This application is the National Stage of International Patent Application No. PCT/EP2017/072748, filed Sep. 11, 2017, which claims priority from Great Britain Patent Application No. 1615447.8 filed Sep. 12, 2016, the entire contents of both of which applications are incorporated herein by reference.
This disclosure relates to the field of dose delivery mechanisms for injection devices, preferably to reusable pen-type injection devices.
Certain injection devices have a dose setting member, or dose selector, via which the user can select a desired dose of medicament to be delivered from the injection device. The dose selector can commonly be actuated in one direction to increase the set dose (“dialling up”) and actuated in another direction to decrease the set dose (“dialling down”). As the dose is dialled up or down, this correspondingly increases or decreases stored energy in the device (e.g. in a torsion spring). An example of this type of dose setting can be seen in WO2006/045528.
In WO2006/045528, a drive member is connected to a dose setting member via a self-tightening “hold ratchet” having saw-toothed teeth. The hold ratchet enables the dose setting member to be rotated in both directions so that a given dose may be set, whilst preventing the spring from unwinding from the currently selected dose. With reference to
Another example of an injection device having a hold ratchet is described in WO2007/063342. A ratchet mechanism is positioned between a drive shaft and a drive element. In the dose setting direction, the ratchet teeth ride over one another to allow rotation of the drive shaft relative to the drive element as a dose knob is turned to set the dose. With reference to
Another example of an injection device having a hold ratchet is described in WO2015/032780. With reference to
In the above prior art examples, a charged drive mechanism is engaged and ready to deliver medicament but held back until dose delivery is initiated, whereupon the drive mechanism is released so that it can freely rotate and deliver medicament under the force of the energy stored in the device.
In accordance with an aspect of the present invention there is provided an injection device comprising:
a housing having a longitudinal axis;
a dose selector capable of being rotated about said longitudinal axis with respect to said housing by a user to set a dose of medicament to be ejected from the injection device;
a spring capable of storing energy necessary for ejecting the dose of medicament from the injection device, wherein the spring is coupled to the dose selector such that a charging force can be transferred from the dose selector to the spring to increase the energy stored by the spring;
a ratchet arrangement moveable between an engaged state in which the spring is limited from unwinding from a currently selected dose and a disengaged state in which the spring is able to unwind; and
a drive assembly including a plunger element capable of providing an axial force for ejecting a dose of medicament from the injection device,
wherein the drive assembly further comprises
a drive clutch moveable from a disengaged state in which a force path from the spring to the plunger element is interrupted and an engaged state in which the drive assembly can provide the axial force for ejecting a dose of medicament from the injection device via said force path and wherein the drive clutch reaches its fully engaged state before the ratchet arrangement has reached its fully disengaged state.
In this way, the plunger element can be completely isolated from the charged spring until dose delivery is initiated. There is therefore no possibility of unwanted or early delivery of medicament. This is in contrast to prior art devices in which the equivalent of the plunger element is always engaged with the drive mechanism, but held back from delivering medicament until dose delivery is initiated.
In certain embodiments, the ratchet arrangement comprises a radially-flexible ratchet arm and teeth on an internal surface of the housing. The plunger element may comprise a lead screw concentrically arranged within and rotationally fixed with respect to a rotatable drive sleeve.
In an embodiment, the drive assembly includes a drive shaft intermediate said spring and said drive sleeve and said drive clutch comprises splines on said drive sleeve engageable with splines on said drive shaft.
In another embodiment, said drive clutch comprises a drive clutch component having splines on a rear face thereof, the splines being engageable with splines on a front face of said drive sleeve during forward movement of said drive sleeve. Preferably, when the drive clutch is in its disengaged state, the drive clutch component is rotationally fixed with respect to the housing. Forward movement of said drive sleeve may be capable of disengaging said drive clutch component from said housing, allowing relative rotation therebetween.
In another embodiment, the ratchet arrangement comprises a ratchet component rotationally and axially locked with respect to said housing and a drive plate including a first set of splines. The dose selector may include splines for disengaging said ratchet arrangement. Preferably, said ratchet component is capable of interacting with both the splines on the dose selector and the splines on the drive plate. The spring may be fixed at one end to said housing and fixed at the other end to a rotatable drive sleeve. Preferably, the drive assembly further comprises a drive shaft engageable with said drive sleeve to drive the plunger element. The plunger element may comprise a hollow plunger concentrically arranged around said drive shaft. The drive clutch may comprise a further set of splines on said drive plate for engaging splines on said drive shaft and said further set of splines may be on an outer surface of said drive plate with said drive shaft splines on an internal surface thereof.
