This invention relates generally to doorways and more specifically to doorways with contain-and-drain sills.
Entry doors, patio doors, and the like generally include a pair of spaced vertical side jambs, a head jamb or header extending between the upper ends of the side jambs, and a door sill extending between the bottom ends of the side jambs. Hinged or sliding door panels are mounted within the resulting frame and, when closed, directly overly a threshold portion along the inside of the sill. Many hinged entry doors open into a building in which they are mounted and thus are know as in-swing doors. A variety of sill configurations are available for use with entry doors including wooden sills, aluminum sills, plastic sills, composite sills, and the like.
One type of sill used for entry doors is known as a “contain-and-drain” sill. In general, a contain-and-drain sill typically is extruded from plastic or a composite material and is generally hollow inside with, perhaps, some longitudinal support ribs, which form chambers inside the sill. Openings are formed in the support ribs communicating between adjacent chambers. The ends of the sill are sealed with an end cap and one or more weep holes, which may be provided with weep doors or flaps, are formed along the outside nosing of the sill communicating between its hollow interior and the outside.
Under various conditions, water can collect on the threshold portion of the sill beneath a closed door. For example, rainwater can leak past the weather seals or snow from shoes can be deposited on the sill and melt. In order to manage this water, it is known to provide one or more drains in the threshold portion of the sill through which water can drain into the hollow interior of the sill. Once contained within the interior of the sill, the water can drain out of the sill through the weep holes formed along its outside nosing. Such drains also function as vents that help to equalize pressure differentials between the outside of a doorway and the inside of a building and vent air displaced by rising water in the sill.
A major problem with contain-and-drain sills can arise when it rains in high wind conditions, i.e. when the doorway is under high “DP” loads. The high winds can raise the air pressure on the exterior of a doorway relative to the interior of the doorway, thus creating a partial vacuum within the hollow interior of the sill. As used herein, the term “partial vacuum” means that there exists a negative pressure differential between the outside of the doorway and the hollow interior of the door sill. The partial vacuum, in conjunction with rain water that tends to build up around the sill, can cause air and water to be sucked through the weep holes into the interior of the sill, which can begin to fill with water and bubbles. The water generally rises until the head of water within the sill equals the pressure differential between the outside and inside of the doorway.
As the water level rises within the sill, the air that is displaced by the water, as well as air being sucked into the sill by the partial vacuum, must escape the sill and generally does so through the drains in the threshold portion of the sill. Often, and particularly in driving rains, there is collected water in the threshold portion, which is draining into the interior of the sill through the drains. The simultaneously escaping air through these drains causes percolation and bubbling of the water at the locations of the drains. Even when there is no collected water on the threshold portion of the sill, percolation and bubbling can still occur as a result of bubbles that develop within the sill due to the mixture of water and air being sucked in.
Bubbling and percolation at the drains can result in water leakage into a dwelling, which can cause damage and can cause a doorway to fail to meet building standards for water resistance. It has been known to add vents up the side jambs or in some other remote area of the door unit through which air in the sill can escape. However, it is not always possible to vent to a remote location and, when it is not, venting commonly occurs through the drains resulting in bubbling. Even when air is vented remotely, the result may not always be completely satisfactory.
A need therefore exists for a doorway with a contain-and-drain sill that effectively contains and allows water to rise within the sill under high wind load conditions without percolation and bubbling of the water and air at drain locations. A further need exists for such a doorway that drains water effectively into the interior of the sill from the threshold portion of the sill without percolation or bubbling occurring at the drain site. It is to the provision of such a doorway that the present invention is primarily directed.
Briefly described, the present invention, in a preferred embodiment thereof, is a doorway having spaced vertical side jambs, a head jamb, and a sill, which together form a frame. At least one door panel is mounted in the frame for opening and closing the doorway. The sill of the doorway is of the contain-and-drain type, which has a substantially hollow interior and is sealed at its ends to form a chamber inside. The sill includes an outside nosing provided with weep holes, which may have weep doors installed therein, to allow water collected in the hollow interior of the sill to drain through the weep holes in the outside nosing. The sill further has a threshold portion that directly underlies a closed door panel of the doorway and that is configured to collect water that may seep past weather seals, result from melting snow, or otherwise make its way to the threshold portion of the sill.
At least one elongated hole is formed in the threshold portion of the sill and a drain insert, configured according to the invention, is disposed within the hole. The drain insert has a planar top cover provided in its mid portion with an array of vent holes. Drains having central drain passages depend from each end portion of the top cover and the tops of the drains are spaced slightly below the top cover to define drain entrances. The drains are vertically separated by a vent space beneath the central portion of the top cover. When installed, the top cover and vent holes are supported above the floor of the threshold portion of the sill and the separate drain entrances are at the floor level. The drains extend into the hollow interior of the sill to a position just above the bottom floor of the chamber inside.
When the doorway is under load in a blowing rainstorm, the pressure on the outside of the doorway rises above that on the inside. This creates a partial vacuum inside the sill, which tends to suck water and air and form bubbles in the sill. Further, water can seep between the closed door and the weather seals against which it is closed and collect in the threshold portion of the sill. This water on the threshold portion flows beneath the top cover and through the drain entrances of the drain insert, from which it is directed by the drains into the hollow interior of the sill. At the same time, air displaced by rising water and air sucked into the sill by the pressure differential must escape, and does so through the vent space and vent holes in the drain insert according to the invention. However, since water from the threshold portion flows into the sill through the drains of the drain insert and air escapes through the separate vent space and vent openings, the escaping air does not flow through the draining water. As a consequence, bubbling at the drain location, common in the prior art, is eliminated. The top cover and vent holes of the drain insert are supported above the maximum level of collected water in the threshold portion of the sill, meaning that water can never overflow the vent holes resulting in bubbling.
