Achieving high figure of merit (ZT) thermoelectric materials is a challenge because it requires a combination of low thermal conductivity κ and high thermoelectric power factor (α2σ), i.e., high electrical conductivity σ and Seebeck coefficient α, and these properties are often contraindicated. One approach to achieving high ZT thermoelectric materials is through nanostructuring, which has been shown to factorially increase ZT due to size-scattering induced decrease of thermal conductivity κ, yet possesses a high electrical conductivity σ and Seebeck coefficient α due to quantum effects.
Nanostructuring bismuth- and antimony-based chalcogenides and their alloys are of great interest because these materials exhibit the highest room temperature ZT of ˜1 in bulk. Restricting the characteristic dimensions of these bismuth and antimony based chalcogenides to below 10 nm offers the potential to obtaining further ZT increases. However, except for a surfactant-directed synthesis that achieves 2.5 to 10 nm diameter single crystal bismuth telluride particles, few techniques exist for synthesizing pnictogen chalcogenide nanocrystals with characteristic dimensions <10 nm. Bismuth and antimony chalcogenide nanostructures synthesized by solvothermal routes or by electrodeposition into inorganic templates often produce polycrystalline or polydisperse products instead of single crystals with controllable sizes and shapes, and involve long times, ranging from a few hours to a couple of days, for formation.
Thus, there continues to be a need in the art for materials and methods for producing high quality single crystal bismuth- and antimony-based chalcogenide nanoparticles.
Embodiments of the invention provide doped pnictogen chalcogenide nanoplates, assemblies, and films, and methods for making the same.
In accordance with embodiments of the invention, a rapid microwave-stimulated synthesis of single-crystal hexagonal nanoplates of sulfur-doped bismuth telluride, bismuth selenide and antimony telluride and the resulting nanoplates are provided. The nanoplates are less than about 100 nm in one dimension, for example 5 to 20 nm in thickness, and can have controllable nanoplate lateral dimensions. For example, the lateral dimension can be formed from nanometer to micrometer ranges. The nanoplates can have an aspect ratio (thickness:length) in the range of 2 to 5 or more. Advantageously, single-phase thin films and/or bulk pellets comprised of these nanoplates exhibit κ values that are up to 50% lower than known alloy nano- and micro-particles, and the nanoplates display 5 to 10% higher thermoelectric power factor than known alloy nano- and micro-particles.
The subject doped pnictogen calcogenide nanoplates display a remarkable combination of low κ without alloying while preserving high intrinsic α and σ of bulk counterparts.
According to certain embodiments, a method is provided that includes performing microwave irradiation to activate the reaction between ligated Te2− or Se2− ions and thioglycolic acid (TGA) complexes of Bi3+ or Sb3+. The TGA utilized in certain embodiments of the invention facilitates crystal-shape sculpting, curtails surface oxidation, and provides sulfur doping of resulting pnictogen metal calcogenide nanoplates, which produces an enhanced Seebeck coefficient and high electrical conductivity of a pnictogen chalcogenide and can reverse the majority carrier type for the bismuth chalcogenides.
In another embodiment of the invention, sulfur-doped pnictogen chalcogenide nanoplates are provided and comprise the building blocks for dense close-packed/stacked thin films and bulk assemblies with tailored properties for thermoelectric devices.
Embodiments of the invention provide doped pnictogen chalcogenide nanoplates, assemblies, and films, and methods for making the same.
In accordance with certain embodiments of the invention, single-component bulk assemblies of doped pnictogen chalcogenides nanoplates are achieved having a 25% to 250% enhancement in the room temperature thermoelectric figure of merit (ZT), relative to their individual bulk (not nanostructured) counterparts.
In accordance with certain embodiments of the invention, doped pnictogen chalcogenide nanoplates are provided comprising a rhombohedral crystal of Bi2Te3, Bi2Se3, or Sb2Te3 that is sulfur doped. According to an embodiment, a majority of multiplicity of the doped pnictogen chalcogenide nanoplates are hexagonal in shape. Pnictogen chalcogenide nanoplates of Bi2Te3, Bi2Se3 and Sb2Te3 of embodiments of the invention yield bulk assemblies of either n- or p-type nanostructured material that has room temperature ZT of 1 to about 1.5 and even up to 2 to 3, and possibly higher.