In certain embodiments, the drive clutch is moveable from the disengaged state to the engaged state before the ratchet arrangement begins to move from the engaged state to the disengaged state.
By having the drive clutch engagement occurring before the ratchet arrangement is fully disengaged, the drive spring is never free to unwind in an uncontrolled manner.
In certain embodiments, the spring is a torsion spring and the charging force transferred to the spring is a charging torque. Preferably, the drive assembly has a rotational to axial coupling, where the drive assembly is rotationally drivable by the torsion spring and is arranged to provide an axial force for ejecting the dose from the injection device.
In certain embodiments, when the drive clutch is in the engaged state, the spring is coupled to the plunger element via one or more intermediate components capable of transmitting the charging force.
The drive assembly is may be concentrically arranged about said longitudinal axis. In certain embodiments, said plunger element may be radially outward of said drive clutch. Alternatively, said plunger element may be radially inward of said drive clutch.
In an embodiment, the injection device may further comprise a medicament container where the medicament container may comprise a pre-filled syringe, or cartridge. The injection device may further comprise a medicament contained in the medicament container. In certain embodiments, the medicament may be selected from the group comprising: antipsychotic substances including risperidone, hormones, antitoxins, substances for the control of pain, immunosuppressives, substances for the control of thrombosis, substances for the control or elimination of infection, peptides, proteins, human insulin or a human insulin analogue or derivative, polysaccharide, DNA, RNA, enzymes, antibodies, oligonucleotide, antiallergics, antihistamines, anti-inflammatories, corticosteroids, disease modifying anti-rheumatic drugs, erythropoietin, or vaccines, for use in the treatment or prevention of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis, hormone deficiency, toxicity, pain, thrombosis, infection, diabetes mellitus, diabetic retinopathy, acute coronary syndrome, angina, myocardial infarction, atherosclerosis, cancer, macular degeneration, allergy, hay fever, inflammation, anaemia, or myelodysplasia, or in the expression of protective immunity.
Embodiments of the invention are further described hereinafter, by way of example only, with reference to the accompanying drawings, in which:
In the present disclosure, the following terms may be understood in view of the below explanations:
The term “injection device” may refer to a device intended for the injection of a medicament to the body and includes devices configured for various delivery methods, such as intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, epidural, intracardiac, intraarticular, intracavernous, and intravitreal, which may include via a cannula, catheter or similar device. Injection device includes syringes of all types, devices that contain said syringes such as auto-injectors, pen-injectors, patch injectors and other similar devices.
The term “pen-injector” may include any device configured to deliver a dose of a medicament from a cartridge.
The term “user” may refer to a medical practitioner, end user or other user associated therewith.
The term “coupling” may refer to a connection between components (not necessarily a direct connection; there may be intermediate components therebetween) that enables a force to be transmitted between the components.
The term “a rotational coupling” may refer to a coupling which enables a rotational force to be transmitted between the components.
The term “operatively connectable” may refer to at least two individual components which are releasably connectable together in such a way that the individual components can work together, for example wherein rotation of one of the individual components effects rotation of all of the operatively connected components.
The term “dose selector” may refer to a component or components which, when actuated by a user, enable a dose of medicament to be selected.
The term “dose indicator” may refer to a component or components which provide a display or indication to the user of the selected dose of medicament.
The term “splines” may refer to one or more ridges, ribs or other protrusions on one component which engage in corresponding grooves or the like on a second component to connect the two components together.
The term “a splined connection” may refer to a connection effected by one or more splines.
The term “forward” or “forwards” may refer to a direction towards the end of the injection device from which medicament is expelled.
The term “backward”, “backwards”, “rearwards” or “rearwardly” may refer to a direction away from the end of the injection device from which medicament is expelled.
The term “drive assembly” may refer to an assembly of components capable of using a driving force from, for example, a spring, to eject medicament from an injection device.
The term “backlash” may refer to a clearance caused by a gap between mechanical components.
The term “medicament” may include a substance in liquid or gas form. The medicament may be selected from the group comprising of: antipsychotic substances including risperidone, hormones, antitoxins, substances for the control of pain, immunosuppressives, substances for the control of thrombosis, substances for the control or elimination of infection, peptides, proteins, human insulin or a human insulin analogue or derivative, polysaccharide, DNA, RNA, enzymes, antibodies, oligonucleotide, antiallergics, antihistamines, anti-inflammatories, corticosteroids, disease modifying anti-rheumatic drugs, erythropoietin, or vaccines, for use in the treatment or prevention of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis, hormone deficiency, toxicity, pain, thrombosis, infection, diabetes mellitus, diabetic retinopathy, acute coronary syndrome, angina, myocardial infarction, atherosclerosis, cancer, macular degeneration, allergy, hay fever, inflammation, anaemia, or myelodysplasia, or in the expression of protective immunity.
