert—Downloaded on Oct. 25, 2017 from http://www.zmodo.com/greetpro-1080p-wifi-video-doorbell/.
August—August Doorbell Cam Pro—Downloaded on Oct. 25, 2017 from http://august.com/products/doorbell-camera/?utm_source=Owners+from+Salesforce&utm_campaign=83b33655ed-EMAIL_CAMPAIGN_2017_06_06&utm_medium=email&utm_term=0_15a5cc0eb8-83b33655ed-247286221&mc_cid=83b33655ed&mc_eid=9d1996d140; prior art publication at least as of Jun. 11, 2017.
ATT—August Wi-Fi Doorbell Cam—Downloaded on Oct. 25, 2017 from https://m.att.com/shopmobile/accessories/specialty-items/August_Wi-Fi_Doorbell_Cam/_jcr_content.html?referrer=https%253A%2F%2Fwww.google.com%2F; prior art publication at least as of Jun. 9, 2017.
Ding, a beautifully simple smart doorbell—Downloaded on Oct. 25, 2017 from https://www.indiegogo.com/projects/ding-a-beautifully-simple-smart-doorbell-home-technology#/; prior art publication at least as of Jun. 5, 2017.
Clare Controls—The Clare Video Doorbell—Downloaded on Oct. 25, 2017 from https://www.clarecontrols.com/video-doorbell; prior art publication at least as of Jun. 1, 2017.
Business Insider—The best security cameras you can buy for your home—Downloaded on Oct. 25, 2017 from http://www.businessinsider.com/best-security-camera-home/#the-best-home-security-camera-for-outdoors-and-indoors-2; prior art publication at least as of May 27, 2017.
SMANOS—Smart Video Doorbell—Downloaded on Oct. 25, 2017 from http://www.smanos.com/doorbell; prior art publication at least as of May 22, 2017.
Ring—Products—Downloaded on Oct. 30, 2017 from https://ring.com/.
Honeywell RCWL105A1003/N Plug-in Wireless Doorbell / Door Chime and Push Button; Downloaded on Apr. 16, 2019 from https://www.amazon.com/Honeywell-RCWL105A1003-Plug-Wireless-Button/dp/B001G0MATM; Prior art at least as of Sep. 26, 2008.
SADO Tech Model C Wireless Doorbell Operating at over 500-feet Range with Over 50 Chimes, No Batteries Required for Receiver; Downloaded on Apr. 16, 2019 from https://www.amazon.com/SadoTech-Wireless-Doorbell-Operating-Batteries/dp/B00FR4YQYK; Prior art at least as of Oct. 10, 2013.
ZHELUDEV; The life and times of the LED—a 100-year history; Nature Photonics; Apr. 2007, pp. 189-192; vol. 1; Nature Publishing Group; Retrieved Apr. 16, 2019.
YAM; Innovative Advances in LED Technology; Microelectronics journal; Nov. 9, 2004; pp. 129-137; vol. 36; Retrieved Apr. 16, 2019.
PERKIN ELMER; LHi968—LHi 968 Dual Element Detector, Top Line; Prior art at least as of Mar. 18, 2007.
PERKIN ELMER; Pyroelectric Infrared Detectors; Prior art at least as of Apr. 16, 2009.
PERKIN ELMER; Dual Element Detector; Prior art at least as of Mar. 25, 2007.
IEEE Standards Association; IEEE 802.15.1-2002—IEEE Standard for Telecommunications and Information Exchange Between Systems—LAN/MAN—Specific Requirements—Part 15: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs); Downloaded on Apr. 29, 2019 from https://standards.ieee.org/standard/802_15_1-2002.html; Prior art at least as of Jun. 14, 2002.
Bluetooth—Our History; Prior art least as of Oct. 17, 2013.
NUTONE—LA600WH Door Chime—Installation & Operating Instructions; Downloaded on Apr. 29, 2019 from http://www.nutone.com/common/productDigitalAssethandler.ashx?id=5b25a40a-c56f-44bf-99d1-5b0c17f266e9; Prior art at least as of Sep. 18, 2013.
NUTONE; LA600WH Universal Wired/Wireless MP3 Doorbell Mechanism, 6″w × 9-1/2″h × 2-1/4″d in White; Downloaded on Apr. 29, 2019 from http://www.nutone.com/products/product/e2562b0e-4fe5-432a-ac70-228953b19875; Prior art at least as of May 30, 2013.