According to an embodiment of the invention, the bulk doped pnictogen chalcogenides assemblies are formed by compaction and sintering of the subject nanoplates. In another embodiment of the invention doped pnictogen chalcogenides nanoplates are synthesized by a rapid, scalable microwave promoted synthesis. The resulting pnictogen chalcogenides nanoplates are sulfur doped at levels of less than 10 atom percent, for example, less than about 0.3 atom percent, less than 1 atom percent, less than 2 atom percent, less than 5 atom percent, or less than 10 atom percent. The sulfur doping can be carried out by the use of a mercaptan terminated ligand, such as thioglycolic acid (TGA), mercaptopropionic acid, or other mercaptan terminated acids (mercaptonic acids), as a nanoplate-sculpting and surface-passivation agent in the novel nanoplate synthesis. Other sulfur-bearing molecules that can be used to carry out the sulfur doping include, but are not limited to, thiols (e.g., octadecanethiol), dithiols (e.g., propanedithiol and polyethylene dithiol), thiones (e.g., L-glutathione), and thioglycolates. The sulfur doping enhances the electrical conductivity and Seebeck coefficient relative to undoped pnictogen chalcogenides. The sulfur doping can reverse the majority carrier type in the assemblies of pnictogen chalcogenides nanoplates. Thermal conductivity values as low as 0.5-1.4 W/mK are achieved in the doped pnictogen chalcogenides nanoplate assemblies without alloying.
In accordance with the subject disclosure, alloying can be understood to occur when the sulfur reaches over 10 atom percent. The doping can be understood to occur at sulfur content less than 1% and may occur between 1%-10% so long as single phase is maintained in the structure. The particular structural changes witnessed depend on the material system. Although not described herein, the subject microwave methods can also be used to alloy the pnictogen chalcogenides with sulfur.
The nanoplate assemblies of embodiments of the invention display nanoscale grains and nanoscale structural modulations within each grain. The superior high figure of merit (ZT) thermoelectric materials allow the subject nanoplate assemblies to be used for thermoelectric devices according to embodiments of the invention where the devices act as solid-state refrigeration or electrical power generation from heat.
Embodiments of the invention provide sulfur-doped pnictogen chalcogenide nanoplates that can comprise the building blocks for dense close-packed/stacked thin films and bulk assemblies with tailored properties for thermoelectric devices. By creating dense thin films, the thermoelectric properties of the thin films can approach and exceed those of bulk. For example, decreased thermal conductivity in thin films provides higher ZT. In certain embodiments, the thin films can be produced by inkjet printing, spray/drop casting, dip-coating, or other deposition techniques of the subject sulfur-doped pnictogen chalcogenide nanoplates.
According to one embodiment of the invention, a TGA-ligated pnictogen is mixed with a phosphine ligated chalcogen in a high boiling alkanediol or an equivalent solvent, for example polyethylene glycol, to form the reaction mixture for the doped pnictogen chalcogenides nanoplates. The ligated pnictogen can result from bismuth and antimony acetates, nitrates, chlorides, and neodecanoate. The ultimate source of the chalcogenide can be tellurium or selenium powder, tellurium or selenium acids or oxides. Sulfur doping can result from the inclusion of thioglycolic acid, mercaptopropionic acid, mercaptoacetic acid, other mercaptan terminated acids, or other sulfur bearing molecules such as thiols, dithiols, thiones, or thioglycolates. For example, a tri-n-octylphosphine (TOP)-ligated tellurium or selenium can be mixed with TGA-ligated bismuth or antimony ions in 1-5 pentanediol. The phosphine ligated chalcogens serve as microwave susceptor such that heating occurs upon microwave irradiation of the reaction mixture. The solvent can be an alkane diol or polyol, or similar reagents that can be used advantageously. The high-boiling alkane diol, or an equivalent solvent, facilitates rapid liquid-phase synthesis at high temperatures. The microwave source can have a range of power, where the rate of the reaction depends on the rate at which microwave radiation is provided to the mixture. Reaction times of less than three minutes are easily achieved at relatively low doses of microwaves.