When referring to the injection device, the term “containing the medicament” may refer to the medicament being contained within a suitable medicament container, such as a pre-filled syringe or cartridge, within the injection device.
The term “ratchet arrangement” may refer to an arrangement of components comprising a set of splines or teeth and a “ratchet component” which can engage in said splines or teeth to permit one-way movement.
The term “over-torque feature” may refer to a feature located on a first component and capable of interacting with a second component so as to reduce a force being transferred along a force path from the first component to the second component, for example by changing the direction of the force path and/or creating an additional force path.
The term “single component” may refer to one component, an integrally-formed component, a unitary component, or at least two component parts fixed together or with respect to one another.
The term “haptic feedback track” may refer to a plurality of ridges, ribs, teeth, or other protrusions on an internal surface of the injection device and with which another component, moving rotationally with respect thereto, can engage to provide audible and/or tactile feedback to a user of the injection device.
The term “a dose button” may refer to a button or the like at the rear of the injection device which is actuated, for example by pressing axially-forwardly with respect to the device housing, in order to initiate dose delivery.
The term “a force path” may refer to a path between two or more coupled components via which a force can be transmitted between the components. A force path may be “interrupted” if there is a gap between the two or more components, i.e. if they are no longer coupled. Transmission of force between coupled components may be “held back”, for example by a ratchet arrangement, but in such a case, the force path is not “interrupted”.
The term “a clutch” may refer to a component or feature suitable for operatively connecting two component parts either by a positive fit e.g. with teeth, splines, grooves or the like suitable for engaging and disengaging each other, or by a non-positive (frictional) connection or a combination thereof. Disengaging the clutch may interrupt a force path between two or more coupled components.
An injection device 10 according to an embodiment of the present invention is shown in
The dose selector 16 is coupled to the spring 20 such that a charging force can be transmitted from the dose selector 16 to the spring 20 in order to charge the spring 20. The spring 20 is charged when a force is applied to the spring 20 so as to elastically deform the spring 20, and the resulting elastic energy is stored by the spring 20 (i.e. it is prevented from elastically relaxing during a storage phase). Therefore, charging the spring 20 involves increasing the energy stored by the spring 20.
The spring 20 is coupled to the drive assembly 22 and is arranged to provide a driving force thereto when energy stored by the spring 20 is released. The spring is capable of storing energy necessary for ejecting the dose of medicament from the injection device and the spring is coupled to the dose selector such that a charging force can be transferred from the dose selector to the spring to increase the energy stored by the spring.
The drive assembly 22 acts to expel medicament from the medicament container 24 using the plunger element 23 which is capable of providing an axial force for ejecting a dose of medicament from the container 24. In certain embodiments, the medicament container 24 may be a pre-filled syringe or cartridge having a barrel and a stopper moveable in the barrel. In such embodiments, the plunger element 23 may act to move the stopper so as to expel medicament through an opening in the barrel. In certain embodiments of the invention, the medicament cartridge may or may not be connected to a needle.
The drive assembly 22 includes a drive clutch 21 which determines whether force from the spring 20 can reach the plunger element 23 or not. The drive clutch 21 is moveable from a disengaged state in which a force path 26 from the spring 20 to the plunger element 23 is interrupted and an engaged state in which the drive assembly 22 can provide the axial force for ejecting a dose of medicament from the injection device via said force path 26.
In embodiments where the spring 20 is a torsion spring, the spring 20 is charged by applying a torque to wind the spring 20 and elastic energy may be stored by the spring 20 and subsequently released as torque.
In embodiments where the spring 20 is a compression spring, the spring 20 may be charged by applying an axial force to compress the spring 20 and elastic energy may be stored by the spring 20 and subsequently released as an axial force.
In certain embodiments, the force path 26 may include one or more torque paths and/or one or more axial force paths, where one or more rotational to axial couplings are employed to switch between rotational and axial forces along the force path 26. Indeed, in certain embodiments, one or more intermediate components may be provided between any of the components shown in
As shown in
When the dose has been set, the user can initiate dose delivery, for example by pressing a dose button (not shown).
After continued pressing of the dose button, the condition represented in
In summary, the force path 26 from the spring 20 to the plunger element 23 is interrupted in
A further, non-limiting, embodiment of an injection device according to the present invention is illustrated in
Referring to
The injection device 200 has a medicament cartridge 224 supported in a cartridge holder 225 at the front end 200a of the injection device. A needle or needle hub unit (not shown) can be connected to the cartridge holder. The cartridge is sealed by an axially-moveable cartridge stopper 226 at its rear end.
