Barisci et al., Characterization and analytical use of polypyrrole electrode containing anti-human serum albumin. Anal. Chim. Acta, 371, 39-48, Sep., 1998.* |
Sadik et al., Pulsed amerometric detection of proteins using antibody containing conducting polymers. Anal. Chim. Acta, 279, 209-212, 1993.* |
Napier et al., Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjugate Chem., 906-913, Nov. 1997).* |
Wang et al., Trace measurements of nucleic acids using flow injection amperometry. Anal. Chim. Acta 319, 347-352, 1996.* |
Livache et al., Biosensing effects in functionalized electroconducting conjugated polymer layers: addressable DNA matrix for the detection of gene mutations. Synthetic Metals 71, 2143-2146, 1995.* |
Livache et al., Preparation of DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 22. 2915-2921, 1994.* |
Korri-Yousoufi et al., Toward Bioelectronics: Specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chen. Soc. 119, 7388-7389, 1997.* |
Korri-Youssoufi, H., et al., “Toward Bioelectronics specific DNA Recognition Based on an Oligonucleotide-Functionalized Polyyprrole,” J. Am. chem. Soc., vol. 119, pp 7388-7389 (1997). |
Wang, J., et al., “New Label-Free DNA Recognition Bsed on Doping Nucleic-Acid Probes Within Conducting Polymer Films,” Analytica Chimica Acta, vol. 402, pp 7-12 (1999). |
Wang, J., et al., “Flow Detection of Nucleic Acids at a Conducting Polymer-Modified Electrode,” Analytical Chem., vol. 71, No. 18, pp 4095-4099 (1999). |
Wang, J., owards Genoelectronics: Electrochemical Biosensing of DNA Hybridization, Chem. Eur. J., vol. 5, No. 6, pp 1681-1684 (1999). |
Bauerle, P., et al., “Specific Recognition of Nucleobase-Funcionalized Polytiopenes,” Adv. Mater., vol. 3, No. 4 , pp 324-331 (1998). |
Hashimoto, K., et al., “Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye,” Anal. Chem., vol. 66, pp 3830-3833 (1994). |
Mikkelsen, S.R., “Electrochemical Biosensors for DNA Sequence Detection,” Electoanalysis, vol. 8, No. 1, pp 15-19 (1996). |
Millan, K.M., et al., “Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators,” Anal. Chem., vol. 65, pp 2317-2323 (1993). |
Singhal, P., et al., “Ultrasensitive Voltammetric Detection of Underivated Oligonucleotides and DNA,” Anal Chem., vol. 69, pp 4828-4832 (1997). |
Takenaka, S., et al., “Electrochemically Active DNA Probes: Detection of Target DNA Sequences at Femtomole Level by High-Performance Liquid Chromatography with Electrochemical Detection,” Analytical Biochemistry, vol. 218 pp 436-443 (1994). |
Wang, J., et al., “Indicator-Free Electrochemicl DNA Hybridization Biosensor,” Anal Chim. Acta, vol. 375, pp 197-203 (1998). |
Wang, J., et al., “Electrochemical Biosensor for Detection DNA Sequences from the Pathogenic Protozan Cryptosporidium parvum, ” Talanta vol. 44, pp 2003-2010 (1997). |
Wang, J., et al., “Trace Measurements of Nucleic Acids Using Flow Injection Amperometry,” Anal. Chim Acta, vol. 317, pp 347-352 (1996). |
Wang, et al., TEXTBOOK “Analytical Electrochemistry,” VCH Publishers, New York, pp 92-95 “Conducting Polymers,” (1994). |
Wilson, E.K., “Instant DNA Detection,” Chem. Eng. News., May 25, 1998 pp 47-49. |
Woolley A.T., et al ., “Capillary Electrophoresis Chips with Integrated Electrochemical Detection,” Anal. Chem., vol 70, pp684-688 (1998). |
Xu, D-K., et al., “Determination of Purine Bases by Capillary Zone Electrophoresis with Wall-Jet Amperometric Detection,” Anal. Chim. Acta, vol. 335, pp 95-101 (1996). |