The successful preparation of the reaction mixture according to certain embodiments requires control of the microwave dose (J) which equals the microwave power (Watts) times the period of time (seconds). For example, a 300 W variable-power automated single-mode microwave oven allows temperature of about 180° C. to about 225° C. with reaction times of about 120 to 150 seconds to achieve the desired doped pnictogen chalcogenide nanoplates. Temperatures of 30° C. to 400° C. can be used with reaction times in excess of 300 seconds for low temperatures and less than 60 seconds for high temperatures, or even reactions times anywhere between 60 seconds and 300 seconds over the range of temperatures. Temperatures and times can be optimized according to microwave power. In addition, as the temperature is increased, the reaction time can be decreased to achieve a same desired doped pnictogen chalcogenide nanoplate. However, the maximum temperature is limited by the material. For the doped pnictogen chalcogenides described in examples herein, the maximum temperature less than the melting point of the pnictogen chalcogenide, for example, less than about 585° C. for Bi2Te3, less than about 706° C. for Bi2Se3, and less than about 580° C. for Sb2Te3.
The microwave dose (J) per volume or mass being irradiated can be selected as necessary to form the desired doped pnictogen chalcogenide nanoplate.
Although the exemplary embodiments of the invention described in detail herein are directed to batch processing, the method is not so limited and continuous processing is readily carried out by control of fluid flows, irradiation chamber sizes and irradiation intensity, as can be appreciated by one skilled in the art. The use of a 1250 W multi-mode domestic oven allows formation of the doped pnictogen chalcogenides nanoplates as a black precipitate in about 10 to 15 seconds with complete reaction in less than about 30 to 60 seconds where temperatures between 225° C. and 270° C., the boiling point of the employed pentanediol solvent, are observed.
The subject nanoplates and assemblies can be surface capped or ligated with thiol surfactants. This can occur during the doping process due to the surface thioligation by, for example, TGA. The surface capping suppresses oxidation and protects the surface of the subject nanoplates. Advantageously, the capping permits ease of handling and storage.
The precipitated doped pnictogen chalcogenides nanoplates can comprise phase-pure rhombohedral crystals of stoichiometric Bi2Te3 or Bi2Se3 or Sb2Te3 as indicated by X-ray diffractometry (XRD), shown in
Bright-field transmission electron microscopy (TEM) studies of individual nanoplates reveal uniform contrast, as indicated in the inset [0001] zone lattice images of
The atomic-level steps are also manifested as bend-contour discontinuities, as indicated in
In an embodiment of the invention, bulk assemblies of the novel doped pnictogen chalcogenide nanoplates are formed having about 95% to about 97% of the density of the respective bulk pnictogen chalcogenide by cold compaction and sintering of nanoplate powders, experimentally demonstrated using 0.3 to 1 g of nanoplates to form a pellet. Wavelength dispersive X-ray spectroscopy (WDS) measurements on sintered pellets using an electron microprobe revealed Bi2Te3 that is 1-2% bismuth-rich, Bi2Se3 that is 1-5% bismuth-deficient, and Sb2Te3 that is essentially stoichiometric with sulfur dopant contents of about 0.01 to 0.3 atom percent, as illustrated in
Core-level spectra acquired by X-ray photoelectron spectroscopy (XPS) from nanoplate assemblies are shown in
TGA capping inhibits surface oxidation in both the bismuth chalcogenides and the antimony telluride, but is most effective in the case of Bi2Se3. XPS spectra, as shown in
Thermoelectric measurements, employing well-established techniques, on the bulk assemblies of doped pnictogen chalcogenide nanoplates reveal negative Seebeck coefficients for the bismuth chalcogenides, particularly −220<α<−90 μV/K for Bi2Te3 and −80<α<−40 μV/K for Bi2Se3, and a positive Seebeck coefficient for antimony telluride, particularly 105<α<135 μV/K, with absolute value of a shown in
The signs of the Seebeck coefficients for bismuth selenide and antimony telluride nanoplates are consistent with the n- and p-type behaviors exhibited by their respective bulk counterparts, respectively. For Bi2Te3, a negative Seebeck coefficient indicates a majority carrier inversion, in contrast to the non-nanostructured bulk counterpart. Stoichiometric and bismuth rich compositions of Bi2Te3 are strongly p-type, where bismuth anti-site defects act as acceptors. The n-type character exhibited by the bulk assemblies of the subject doped pnictogen chalcogenide nanoplates comprising Bi deviate from bulk defect-chemistry and/or electronic structure despite being composed of stoichiometric or bismuth rich nanoplates. This inversion to n-type behavior appears to be a consequence of sulfur doping, as pellets obtained from nanoplates lacking TGA show p-type behavior, implying surfactant induced doping. Bulk Bi2Te3 alloyed with 2% sulfur. sulfur levels more than an order of magnitude greater than in the bulk assemblies of the novel doped Bi2Te3 nanoplates, are known to display a majority carrier inversion. Bi2Te3 with a configuration having the S atom from TGA bonded to a surface Te atom is identified to be a donor, which is consistent with the XPS measurements, as indicated in