InTune; InTune MP3 Door Chime Manual; Downloaded on Apr. 29, 2019 from https://www.heath-zenith.com/system/spree/documents/attachments/000/000/839/original/205371-02A.pdf?1436551434 ; Prior art at least as of 2013.
NUTONE; College Pride Mechanism; Prior art at least as of Jun. 8, 2013.
SECO-LARM; Enforcer DP-236Q Wireless Video Door Phone Manual; Downloaded on Apr. 29, 2019 from http://www.seco-larm.com/image/data/A_Documents/02_Manuals/MiDP-236Q_150528.pdf.
Craig & Company—Home Tech: Doorbot—Downloaded on Nov. 18, 2013 from http://www.craigncompany.com/home-tech-doorbot/; prior art publication at least as of Jun. 10, 2013.
The Next Web—Hardware renaissance: A look at the Christie Street platform and doorbot video streaming doorbell—Downloaded on Nov. 18, 2013 from http://thenextweb.com/insider/2012/12/10/satisfaction-lies-in-hardware-for-siminoffs-christie-street-platform-and-doorbot-video-streaming-doorbell/; prior art publication at least as of Dec. 10, 2012.
Digital Trends—Doorbot wi-fi doorbell camera lets you see visitors on your smartphone—Downloaded on Nov. 18, 2013 from http://www.digitaltrends.com/lifestyle/doorbot-camera-see-visitors-smartphone/; prior art publication at least as of Dec. 9, 2012.
Doorbot website—Downloaded on Jul. 26, 2013 from http://www.getdoorbot.com.
Doorbot users manual—Downloaded on Nov. 18, 2013 from http://static.mydoorbot.com/DoorBot%20Users%20Manual%201.0.pdf.
Doorbot “fact sheet”—Downloaded on Nov. 18, 2013 from http://cdn.shopify.eom/s/files/1/0247/6501/files/DoorBotMediaKit.pdf?17037.
Cellnock—Index page—Originally downloaded on Sep. 23, 2013 from http://cellnock.com/index.html; The website says CellNock is “patent pending”.
Cellnock website—downloaded on Nov. 18, 2013 from http://cellnock.com/; The website says CellNock is “patent pending”.
Philips InSight Baby Monitor—Originally downloaded on Jul. 24, 2013 from http://www.amazon.com/Philips-B120-37-InSight-Wireless/dp/B00AALO9Z6/ref=sr_1_3?ie=UTF8&qid=1384808431&sr=8-3&keywords=philips+insight.
Skybell—MySkyBell.com (previously iDoorCam.com)—Downloaded on Nov. 18, 2013 from http://www.myskybell.com/.
AQUARITZ IDS Doorbell System—Downloaded on Aug. 15, 2013 from http://www.indiegogo.com/projects/squaritz-ids-intelligent-doorbell-system.
Mybells—Downloaded on Nov. 18, 2013 from http://www.indiegogo.com/projects/mybells-the-smart-bells.
Wireless Video Doorbell Pager—Downloaded on Aug. 9, 2013 from http://www.indiegogo.com/projects/wireless-video-doorbell-pager-4.
Lockitron—Downloaded on Jul. 24, 2013 from https://lockitron.com/preorder.
EYETALK for Home—Downloaded May 24, 2013 from http://www.revolutionaryconceptsinc.com/forhome.html.
Smartbell—Downloaded on Dec. 5, 2013 from http://smartbell.co/.
Smartbell—A Doorbell for Smartphones, published by Scrambled Brains Tech, LLC., Oct. 1, 2013.
August Smart Lock—Downloaded on Jun. 10, 2014 from www.August.com.
August Smart Lock—Downloaded on Oct. 10, 2014 from www.August.com.
KEVO Lock—User guide—Downloaded on Jun. 10, 2014 from http://s7d5.scene7.com/is/content/BDHHI/Kwikset/Website%20Content/Kevo/kevo-userguide-kwikset_eng.pdf.
KEVO Lock—Installation guide—Downloaded on Oct. 10, 2014 from http://s7d5.scene7.com/is/content/BDHHI/Kwikset/Website%20Content/Kevo/installation_guide.pdf.
Schlage Electronic Lock—User guide—Downloaded on Jun. 10, 2014 from www.schlage.com.
ADAFRUIT—Lock-Style Solenoid—Downloaded on Aug. 22, 2014 from www.AdaFruit.com.
Wikipedia—Power Matters Alliance—Downloaded on Aug. 23, 2014 from www.wikipedia.com.
ADAFRUIT—Push-Pull Solenoid—Technical Details—Downloaded on Aug. 22, 2014 from www.AdaFruit.com.