The dose button 230 is biased rearwardly by the effect of the dose button spring 231 between the housing 212 and front end of the drive sleeve 240 with which the dose button 230 is axially engaged. The dose selector 216 is provided at the rear end 200b of the injection device 200 and is arranged to permit the selection of a desired dose of medicament for delivery from the medicament cartridge 224 into an injection site. The dose selector 216 is axially constrained with respect to the housing 212 but is rotatable with respect thereto, about axis L. The dose selector 216 is used to set the dose by increasing the rotational preload of the drive spring 220 which is prevented from unwinding by the ratchet pawl 217 which engages between the housing 212 and the units wheel 218.
The ratchet pawl 217 (best seen in
A dose indicator is disposed within the housing 212 and displays reference indicia, such as numbers or symbols, to indicate the level of dose selected by the dose selector 216. The housing 212 includes an aperture 212a through which the dose indicator is visible. The dose indicator comprises the units wheel 218 for displaying units and the tens wheel 219 for displaying tens and the odometer shuttle lock 222. The units wheel 218 is intermittently coupled to the odometer shuttle lock 222 which is always rotationally coupled to the tens wheel 219. The tens wheel 219 has maximum and minimum dose limit features in the form of rotational endstops 271, 272 respectively, which can engage a limiting rib 290 in the housing 212 to keep the selected dose within the range defined by the maximum and minimum doses. This max/min dose limiting will be described in more detail later.
With reference to
Tens wheel 219 has tens numbers 270 around the circumference thereof, comprising a series of the numbers 0-10. The forward end of the tens wheel 219 includes maximum and minimum dose limit features 271, 272, in the form of rotary endstops which can each engage a max/min limit rib 290 on the internal surface of the housing 212. The internal surface of the tens wheel 219 includes a key 273 for engaging with the shuttle lock 222.
The shuttle lock 222 is a generally cylindrical component having a forward section of largest diameter with double-ended peripheral teeth 280 at the forward end thereof having angled faces which can alternately engage dogs 291 and engagement ribs 292 on the interior of the housing 212. The angled faces cause a camming action that can move the shuttle lock 222 axially.
In general terms, the function of the housing dogs 291, housing engagement ribs 292 and units wheel drive dogs 261 is to enable the shuttle lock 222 to move alternately between two axial positions, as will be explained in more detail later.
An axially-extending keyway 281 is provided for engaging the key 273 on the tens wheel 219 in order to rotationally lock the tens wheel 219 and shuttle lock 222 together whilst permitting axial movement therebetween. In alternative embodiments, the key may be provided on the shuttle lock 222 and the axially-extending keyway may be provided on the tens wheel 219.
The rear section of the shuttle lock 222 is of smaller diameter and includes dogs 282 at the rear end thereof, located 180 degrees apart from one another which can engage with the drive dogs 261 of the units wheel 218.
The rear surface of the shuttle lock 222 is provided with a series of axially-extending shuttle lock rear teeth 283. The number of teeth 283 corresponds with the number of units of medicament available per rotation of the units wheel 218 (in this case 20). Depending upon the relative axial positions of the units wheel 218 and the shuttle lock 222, the engagement splines 262 on the units wheel 218 can either be engaged with the shuttle lock rear teeth 283, or not engaged with the shuttle lock rear teeth 283.
As illustrated in
The drive spring 220 is a torsion spring which is fixed at one end with respect to the housing 212 and engaged at its other end to the units wheel 218.
The drive clutch 250, best seen in
The operation of the respective features of the injection device 200 will now be described in more detail below.
When the dose button 230 is depressed, firstly the drive clutch 250 is decoupled from the housing 212 and coupled to the drive sleeve 240. Secondly, the ratchet pawl 217 is decoupled from the units wheel 218. Decoupling of the ratchet pawl 217 from the units wheel 218 allows the drive spring 220 to rotate the units wheel 218 and drive sleeve 240, which are rotationally coupled together, about the longitudinal axis L.
Rotation of the drive sleeve 240 causes the drive clutch 250 to rotate which, in turn, rotates the leadscrew 253 to which the drive clutch 250 is splined.
Rotation of the leadscrew 253 causes it to advance axially forwards towards the front end 200a of the injection device 200 because of the engagement of the leadscrew thread with the thread of the leadscrew nut 252. The leadscrew nut 252 is rotationally and axially fixed with respect to the housing 212.