Table 1, below, provides thermoelectric properties and figures of merit for pellets of the bulk assemblies of pnictogen chalcogenide nanoplates. The uncertainties in σ, α, κ and ZT are about 2%, 2%, 5% and 7%, respectively. For κL1 values, a Lorenz number of 1.5×10−8 WΩ/K2 for a degenerate semiconductor was used to calculate the electronic component of the thermal conductivity κe and subtracted to extract the lattice contribution. Since the exact value of the Lorenz number for the nanoplate composition is currently unknown, an estimate of the electrical conductivity contribution to the total thermal conductivity was made using the value 1.5 WΩ/K2 for a degenerate semiconductor. This allows the determination of an electrical conductivity contribution of about 50% for Bi2Te3 and 85% for Sb2Te3. Alternately the lattice thermal conductivity can be obtained from the intercept on the thermal conductivity axis on the plot of total thermal versus electrical conductivity, shown in
Un-optimized sintered pellets exhibit high room-temperature electrical conductivity σ of about 0.3 to 2.5×105 Ω−1m−1, as indicated in
In contrast to bulk, Bi2Te3 alloyed to 20% to 70% with Sb2Te3 (p-type) and Bi2Se3 (n-type), where alloying is primarily carried out to decrease the lattice scattering contribution of thermal conductivity κL because of alloying-induced phonon scattering, and often results in a power factor decrease due to low electrical conductivity, bulk assemblies of doped pnictogen chalcogenide nanoplates prepared by the subject microwave methods display κL values that are below the alloy-limit with sub-atomic-percent sulfur doping while maintaining a high power factor.
The measured thermal conductivity is about 0.5<κ<1.4 W/mK for all bulk assemblies of doped pnictogen chalcogenide nanoplates according to embodiments of the invention, as illustrated in
The low κL values reflect 50-100 nm grains within the bulk assemblies of doped pnictogen chalcogenide nanoplates and the 5-10 nm scale structural modulations and inclusions within each grain. As shown in
Extensive nanometer-scale structural modulations occur in the hulk assemblies of doped pnictogen chalcogenide nanoplates that are typified by the periodic contrast in grains as can be seen in
Subsequent tilting experiments and electron diffraction analyses, as shown in
From the above parameters, room temperature ZT values as high as about 1.5 are determined, as plotted in
According to an embodiment of the invention, micrometer-thick porous films of fused doped pnictogen chalcogenide nanoplates are obtained by drop-casting the nanoplates onto a glass substrate and annealing the drop-casted nanoplates for 1-10 hours at temperatures from 100° C. up to the melting point of each material.
For the experimental examples, the nanoplates were drop-casted onto a glass substrate and annealed in vacuum at 250° C. for 2 hours. These films exhibit linear I-V characteristics, as shown in
Thermoelectric measurements of nanoplate film assemblies with lithographically patterned micro-heaters reveal Seebeck coefficients with opposite signs for the doped bismuth chalcogenides, as shown in
The thermal conductivities of fused films of doped pnictogen chalcogenide nanoplates were measured by a hot probe technique yielding values of κ of about 0.35 Wm−1K−1 for the Bi2Te3 films and about 0.52 Wm−1K−1 for Bi2Se3. These extremely low values of thermal conductivity include contribution due to film porosity, which must be carefully balanced to preserve good electrical conductivity. A higher thermal conductivity of the Bi2Se3 film compared to the Bi2Te3 film reflects that of the bulk pnictogen chalcogenides.
According to an embodiment, dense fused films of doped pnictogen chalcogenide nanoplates can be formed through deposition techniques such as inkjet printing and spray/drop-casting. In certain embodiments, the figure of merit ZT for the fused films can approach and exceed the bulk counterparts. In one embodiment, the Seebeck coefficients of the nanoplate films can reach −300 μV/K for Bi2Te3 and 250 μV/K for Bi2Se3. According to an embodiment, fused films can be fabricated having a density of 85% or more of the equivalent bulk pnictogen chalcogenide.