Wikipedia—Qi—Downloaded on Aug. 23, 2014 from www.wikipedia.com.
TP-LINK—Website—Downloaded on Jul. 15, 2014 from www.tp-link.US.
A HD Cameras—AC Adapter Spy Camera—Downloaded on Jun. 24, 2014 from ahdcameras.com.
Fanfare Chime—Downloaded on Oct. 10, 2014 from https://www.kickstarter.com/projects/1040187373/1919517395?token=47099d90.
Ring Video Doorbell—Downloaded on Oct. 10, 2014 from www.ring.com.
Tech Crunch—Doorboot becomes Ring—Downloaded on Oct. 10, 2014 from http://techcrunch.com/2014/09/29/doorbot-ring-home-security-doorbell/?ncid=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed.
IChime—iChime Customizable Digital Chime System—Downloaded on Nov. 7, 2014 from http://www.ichime.com/.
Christie Street—Doorbot—Downloaded on Jun. 14, 2013 from https://christiestreet.com/products/doorbot.
Idoorcam—A Wi-Fi Enabled, Webcam Doorbell—Downloaded on Sep. 3, 2013 from http://www.idoorcam.com/.
Langer—Langer Doorbell Button Sized Light—Downloaded on Sep. 16, 2013 from http://www.youtube.com/watch?v=u9nNCm4tSYI.
Langer—Langer Doorbell Light—Downloaded on Sep. 16, 2013 from http://www.youtube.com/watch?v=6dbU-Gyjgx8.
SmartBell—SmartBell on Kickstarter—Downloaded on Feb. 28, 2014 from http://www.kickstarter.com/projects/1256599792/smartbell-wi-fi-doorbell-for-video-chats-to-ios-an.
DefenDoor—DefenDoor by date LLC—Downloaded on Dec. 11, 2014 from https://www.kickstarter.com/projects/85455040/defendoor-a-home-security-system-that-syncs-with-y.
CNET—Notifi by Chamberlain—Downloaded on Jan. 9, 2015 from http://www.cnet.com/products/chamberlain-notifi-video-door-chime/.
I-Bell—Downloaded on Jan. 13, 2015 from https://www.kickstarter.com/projects/729057054/i-bell.
Dropcam—Downloaded on Jan. 19, 2015 from https://www.dropcam.com/dropcam-pro.
Doorbird—Downloaded on Jan. 23, 2015 from http://www.doorbird.com/.
CHUI Doorbell—Downloaded on Jan. 23, 2015 from http://www.getchui.com/.
Tech Crunch—Chui Doorbell—Downloaded on Jan. 23, 2015 from http://techcrunch.com/2014/04/18/214-technologies-is-crowdfunding-a-smart-doorbell-called-chui/.
GIZ MAG—Downloaded on Jan. 23, 2015 from http://www.gizmag.com/gopano-micro-captures-360-degree-video-on-iphone/18542/.
SENGLED Snap Light Camera—Downloaded on Mar. 9, 2015 from http://www.sengled.com/product/snap.
CNET—Alarm.com Garage Door Camera—Downloaded on Mar. 9, 2015 from http://www.cnet.com/au/products/alarm-com-for-apple-watch/.
Rollup iHome Peephole Doorbell—Downloaded on May 7, 2015 from http://www.rollupcn.com.
Tech Crunch—Ring Chime—Smart Chime—Downloaded on May 13, 2015 from http://techcrunch.com/2015/05/13/rings-smart-doorbell-gets-a-smart-speaker/#.y0xlqx:SpqY.
PEEPLE—Peephole Camera—Downloaded on May 14, 2015 from https://www.kickstarter.com/projects/1544392549/peeple-caller-id-for-your-front-door/video_share.
Panasonic—“Panasonic Network Camera Operating Instructions Model No. KX-HCM270”—Instruction Manual—Printed in Japan, 2002—Downloaded Jun. 9, 2021—Available from Internet <URL: http://www.voicesonic.com/panasonic/manuals/Panasonic_Cameras/KX-HCM270_Network_Camera_Manual.pdf>.
Axis—“Axis adds wireless capability to its video offerings—introduces two new WLAN products”—Press Release—Published Feb. 24, 2003, Lund, Sweden—Downloaded Jun. 9, 2021—Available from Internet <URL: https://www.axis.com/files/press_releases/80211b_devices_pressrelease.pdf>.