During dose setting, the last dose nut 241 is rotationally fixed with respect to the housing 212 via the leadscrew 253. The last dose nut 241 can translate axially up and down the thread inside the drive sleeve 240 due to rotation of the drive sleeve 240 when the dose is being set. Translation of the last dose nut 241 inside the drive sleeve 240 is limited by a rotational stop feature on the drive sleeve 240 which limits the travel of the last dose nut 241 to a position corresponding with the maximum dispense volume of the injection device 200.
During dose delivery, the drive sleeve 240, leadscrew 253 and last dose nut 241 all rotate together and there is no axial translation of the last dose nut 241 with respect to the drive sleeve 240.
Dose Setting—Incrementing the Dose
With the injection device 200 in the configuration shown in
While the dose is being incremented, the ratchet arms 217b on the ratchet pawl 217 engage with teeth 213 on the inside surface of the housing 212 to prevent un-winding of the drive spring 220, as shown in
When the dose selector 216 reaches a maximum, minimum or last dose limit, the ratchet fingers 217a flex radially outwardly and skip past the ribs 218a of the units wheel 218 (
Dose Setting—Decrementing the Dose
When it is desired to decrement the selected dose, the dose selector 216 is turned anti-clockwise. As shown in
Dose Delivery
To initiate dose delivery, the user presses the dose button 230 against the bias of the dose button spring 231 as shown in
As the drive sleeve 240 advances, its forward end engages the rear surface of the drive clutch 250. The drive clutch 250 disengages from the clutch engaging features 215 on the inside surface of the housing 212 (
Therefore the leadscrew 253 now rotates and is caused to advance axially due to threaded engagement with the leadscrew nut 252. The thrust bearing 254 advances the cartridge stopper 226 into the cartridge, in order to expel medicament to deliver the selected dose (
When the dose button 230 is released, the dose button spring 231 returns the dose button 230 and drive sleeve 240 to their original starting positions. This axially rearward movement disengages the drive clutch 250 and re-engages the ratchet arms 217b with the housing 212 thereby stopping dose delivery.
Dose Delivery—Haptic Feedback
Referring to
Last Dose Protection
When the medicament cartridge 224 is relatively empty, after several doses have already been delivered therefrom, it is undesirable for the user to be able to select a dose that is larger than the available quantity of medicament remaining. Last dose protection is provided to deal with this situation. Last dose protection is provided by the last dose nut 241.
As shown in
Engagement of the last dose nut 241 with the endstop 240a means that, should the user attempt to wind the dose selector 216 beyond the remaining dose, the over-torque protection is actuated, preventing the user from damaging the device (
Dose Display
In stage 1 (
After the units wheel has reached dose “9”, in stage 2 (
The units wheel 218 is still able to turn. The tens wheel 219 is still rotationally locked to the shuttle lock 222 by virtue of the key 273 engaging in the keyway 281. Because the shuttle lock 222 (and hence the tens wheel 219 rotationally locked thereto) is rotationally locked to the units wheel 218 by the engagement of the units wheel splines 262 with the shuttle rear teeth 283, further turning of the units wheel 218 causes the shuttle lock 222 and the tens wheel 219 to rotate together.
After 9° of rotation of the shuttle lock 222 and tens wheel 219 by the units wheel 218, stage 3 is reached (
Then, for the next 9° of rotation, the camming action of the angled faces of the housing dogs 291 and those of the shuttle lock peripheral teeth 280 cause the shuttle lock 222 to revert axially to re-engage the housing engagement ribs 292 so that the shuttle lock 222 is once again rotationally locked to the housing 212. Axial reversion of the shuttle lock 222 to its stage 1 forward position also causes the shuttle lock rear teeth 283 to disengage from the splines 262 on the units wheel 218. In this example, for every 18° of rotation (9°+9°), the shuttle lock completes a full cycle as described above. Other angles of rotation for each cycle are possible.
This completes the number change of the tens wheel 219. The mechanism functions in reverse if the dose is decremented.
Dose Setting—Maximum/Minimum Dose Limit
Limiting the maximum/minimum dose that can be set by the dose selector 216 is realised by cut out features 271, 272 on the tens wheel 219 which interact with a limit rib 290 on the housing. One side of the rib 290 limits the tens wheel at the minimum dose when feature 272 is rotated into abutment with the rib 290 (
A further, non-limiting, embodiment of an injection device according to the present invention is illustrated in
Referring to
The injection device 300 has a medicament cartridge 324 supported in a cartridge holder 325 at the front end 300a of the injection device. The cartridge is sealed by an axially-moveable cartridge stopper 326 at its rear end.