Nanoplate synthesis: Thioglycolic acid (CH2COOHSH, 95%), anhydrous bismuth chloride (BiCl3), antimony chloride (SbCl3), 1,5-pentanediol (95%), technical grade trioctylphosphine (TOP). 200 mesh tellurium shots and 100 mesh selenium shots were obtained from Sigma Aldrich and used without further purification. In a typical small-scale synthesis, 10 mg of tellurium (˜0.08 mmol) (or 6 mg of selenium (˜0.08 mmol) for Bi2Se3) was added to 2 to 5 mL TOP and heated in the microwave oven for 90 to 120 seconds to obtain a colorless to faint yellow TOP-chalcogen complex. A bismuth or antimony chloride solution was prepared by adding 13 mg (0.04 mmol) of BiCl3 or 10 mg (0.04 mmol) SbCl3 to 2.5 to 10 ml 1-5 pentanediol followed by sonication for 15 minutes. Addition of 100 to 350 μL of thioglycolic acid transforms the bismuth chloride solution to a yellow color due to formation of thiolated bismuth complex. The solutions with TOP-chalcogen and thioligated bismuth or antimony were mixed and irradiated with microwaves in a common domestic Panasonic microwave oven rated at 1250 W for 30 to 60 seconds. Alternately a single-mode variable power 300 W CEM microwave equipped with an IR sensor for temperature control was used for synthesis. Gram quantities of nanocrystals were obtained in less than 5 minutes. The bismuth chalcogenide nanoplates are ultrathin, about 5 to 20 nanometers thick and have tunable edge lengths. The antimony telluride nanoplates are slightly thicker, about 7 to 30 nm. Synthesis time of 60 s at a microwave power of 1250 W in the multimode oven results in: Bi2Te3 nanoplates with edge lengths of about 150 to 300 nm and a mean thickness of about 15 nm; Bi2Se3 nanoplates with edge lengths of about 400 to 1000 nm and a mean thickness of about 15 nm; and Sb2Te3 nanoplates with edge lengths of about 200 to 700 nm and a mean thickness of about 20 nm. Higher microwave doses increases the edge length without altering the thickness. Typical synthesis times of 60 seconds resulted in yields of 80 to 90 percent.
Pellet fabrication: Bulk assemblies of doped pnictogen chalcogenide nanoplates were fabricated as pellets from dried doped pnictogen chalcogenide nanoplates through cold-compaction under pressure using a hydraulic press. The green pellets of about 60 to 70 percent of bulk density were sintered under vacuum at 350° C. for 90 minutes using the double crucible method to yield 97 to 98 percent of bulk density measured by a pneumatic densitometer. The pellets measured about 6 mm in diameter and 2 to 3 mm in thickness and were cut and polished appropriately for subsequent measurements. The sintering can be carried out at temperatures less than the melting point of the pnictogen chalcogenide (for example, less than about 585° C. for Bi2Te3, less than about 706° C. for Bi2Se3, and less than about 580° C. for Sb2Te3) to as low as about 100° C.
Materials characterization: Films formed by drop-casting the nanoplates on to glass slides, silicon wafer or TEM grids were characterized by X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and diffraction, and X-ray photoelectron spectroscopy (XPS). A Brüker D-8 instrument with a Cu Kα (λ=0.154 nm) probe beam was used for XRD. The nanoplate morphology and structure and sintered pellet nanostructure were determined using a field-emission Zeiss Supra 55 SEM operated at 1-5 kV, a Philips CM 12 TEM operated at 120 kV, and a JEOL 2010 TEM operated at 200 kV. Fourier transform infrared (FTIR) spectra were acquired from KBr-compacted pellets with the nanoplates using a Perkin-Elmer Spectrum One spectrometer in the transmittance mode. Wavelength dispersive X-ray spectroscopy was performed on the sintered pellets using a Cameca SX 100 electron microprobe. The sulfur content of the pellet was determined by averaging over 10 to 15 random micron sized regions.