Ching-Kai, Huang; and Tsuhan, Chen—“Motion Activated Video Surveillance Using Tl DSP”—Carnegie Mellon University—Published DSPS FEST '99, Houston, Texas, Aug. 4-6, 1999—Downloaded Jun. 9, 2021—Available from Internet <URL: https://www.ti.com/sc/docs/general/dsp/fest99/avi/1paper.pdf>.
National Institute of Justice—“Video Surveillance Equipment Selection and Application Guide”—NIJ Guide 201-99—Published Oct. 1999, Rockville, MD—Downloaded Jun. 9, 2021—Available from Internet <URL: https://www.ojp.gov/pdffiles1/nij/179545.pdf>.
Schwartz, John - “Nanny-Cam May Leave a Home Exposed”—New York Times—Published Apr. 14, 2002—Downloaded Jun. 9, 2021—Available from Internet <URL: https://www.nytimes.com/2002/04/14/business/nanny-cam-may-leave-a-home-exposed.html>.
Nguyen, Duy—“Mobile Home Security with GPRS”—Edith Cowan University—Published 2002—Downloaded Jun. 9, 2021—Available from Internet <URL: https://ro.ecu.edu.au/theses_hons/339/>.
Raggio, Marco; Berbieri, Ivano; and Bailo, Gianluca—“Scalable Multimedia System for Interactive Surveillance and Video Communication Applications”—IEEE 10th European Signal Processing Conference, Sep. 4-8, 2000, Genova, Italy—pp. 1-4—Downloaded Jun. 9, 2021—Available from Internet <URL: https://ieeexplore.ieee.org/document/7075784>.
X10 Wireless Technology, Inc.—“XCam2™ and WideEey™ Indoor/Outdoor Wireless Gamer System”—Owner's Manual—Downloaded Jun. 9, 2021—Available from Internet <URL: http://www.electronicoscaldas.com/datasheet/XCam2-WideEye_X10.pdf>.
Axis—“Axis 2100 Network Camera Users Guide V.1.2”—Technical User Manual—Published May 2001—Downloaded Jun. 9, 2021—Available from Internet <URL: https://docs.rs-online.com/7155/0900766b800a94f9.pdf>.
Enterasys Networks—“Enterasys Networks™ delivers the industry's first 54 megabit wireless access point”—Canada NewsWire—Published Apr. 30, 2001—Downloaded Apr. 15, 2021—Available from Internet <URL: https://global-factiva-com.libproxy.mit.edu/hp/printsavews.aspx?pp=Print&hc=All>.
Panasonic—“Panasonic Network Cameras, including Model No. KC-HCM270”—Webstore Page—Downloaded Jun. 9, 2021—Available from Internet <URL: https://securitypanasonic.com/products_technology/products/kx-hcm270/>.
Axis—“Axis Network Cameras, including Axis 2100”—Webstore Page—Downloaded Jun. 9, 2021—Available from Internet <URL: https://www.axis.com/products/axis-2100>.
Menard, Raymond J., et al.—“Modular Communication System and Method”—U.S. Appl. No. 09/579,913—, filed May 26, 2000—Downloaded Jun. 9, 2021—Available from Internet <URL: https://patentscope.wipo.int/search/en/detail.jsf?docld=WO2001093220&tab=PCTDOCUMENTS>.
Related Publications (1)
Number Date Country
20210398400 A1 Dec 2021 US
Provisional Applications (3)
Number Date Country
62143032 Apr 2015 US
61872439 Aug 2013 US
61859070 Jul 2013 US
Divisions (1)
Number Date Country
Parent 15789121 Oct 2017 US
Child 15951534 US
Continuations (4)
Number Date Country
Parent 16863893 Apr 2020 US
Child 17463161 US
Parent 16054961 Aug 2018 US
Child 16863893 US
Parent 15951534 Apr 2018 US
Child 16054961 US
Parent 14861613 Sep 2015 US
Child 16054961 US
Continuation in Parts (9)
Number Date Country
Parent 14748054 Jun 2015 US
Child 14861613 US
Parent 14743849 Jun 2015 US
Child 14748054 US
Parent 14684302 Apr 2015 US
Child 14743849 US
Parent 14612376 Feb 2015 US
Child 14684302 US
Parent 14589830 Jan 2015 US
Child 14612376 US
Parent 14502601 Sep 2014 US
Child 14589830 US
Parent 14492809 Sep 2014 US
Child 14502601 US
Parent 14275811 May 2014 US
Child 14492809 US
Parent 14142839 Dec 2013 US
Child 14275811 US