In addition, bubbling caused from bubbles inside the sill is eliminated since as the water in the sill rises, it quickly submerges and cuts off the bottom ends of the drains. This eliminates turbulence and percolation that otherwise might occur at this location. Further, since pressure within the chamber is constantly relieved through the vent space and vent holes far above, pressure, which might otherwise cause burping and gurgling through the drains, is eliminated. Thus, bubbling and percolating at the drain location from this source also is eliminated.
The end result is a doorway with a contain-and-drain sill that exhibits virtually no percolation, burping, or bubbling at the locations of drains in the threshold portion of the sill. The consequent leakage of water into a dwelling and difficulty meeting DP standards and requirements is thus virtually eliminated.
Accordingly, a doorway with contain-and-drain sill is not provided that addresses successfully the problems and shortcomings of the prior art by eliminating bubbling and percolation at the location of threshold drains and vents. These and other features, objects, and advantages of the invention will be better understood upon review of the detailed description presented below taken in conjunction with the accompanying drawing figures, which are briefly described as follows.
Referring now in more detail to the drawing figures, wherein like reference numerals indicate like parts throughout the several views,
A drain cover 32, according to the prior art, is mounted in a drain hole formed in the floor of the threshold portion 27. The drain cover 32 in the illustrated embodiment is formed with a plurality of holes 33 in its somewhat depressed central portion. The central portion, in turn, is surrounded by a segmented circular rim 34 with the segments of the rim being separated by spaces through which water may flow into the central portion of the drain cover and through the holes 33. It will be understood that the drain cover 32 functions both as a drain through which water may flow into the interior of the sill and as a vent through which air may flow out of the interior of the sill when there is a pressure differential or when water is rising inside the sill. As described in detail above, this dual function of the drain cover results inevitably in highly undesirable percolation and bubbling at the location of the drain cover, either as a result of escaping air flowing through water draining into the drain or bubbles forming in water rising inside the sill and blowing out through the drain. In either case, water can leak, as a result of the splashing caused by bubbling, into the interior of a building causing moisture damage, rot, and other undesirable consequences.
Referring to
Also illustrated in
The floor of the threshold portion 27 is formed with an oblong opening 30 that receives and holds the drain insert 41 of the invention. The drain insert 41 extends through the opening 30 and into the chamber 37 below to a position slightly above the bottom of the chamber 37 as shown. Standoffs 52 rest on the floor of the threshold portion 27 of the sill and support the top cover 42 of the insert above and spaced from the floor. This both exposes the drain entrances 44 and 46 and positions the vent holes in the top cover 42 a predetermined distance above the floor of the threshold portion 27.
With the conditions depicted in
Simultaneously, air venting from the interior of the sill as a result, for example, of a lower pressure on the interior of the doorway or rising water (and consequent displacement of air) within the sill, must vent through the vent holes 43 in the top cover 42 of the insert, as indicated by arrows 71. This is a situation that, in the prior art, resulted in percolation and bubbling at the vent location. However, since the water from the threshold portion drains through drain passages 54 and 56 that are separate from the vent holes 43, the venting air does not pass through the draining water. As a consequence, percolation and bubbling from this source is eliminated. Further, the standoffs are sized such that the top surface of the cover 42 is positioned higher than the deepest possible pool of water on the threshold portion 27, thus eliminating the possibility that water might overflow the vent holes and cause bubbling.
Percolation and bubbling at the drain site also occurs in the prior art as a result of rising water and bubbles inside the contain-and-drain sill with increasing wind load. Bubbles, indicated at 68 in
The drain insert of the present invention can be formed of a variety of materials such as, for instance, ABS plastic, other moldable plastic material, aluminum or the like. However, it has been found that a more durable material such as nylon is highly resistant to damage, does not absorb moisture, is easily installed, and has inherent hydrophobic properties aid the drainage of water from the threshold portion of the sill through the drain openings.
The invention has been described above in terms of a preferred embodiment that illustrates the best mode known to the inventors of carrying out the invention. Skilled artisans will recognize, however, that the invention can be embodied in a variety of different forms and configurations without departing from the scope of the invention. Contain-and-drain sills, for instance, can be formed in a range of configurations and sizes and from a variety of materials. While the invention has been described within the context of an in-swing door, it may be also be applicable to out-swing doors as well as sliding doors. Indeed, the present invention may be applied to windows and window sills as well as doorways. Further, while the preferred embodiment illustrated above includes two drains and one vent, this should not be construed as a limitation. The invention might, for example, be embodied in an insert with more or less than two drains, more than one vent, or any combination thereof, and all such configurations are contemplated by the invention. In addition, while the preferred embodiment is configured to be installed in an oblong hole in the sill, it might also be configured to fit in a round hole, a square hole, or any other shape hole as desired. The invention also might be configured and sized to be installed as a retrofit drain insert in existing doorway sills by, for example, replacing the existing drain cover with an insert according to the invention. These and other additions, deletions, and modifications to the illustrated embodiment might well be made by those of skill in the art without departing from the spirit and scope of the invention as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
2795018 | Shaw | Jun 1957 | A |
3410027 | Bates | Nov 1968 | A |
3845599 | Jolly | Nov 1974 | A |
5596151 | Rossini | Jan 1997 | A |
5687508 | Fitzhenry et al. | Nov 1997 | A |
6374557 | O'Donnell | Apr 2002 | B1 |
7600346 | Meeks | Oct 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20090199486 A1 | Aug 2009 | US |