The dose button 330 is biased rearwardly by the effect of the dose button spring 331 between the dose button 330 and the dose selector 316. The dose button 330 includes a ratchet disengagement finger 330a which can engage with the selector pawl 317.
The dose selector 316 is provided at the rear end 300b of the injection device 300 and is arranged to permit the selection of a desired dose of medicament for delivery from the medicament cartridge 324 into an injection site. The dose selector 316 is axially constrained with respect to the housing 312 but is rotatable with respect thereto, about axis L. The dose selector 316 is used to set the dose by increasing the rotational preload of the drive spring 320 which is prevented from unwinding by the selector pawl 317 which will be described in more detail below. A loose coupling between the dose selector 316 and the selector pawl 317 is provided via dose selector slots 316a (visible in
The selector pawl 317 has at least one ratchet arm 317b which is engageable with teeth 313 in an internal surface of the housing 312. The selector pawl 317 is also provided with at least one (preferably three equally spaced) selector pawl splines 317a which engage with the drive shaft 340. The selector pawl 317 is designed to be stiff in torsion but to have some flexibility in radial flexion (for example because of cutaways 317c behind the splines 317a.
A dose indicator, comprising a number sleeve 318 is disposed within the housing 312 and displays reference indicia, such as numbers or symbols, to indicate the level of dose selected by the dose selector 316. The housing 312 includes an aperture 312a through which the dose indicator is visible.
The drive spring 320 is a torsion spring which is fixed at one end with respect to the housing 312 via spring lock 321 and engaged at its other end to the drive shaft 340.
The rear end of the drive shaft 340 is provided with axially-extending splines 349. The selector pawl 317 is provided with one or more inwardly-directed splines 317a which can engage with the drive shaft splines 349 (
The drive sleeve 342 couples the drive shaft 340 to the lead screw 353 and also advances the last dose nut 341 during dose setting.
The lead screw 353 converts the rotation of the drive sleeve 342 to linear motion which can be used to depress the cartridge stopper 326 (not shown) to deliver medicament from the medicament cartridge 324.
The cap pawl 351 retains the drive sleeve 342 and provides a one-way ratchet to prevent back-drive of the lead screw 353. The cap pawl 351 may also provide haptic feedback of dose delivery.
The body cap 352 is threaded to allow the lead screw 353 to advance therethrough and serves as a thrust bearing for the drive sleeve 342.
The housing 312 is has an internal thread 312b to guide the number sleeve 318 as it rotates. A maximum dose end stop 312c for the number sleeve 318 is provided at the forward end of the housing 312.
The drive shaft 340 is rotationally coupled with the number sleeve 318 to communicate the rotational position of the drive spring 320 to the number sleeve 318. This coupling can be seen in
The operation of the respective features of the injection device 300 will now be described in more detail below.
Dose Setting—Incrementing the Dose
With reference to
The selector pawl's inwardly-directed splines 317a can engage with the drive shaft splines 349 (
The selector pawl 317 has at least one ratchet arm 317b which engages with teeth 313 in an internal surface of the housing 312. This ratchet arrangement rotationally couples the selector pawl 317 and the housing 312 so that, in this coupled state, the spring 320 is prevented from unwinding when the dose selector 316 is released. Uncoupling of the ratchet arrangement allows relative rotation between the selector pawl 317 and the housing 312 so that, in this uncoupled state, the dose can be further incremented. Haptic feedback is provided per IU incremented as the ratchet arm 317b clicks over the housing teeth 313 (
Dose Setting—Decrementing the Dose
With reference to
The ratchet disengagement finger 330a engages with the selector pawl ratchet arm 317b, depressing it radially inwardly by a sufficient amount to reduce the force required to shift the ratchet arm 317b over to the previous tooth 313 in the housing (
With the ratchet arm 317b partially disengaged, the selector pawl 317 engages the other end of dose selector slots 316a, turning the selector pawl 317 clockwise (
Over-Torque Protection
As shown in
Dose Delivery
When it is desired to deliver a dose of medicament, the user depresses the dose button 330 as shown in
As the drive shaft 340 moves axially forward, the drive shaft splined clutch 350 engages with the drive sleeve splines 342a (
The ratchet disengagement finger 330a in the dose button 330 moves axially, exposing a wider section of the finger 330a which ensures the selector pawl ratchet arm 317b is disengaged from the housing teeth 313 during dose delivery (
Referring to
Dose Display and Maximum/Minimum Dose End Stops
Travel of the number sleeve 318 is limited by end stops which serve as maximum and minimum dose protection. The maximum dose end stop 312c is shown on the left side of
Last Dose Protection
As shown in
During dose delivery, the drive shaft 340 and drive sleeve 342 are rotationally coupled together via the drive shaft splined clutch 350 so that there is no relative rotation between them. Therefore, during dose delivery (
After the preset maximum number of doses has been delivered, a rotational endstop 341a on the last dose nut 341 engages with a rotational stop on the drive sleeve 342, as indicated by the dotted line and arrow in
As with the first embodiment, described, with reference to
The drive assembly includes a plunger element 353 capable of providing an axial force for ejecting a dose of medicament from the injection device 300. The drive assembly also includes a drive clutch 350, 342a moveable from a disengaged state in which a force path from the spring 320 to the plunger element 353 is interrupted and an engaged state in which the drive assembly can provide the axial force for ejecting a dose of medicament from the injection device 300 via the force path.