Energy dispersive x-ray spectroscopy (EDS) of the pnictogen chalcogenide nanoplates was carried out during transmission electron microscopy (TEM), as shown in
The X-ray diffractograms obtained from films of doped Bi2Te3, Bi2Se3 and Sb2Te3 nanoplates are indexed using the four-index notation referenced to hexagonal axes for the rhombohedral lattice. A few minor peaks are not shown indexed for brevity. All respective peaks can be indexed to the R
Thermoelectric transport characterization: Electrical conductivities of the pellets were measured by an AC four-probe switching method with Van der Pauw geometry and a lock-in amplifier using 6000 Hz AC current, as shown in
For the I-V characteristics and Seebeck coefficient measurements, as plotted in
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application. In addition, any elements or limitations of any invention or embodiment thereof disclosed herein can be combined with any and/or all other elements or limitations (individually or in any combination) or any other invention or embodiment thereof disclosed herein, and all such combinations are contemplated with the scope of the invention without limitation thereto.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/274,275, filed on Aug. 14, 2009, which is hereby incorporated by reference in its entirety (including all tables, figures, and other associated data).
The subject invention was made with government funds under Contract No. HR0011-07-3-0002 awarded by DARPA. The U.S. Government has rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
20080036101 | Xiao et al. | Feb 2008 | A1 |
Entry |
---|
Fan et al. (Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites, J. Phys. D: Appl. Phys. 40 (2007) 5975-5979). |
Purkayastha et al. (Molecularly Protected Bismuth Telluride Nanoparticles: Microemulsion Synthesis and Thermoelectric Transport Properties, Adv. Mater. 2006, 18, 2958-2963). |
Li et al. (Effects of Annealing and Doping on Nanostructured Bismuth Telluride Thick Films, Chem. Mater. 2008, 20, 4403-4410). |
Shi et al. (Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity-Free Antimony Telluride Hexagonal Nanoplates, Adv. Mater., 2008, 20, 1892-1897). |
Lu et al. (Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth), J. Am. Chem. Soc. 2005, 127, 10112-10116). |
Harman et al., “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, Sep. 27, 2002, pp. 2229-2232, vol. 297. |
Heremans et al., “Enhancement of Thermoelectric Efficiency in PbTe by Distorion of the Electronic Density of States,” Science, Jul. 28, 2008, pp. 554-557, vol. 321. |
Hicks et al., “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Physical Review B. May 15, 1993, 12 737-12 731, vol. 47, No. 19. |
Horak et al., “Inversion of Conductivitiy Type in Bi2Te3-xSx Crystals,” Solid State Communications, 1985, pp. 1031-1034, vol. 55, No. 11. |
Hyde et al., “Electronic Properties of Bi2Se3 Crystals,” J. Phys. Chem. Solids, 1974, pp. 1719-1728, vol. 35. |
Kanatzidis, “Nanostructured Thermoelectrics: The New Paradigm?”, Chemistry of Materials Review, 2009, pp. 648-659, vol. 22. |
Minnich et al., “Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,” Energy & Environmental Science, 2009, pp. 466-479, vol. 2. |
Peranio et al., “Structural and Thermoelectric Properties of Epitaxially Grown Bi2Te3 Thin Films and Superlattices,” Journal of Applied Physics, 2006, No. 100. |
Peranio et al., “Structural Modulations in Bi2Te3,” Journal of Applied Physics, 2008, No. 103. |
Poudel et al., “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, May 2, 2008, pp. 634-638, vol. 320. |
Purkayastha et al., “Molecularly Protected Bismuth Telluride Nanoparticles: Microemulsion Synthesis and Thermoelectric Transport Properties,” Advanced Materials, 2006, pp. 2958-2963, No. 18. |
Purkayastha et al., “Low-Temperature, Template-Free Synthesis Synthesis of Single-Crystal Bismuth Telluride Nanorods,” Advanced Materials, 2006, pp. 496-500, No. 18. |
H. Sherrer and S. Sherrer, “Chapter 19: Bismuth Telluride, Antimony Telluride, and Their Solid Solutions,” Section D Thermoelectric Materials, 1995, CRC Press LLC. |
Snyder et al., “Complex Thermoelectric Materials,” Nature Materials, Feb. 2008, pp. 105-114, vol. 7. |
Venkatasubramanian et al., “Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit,” Nature, Oct. 11, 2001, pp. 597-602, vol. 413. |
Christian et al., “A General Route to Nanostructured Bismuth Chalcogenides,” Journal of Materials Chemistry, 2005, pp. 3021-3025, vol. 15. |
Number | Date | Country | |
---|---|---|---|
20120111385 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61274275 | Aug 2009 | US |