G. Carturan et al, "Inorganic Gels for Immobilization of Biocatalyst: Inclusion of Invertase-Active Whole Cells of Yeast (Saccharomyces Cerevisiac) Into Thin Layers of SiO.sub.2 Gel Deposited on Glass Sheets", Journal of Molecular Catalysis, 57 (1989), pp. L13-L16. |
Song-Ping Liang et al, "Covalent Immobilization of Proteins and Peptides for Solid-Phase Sequencing Using Prepacked Capillary Columns", Analytical Biochemistry 188, (1990), pp. 366-373. |
C. Jeffrey Brinker, "Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing", Chapter 3 (Hydrolysis and Condensation II, Silicates), pp. 97-233. |
Vered R. Kaufman et al, "Water Consumption During the Early States of the Sol-Gel Tetramethylorthosilicate Polymerization as Probed by Excited State Proton Transfer", Journal of Non-Crystalline Solids 99 (1988), pp. 379-386. |
Vered R. Kaufman et al, "Structural Changes Along the Sol-Gel-Zerogel Transition in Silica As Probed by Pyrene Excited-State Emission", Langmuir 1986, 2, pp. 717-722. |
David Avnir et al., "The Nature of the Silica Cage as Reflected by Spectral Changes and Enhanced Photostability of Trapped Rhodamine 6G", J. Phys., Chem. 1984, 88, pp. 5956-5959. |
Ichiro Chibata et al, "Production of L-Aspartic Acid by Microbial Cells Entrapped in Polyacrylamide Gels", Methods of Enzymology 44(XLIV) (1976), pp. 739-746. |
Professor J. F. Kennedy, "Data on Techniques of Enzyme Immobilization and Bioaffinity Procedures", Chapter 4, pp. 380-420. |
Professor J. F. Kennedy, "Principles of Immobilization of Enzymes", Chapter 4, pp. 147-207. |