An injection device 400 according to a non-limiting example embodiment of the present invention is shown in
A cartridge holder 425 holds a medicament cartridge 424 from which medicament is expelled by the forward axial movement of a cartridge stopper 426. The cartridge stopper 426 is driven axially forward by a drive mechanism described later below.
Referring to
A drive spring 420 is attached at one end to a chassis 443 which is fixed with respect to the housing 412. The other end of the drive spring 420 is fixed to a drive sleeve 439.
A last dose nut 441 is threaded to an elongate drive shaft 440. An external surface of the last dose nut 441 has three equally spaced grooves 441a in which internal splines 439b on the drive sleeve engage. The last dose nut 441 also has an endstop 441b for engaging with a correspondingly-shaped endstop 440a on the drive shaft 440.
As shown in
The hollow plunger 444 is capable of converting rotation of the drive shaft 440 into linear (axial) motion via a thrust nut 445 (an external screw thread of the plunger 444 being engaged with the thrust nut 445). A plunger bearing 446 at the forward end of the plunger 444 can be pushed axially against the cartridge stopper 426 to expel medicament.
The dose selector 416 shown in
At a region of the drive plate 405 having a maximum outer diameter is located a third set of three widely and equally-spaced splines 408 which are capable of engaging the drive sleeve 439.
At a front end of the drive plate 405 (i.e. towards the front end 400a of the injection device 400) is located a fourth set of splines 409 which are capable of engaging the drive shaft 440.
The ratchet ring 410 includes a flexible ratchet arm 410b, at the end of which is a ratchet component in the form of two adjacent ratchet pawls 410c, 410d. The ratchet pawls 410c, 410d have different depths and/or angled surfaces so that, when the dose setting mechanism is assembled together, the ratchet pawl 410c is able to engage the first set of splines 406 on the drive plate 405 and the ratchet pawl 410d is able to engage the splines 416a on the dose selector 416.
Referring to
An external surface of the number sleeve 418 has a helical groove 418b which engages with a thread 412b on an internal surface of the housing 412. The number sleeve 418 can therefore rotate with respect to the housing 412, guided by the thread 412b.
The operation of the respective features of the injection device 400 will now be described in more detail below.
Dose Setting—Incrementing the Dose
As shown in
As shown in
Stored energy in the drive spring 420 causes the drive plate splines 406 to push against the first pawl 410c of the ratchet ring 410 hold ratchet arrangement (
As the dose selector 416 is rotated, the dose selector splines 416a start to engage the second pawl 410d of the ratchet ring 410. A first rotation of 1 to 3 degrees, in the embodiment 1.7° of rotation does not move the pawl 410d, or the ratchet arm 410b to which it is attached (
When the dose selector 416 has been rotated 5 to 12 degrees, preferably between 7 to 10 degrees, in the embodiment 8.6° (
For the last part of the turn, when the dose selector 416 has been rotated 10 to 20 degrees, preferably between 13 to 17 degrees, in the embodiment 14.6° (
When the dose selector 416 has been rotated more than 10 to 20 degrees, preferably more than 13 degrees, in the embodiment 15° the ratchet arm 410b clicks over into the next splines i.e. the first pawl 410c engages the next drive plate spline 406 and the second pawl 410d engages the next dose selector spline 416a. This produces haptic feedback for the user and re-engages the hold ratchet (
As the dose selector ratchet pawl 416b drives the drive plate 405 clockwise (
As the drive sleeve 439 turns, it turns the number sleeve 418 by virtue of the external drive sleeve splines 439a (
Dose Setting—Decrementing the Dose
To decrement the dose, the user turns the dose selector 416 anti-clockwise (
Initially, the ratchet ring first pawl 410c is engaged with the drive plate splines 406 and the ratchet ring second pawl 410d is engaged with the dose selector splines 416a so as to provide the hold ratchet arrangement (
As the dose selector 416 is turned anti-clockwise, the first 1 to 5 degrees, in the embodiment 3.7° of rotation pushes the ratchet arm 410b 0.1 mm to 0.5 mm in the specific embodiment 0.14 mm radially outwardly (
After 3 to 6 degrees, in the embodiment 3.7° of rotation, the drive plate 405 starts to turn with the dose selector 416, further disengaging the hold ratchet and allowing the drive plate 405 to turn (
The hold ratchet then re-engages; the pawls 410c, 410d catching on the next splines 406, 416a and providing haptic feedback (
Once the hold ratchet has re-engaged, the process can be repeated if the dose is to be decremented further (
The dose decrementing process is summarised in
The number sleeve 418 will progress backwards, decrementing the indicated dose, until it reaches the hard rotary endstop 410e on the ratchet ring 410 (
Dose Setting—Over-Torque
An over-torque feature is illustrated in
Last Dose Protection
Last dose protection is provided by the last dose nut 441, as illustrated in
The last dose nut 441 moves axially 0.5 mm to 1 mm, preferably about 0.7 mm each turn. After 13.166 turns (representing 316 IU of medicament) the last dose nut 441 has moved sufficiently so that its endstop 441b has reached the hard rotary endstop 440a on the drive shaft 440. The last dose protection is now engaged and further incrementing of the dose is no longer possible.
As the dose button 430 is axially depressed against the bias of the dose button spring 431 (
Further pressing of the dose button 430 causes continued forward axial movement of the drive plate 405. The fourth set of splines 409, at the front of the drive plate 405, begin to engage the internal splines 440b at the rear of the drive shaft 440 (
With reference to
The engagement of the fourth set of drive plate splines 409 with the rear of the drive shaft 440 enables the drive shaft 440 to be driven by the spring 420 (
During dose delivery, the one-way chassis ratchet 442 allows the drive shaft 440 to rotate with respect to the chassis 443, during which haptic feedback is provided to the user by the clicking of the chassis ratchet 442.
The relative rotational positions of the drive plate 405 and drive shaft 440 is important, to ensure the splines 409, 440b mesh smoothly (
Dose delivery can be summarised with reference to
The drive sleeve 439 turns the drive plate 405 because of splines 408. The drive plate 405 is engaged with the drive shaft 440 via splines 409 (not visible) and so the drive shaft 440 also turns.
The last dose nut 441 turns with the drive sleeve 439 and drive shaft 440 but does not move axially with respect thereto.
As the drive shaft 440 turns, it turns the hollow plunger 444 which is rotationally locked, or keyed, thereto. The thrust nut 445 causes the screw-threaded hollow plunger 444 to advance axially forwards, pushing the plunger bearing 446 against the cartridge stopper 426 (not shown) into the cartridge 424 (not shown) to expel the dose of medicament.
As with the first embodiment, described, with reference to
The drive assembly includes a plunger element 440, 446 capable of providing an axial force for ejecting a dose of medicament from the injection device 400. The drive assembly also includes a drive clutch 440b moveable from a disengaged state in which a force path from the spring 420 to the plunger element 440, 446 is interrupted and an engaged state in which the drive assembly can provide the axial force for ejecting a dose of medicament from the injection device 400 via the force path.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of them mean “including but not limited to”, and they are not intended to (and do not) exclude other moieties, additives, components, integers or steps. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
1615447 | Sep 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/072748 | 9/11/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/046728 | 3/15/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060153693 | Fiechter et al. | Jul 2006 | A1 |
20090254035 | Kohlbrenner | Oct 2009 | A1 |
20110077595 | Eich et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2198906 | Jan 2016 | EP |
2006045528 | May 2006 | WO |
2007063342 | Jun 2007 | WO |
2011081867 | Jul 2011 | WO |
2012089616 | Jul 2012 | WO |
2013178372 | Dec 2013 | WO |
2014001319 | Jan 2014 | WO |
2014060369 | Apr 2014 | WO |
2014166899 | Oct 2014 | WO |
2015007820 | Jan 2015 | WO |
WO-2015007820 | Jan 2015 | WO |
2015032780 | Mar 2015 | WO |
2015071212 | May 2015 | WO |
2016001299 | Jan 2016 | WO |
2016055438 | Apr 2016 | WO |
Entry |
---|
International Search Report and Written Opinion PCT/EP2017/072748, dated Dec. 18, 2017, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20190366006 A1 | Dec 2019 | US |